THE WORLD BANK GROUP ARCHIVES

PUBLIC DISCLOSURE AUTHORIZED

Folder Title:	Byron, R. P. - Analysis of the 1984 Transmigration Survey
Folder ID:	30097974
Series:	Writings not by Gloria Davis
Dates:	10/20/1985-10/20/1985
Fonds:	Personal papers of Gloria Davis
ISAD Reference Code:	WB IBRD/IDA DAVIS-13
Digitized:	$04 / 26 / 2023$

To cite materials from this archival folder, please follow the following format: [Descriptive name of item], [Folder Title], Folder ID [Folder ID], ISAD(G) Reference Code [Reference Code], [Each Level Label as applicable], World Bank Group Archives, Washington, D.C., United States.

The records in this folder were created or received by The World Bank in the course of its business.
The records that were created by the staff of The World Bank are subject to the Bank's copyright.
Please refer to http://www.worldbank.org/terms-of-use-earchives for full copyright terms of use and disclaimers.

THE WORLD BANK
Washington, D.C.
© International Bank for Reconstruction and Development / International Development Association or
The World Bank
1818 H Street NW
Washington DC 20433
Telephone: 202-473-1000
Internet: www.worldbank.org

DECLASSIFIED

WBG Archives

Archives

||||||||||||||||||||||||||||
30097974
A2011-001 Other \#:
Byron, R. P. - Analysis of the 1984 Transmigration Survey

Table Begrom Tables
p.6. 1 Y Sorrre e Rep y Typen Settloneb

157 Y y Tyeed Transing. (Spons//Sais/Mail/boal)
$19,20 \quad 9,10$ Y bly selucatue
$21 \quad 11 \quad$ otter $4 x$ typer of traismigra t.
2213 Y l age of homelold hear
$24,2514,15 Y$ of Co lothe fore
28-34 $16-20$ Y x $\operatorname{Rep} \times$ Orgin x Type

38- 23- Quostaa Rezponses e Village
3924 hreas lonpount eq Village.
45-54 25-27 Regr' coff
60-61 28 Uleebf food Lons.

Analysis of the 1984 Transmigration Survey

by R.P.Byron

Australian National University

1. Introduction

The transmigration survey of 2198 transmigrant households in 31 subdistrict was carried out in the latter part of 1984. The survey asked a wide range of questions relating to production, income, expenditure and welfare. Parts of the income and expenditure surveys are identical to the Susenas survey. In the first part of what follows we provide some details of the questionaire; we will then examine the characteristics of income determination, looking, in particular at the performance of the transmigrant by settlement type, village layout, village of destination, area of origin, type of transmigrant, and so on. The composition of income will be closely examined and the responses to various questions on welfare will be detailed. It soon becomes apparent that tabular or graphical analysis is of limited value in disentangling the relative effects of various influences on the transmigrant ultimate income. In the last section of the report we switch to regression analysis.

Section 2

The Questionaire

In this section we detail the questions asked in the survey filed by 13 record types. Enumerating the questions in this manner enables the reader to ascertain what sort of analysis is, in fact, feasible. The details of the questionnaire are given in Appendix I. Below we summarise the details of the type of records.

Record Type

1 Location and Basic Information
12 Family member information
13 Household Activities
2 Land Allocation
3 Land Use
4 Yields, Expenses and Income from Food Crops
5 Yield, Expenses and Income from Estate Crops
6 Income from Other Activities
7 Other Income lost Month
8 Other Financial Items last Month
9 Assistance from Government
10 Consumption Expenditure
11 Family Welfore

Thirty one transmigrant communities in six provinces were sampled, as mentioned, o total of 2198 households. The provinces, villoge numbers, and where known, village names, sample sizes and tidal/dry farm classification are listed belaw.

MARKED COPY

Analysis of the 1984 Transmigration Survey

by R.P.Byron

Australian National University

1. Introduction

The transmigration survey of 2198 transmigrant households in 31 subdistricts was carried out in the latter part of 1984. The survey asked a wide range of questions relating to production, income, expenditure and welfare. Parts of the income and expenditure surveys are identical to the Susenas survey. In the first part of what follows we provide some details of the questionaire; we will then examine the characteristics of income determination, looking, in particular at the performance of the transmigrants by settlement type, village layout, village of destination, area of origin, type of transmigrant, and so on. The composition of income will be closely examined and the responses to various questions on welfare will be detailed. It soon becomes apparent that tabular or graphical analysis is of limited value in disentangling the relative effects of various influences on the transmigrants ultimate income. In the last section of the report we switch to regression analysis.

Section 2

The Questionaire

In this section we detail the questions asked in the survey filed by 13 record types. Enumerating the questions in this manner enables the reader to ascertain what sort of analysis is, in fact, feasible. The details of the questionnaire are given in Appendix I. Below we summarise the details of the type of records.

Record Type
1 Location and Basic Information
12 Family member information
13 Household Activities
2 Land Allocation
3 Land Use
4 Yields, Expenses and Income from Food Crops
5 Yield, Expenses and Income from Estote Crops
6 Income from Other Activities
7 Other Income last Month
8 Other Financial Items last Manth
9 Assistance from Government
10 Consumption Expenditure
11 Family Welfare

Thirty one transmigrant communities in six provinces were sampled, as mentioned, o total of 2198 households. The provinces, village numbers, and where known, village names, sample sizes and tidal/dry farm clessification are listed below.
Province Number Name Sample Settlement Village

Riau

Kab Indragiri Hulu

140102 Kec Kuantan

140104 Tengah $20 \mathrm{lg} / \mathrm{dry}$ linear

140108 Kec Pangkalan Kasai/Siberinda 180 sm\&lg/dry nucleated

Kab Indragiri Hilir

140202		19	tidal	combined
140205	Kec			
	Tempuling	20	tidal	nucleated

Kab Kampar
14040420 estate linear

South Sumatra

Kab Ogan Komering ulu

160109	80	dry/est	linear
160110	60	$\mathrm{sm} / \mathrm{lg} / \mathrm{dry}$	linear
160171	40	dry	linear

Kab Ogan Komering Ilir

160203		40	lg/dry	
160204	Kec Mesuji	201	sm\&ig/dry	lin/nuc
160205		241	sm\&lg/dry	lin/nuc
160212		120	tid\&l	lin

Kab Lematang llir

Ogan Tengah
$16037459 \mathrm{lg} / \mathrm{dry}$ nuc
Kab Musi Banyu Asin

160605		101	tidal	linear
160607	Kec Banyu Asin II	40	tidal	linear

Province	Number	Name	Sample	Settlement	Village
Central Kalimintan					
	Kab Kotawaringin Barat				
	620102		40	$\mathrm{lg} / \mathrm{dry}$	nucleated
	Kab Kotawaringin Timur				
	620203		20	\lg / dry	linear
	Kab Kapuas				
	620401	Kec S	t 120	tidal	nucleated
	620413	Kec P	dit Patu		
			140	tidal	nucleated
	Kab Kota Baru				
	630210	Kec B Licin		sm\&/g/dry estate	lin/nuc/ comb
	630211		20	$\mathrm{lg} / \mathrm{dry}$	nucleated
	Kab Barito Kuala				
	630403		20	tidal	linear
	630408		20	tidal	nuclested
East Kalimintan					
	Kab Pasir				
	640104		20	tidal	linear
	640109		20	dry	linear
	Kab Kutal				
	640215		20	sm/dry	comb
	Kab Balikpapan				
	647101	Kec B	kpapan		
		8ng	20	dry	comb
Central Sulawesi					
	Kab Donggala				
	720314		100	tidal	linear/nuc
	Kab Kendari				
	740307		119	lg/dry	nuclested
	740314		40	$\mathrm{lg} / \mathrm{dry}$	nucleated

Section 3

Tabular Analysis

Section 3.1

Overall Results

Our initiel concern will be with the components of income (from the Type 9 records); we will cross tabulate this by repelita, type of settlement, village layout, type of transmigrant etc.

In Table 1 we detail income sources for transmigrants by repelita. For convenience of reading we have suppressed the standard errors associated with each of these estimates In many cases, it is obvious from the standard errors that the range for the means is such that one cannot conclude that a particular submean is significantly greater than another. For completeness the full tables are repeated in the Appendix B.

First, notice that total monthly income by repelita is 60065 vs 57132 ; however, the difference is not statistically significant. In terms of the components of income, note that government subsidies for the repelita 3 households average 12000 rps against 0 for the repelita 2 households, as expected. Agricultural income is about the same by repelita with the exception of estate income which is 4954 rps compered to 519 for repelita 3 . Other income and all other categories apart from "government origin" income are about the same (in a statistical sense).

Table 1

Income Sources by Repelita and Type of Settlement

$\frac{\text { Rep } 2 \text { Rep } 3}{\text { TORAL }}$ dry $\frac{\text { Repelita } 2}{\text { estate tidal }}$| small |
| :--- |
| $d r y$ |$\frac{\text { Repelita } 3}{\text { large estate }}$| dry |
| :--- | tidal

sample	557	1641	419	19	119	292	788	40	521
govt subs	0	12072	0	0	0	18660	9935	0	12538
food crops	12587	12959	9341	11978	24114	17504	13625	8456	9747
estate	4954	519	4303	31310	3041	1453	532	0	16
livestock	2388	2437	2144	941	3479	2660	3079	308	1506
other agric	1291	1776	1688	631	0	305	1502	1450	3039
	6067	5671	4186	11280	11857	3813	7746	1379	3902
non agric	28001	24526	29676	18536	23616	28865	26896	57181	16004
other	6132	3954	5389	2263	9367	5520	4716	4900	2020
transfers in	2003	1570	1944	3157	2028	1332	1929	713	1227
transfers out	6407	7951	5757	16131	7142	11650	6861	29927	5838
other in	4900	2713	5409	4626	3152	4019	3419	5851	672
other out	645	6880	723	0	472	6287	9106	1666	4245
govt origin	60065	57132	55508	73785	73921	64730	65265	74628	39230

Table 2 gives the income breakdown by village layout, i.e., linear, nucleated or combination. Here, we notice a startling difference in the income achieved by households in the combination settlements. In the case of combination settlements the average monthly household income is of the order of 80000 rps , whereas for both linear and nucleated it is 56000 . A note of caution is in order as the standard error on the mean for combination settlements is 8282 rps and we probably cannot conclude the difference is statistically significant. Looking back for the reasons we see that food crop income in the combination settlements is 2.5 times that of other settlements (but with a relatively high variability). With the exception of government income for the combination settlements and estate income for the nucleated settlements, which are relatively low in both cases, there is not a great deal of difference between the income sources of the cases.

Combination seltements 122 case
140202 Sci Raven
630210-Batu Licin (panT: ${ }^{2}$)
$\left.\begin{array}{l}640215-\text { Separu } \\ 647101 \text { - Separmu }\end{array}\right\}$

TABLE 2
INCOME CROSS CLASSIFIED BY TYPE OF VILLAGE LAYOUT ARD INCOME ORIGIK

Cross classifying total monthly household income by type of settlement and repelita we observe the same apparently favourable results for combination settlements; particularly in repelita 3. The results, in Table 3, present an income level at 85226 (rep 3) and 69397 (rep 2), which are much higher than the other figures which are in the 54-59 thousand rupiah range. Again the standard error on the high figure is very large, suggesting a need for caution. However, it is already obvious we will need to look more closely at this set of outlying results.

TABLE 3
TOTAL INCOME CROSS CLASSIFIED BY TYPE OF YILLAGE AND REPELITA

	REP2	REP3
LINEAR		
MEANS	59802	53899
STD ERRORS	3496	3103
NUMBER	395	461
NUCLEATED		
MEANS	57666	56444
STD ERRORS	2975	1289
NUMBER	120	1100
COMBIINATION		
MEANS	69397	85226
STD ERRORS	2838	12499
NUMPER	42	80

This is taken one step further in Table 4, which considers the dynamics of income generation in the context of the question on the transmigrants personal comparson of household income with two years previously. The responses are cross classified by repelita and type of settlement and what emerges is unclear. Whilst tidal farmers who settled under repelita 2 clearly consider themselves better off, opinion amongst their repelita 3 counterparts is evenly divided. The spread of opinions amongst other farming categories is also uniform.

TABLE 4
COMPARISON OF CURRENT IMCOME TO TYO YEARS AGO FOR TYPE OF SETTLEMENT FOR REPELITA 2 AND REPELITA 3

		MORE	LESS	SAME	OTHER	TOTA
REPELITA 2	DRY LAND NUMBER					
		131	216	64	6	417
		(31\%)	(5290)	(15\%)	(290)	100
	number	8	6	5	0	19
	tidal					
	NUMBER	73	10	29	5	117
			990	25%	490	100
REPELITA 3	SMALL DRY NUMBER 93	93	133	62		
		1838	6/	B	3	291
	LARGE DRY NUMBER	32\%	$46 \% 0$	2190	1	
		359	232	168	25	784
		4690	309	2190	398	100
	ESTATE NUMBER \neq	20		13	1	35
		V	18	γ		35
	tidal					
	NUMBER	182	189	110	40	521
				219		-100
ile II	Dry	mon L	LDD	Same	10	9
		31	52	15	2	
	Tidal	62	9	25	4	
ive II	S. Ory	32	46	21	1	
	1 Dry	46	30	21	3	
	Tidal	35	36	21	8	

When the same question is cross classified by type of village similar results emerge, 40% think they are better off, 40% feel they are worse off, and the remainder regard their income level as unchanged. The results are presented below in Table 5.

TABLE 5
COMP ARISOH OF CURRENT INCOME TO TYO YEARS AGO FOR TYPE OF YILLAGE

	MORE	LESS	SAME	OTHER
LINEAR NUMBER	360	307	165	20
NUCLEATED NUMBER	432	456	265	58
COMBINATION NUMBER	74	24	21	2

In Table 6 we examine hausehold income by province of origin and we again note considerable variabilility in the results with the Javanese and Balinese(51-53) transmigrants apparently faring worst whilst the three groups faring best being those from Riau-Sumatra, Kalimintan and Sulawesi (72-75). However, note that this may not, in fact be a regional difference, but a reflection of the composition of those migrants in particular the representation of military and spontaneous settlers. The mean household income for the Sulawesi group (total number only 24), was 82741 with a standard error of 14000 . The Javanese mean income was 55757 with a standard error of 1130 , reflecting the law of large numbers. The same occurs with the other high income groups, so it is probably the case that not too much can be placed on this result. A more useful exercise may well be to attempt to
account for income differences by urban and rural Kabupaten in areas of origin, this will be attempted in subsequent regression analysis. The outlying Sulawesi group received no government subsidies but high government origin income and other inward monetary flows - suggesting that we may, in fact, have picked up a group of military settlers. Apart from these factors their performance was not much different from the large mass of Javanese. The first group, from Riau-Sumatra had very high "other income", at 43522 rps almost double the average for that category and relatively low food income, suggesting the possibility of an entrepreneurial-trader group.

TABLE 6
INCOME ORIGIN CROSS CLASSIFIED BY PROYINCE OF ORIGIM

	$\begin{aligned} & \text { GOYT } \\ & \text { SUBS } \end{aligned}$	FOOD CROPS	ESTATE	stock	OTHER AG	$\begin{gathered} \text { NON } \\ \text { AG } \end{gathered}$	OTHER
RIAU-SUMATRA							
SMP $=114$							
MEANS JAVA	12578	11032	2638	2171	2411	5229	43522
SMP $=1856$							
MEANS	9485	12788	1729	2384	1549	4662	24319
BALI							
$S M P=133$							
MEANS	. 00	13361	300	3149	1194	10243	23924
$S M P=71$							
MEANS	10879	15279	90	2479	4076	22801	27885
SULAWESI							
SMP $=24$							
MEANS	. 00	17513	2311	2634	1451	18994	24412
- -	TRANS	TRANS	OTHER	OTHER	GOVT	TOTAL	
	\mathbb{N}	OUT	IN	OUT	ORIG		
RIAU-SUMATRA							
SMP $=114$							
MEANS	2093	1776	10471	7508	3901	71224	
JAVA							
SMP $=1856$							
MEANS	4632	1514	7632	2798	5224	55757	
BALI							
SMP $=133$							
MEANS	5622	3615	5328	2973	6606	60788	
KALMMNT AN							
SMP $=71$							
MEANS	2830	2059	4032	512	4592	77977	
SULAYESI							
SMP $=24$							
MEANS	4970	2243	927	9206	12696	82741	

In Table 7 we examine income by type of transmigrant and note the advantages of the military, spontaneous and local settlers over the sponsored migrants. There really is not a great deal of difference between the income achievements of the four categories with the sole exception of "other income" and "other in" categories for the military transmigrant. These amount to 92000
rps and 21000 rps out of their income of 117000 rps per manth, both totals are significantly higher than those achieved by the other transmigrants in that particular category. Spontaneous migrants fare slightly better than sponsored migrants with incomes of 56000 versus 54000; but the difference is not significant. Finally, local migrants are significantly higher than either of these categories with an income level of 74000 . This would appear to be attributible to better income achievement in the food, other agriculture and non agriculture categories.

TABLE 7
INCOME BY TYPE OF TRAHSMIGRANT
GOVT FOOD
SUBS

SPONSORED												
SAMPLE $=1800$												
MEANS 9175	13036	1705	2506	1629	4934	22370	4332	1487	7201	2649	5432	54441
STD ER 850	559	195	118	181	373	581	596	178	744	325	265	1089
SPONT ANEOUS												
SAMPLE= 152												
MEANS 4112	10533	671	1722	607	7265	27113	7622	1510	5782	2418	2714	56741
STDER 1968	897	341	254	243	2368	2140	3160	531	1445	1107	338	4168
MILITITARY												
SAMPLE $=57$												
MEANS 7320	11782	2101	2342	100	3312	92056	8573	9162	21947	11087	6597	117706
STD ER 3670	1360	992	587	99	1365	5079	3593	2342	11706	3183	2150	7102
LOCAL												
SAMPLE $=186$												
MEANS 10748	13380	1720	2240	3241	13499	33270	2467	1417	8136	7600	5642	74045
STD ER 2558	1212	756	329	789	4948	7028	590	276	1780	2820	679	8493

Next, in Table 8 we examine income by year of arrival. An examination of mean total income reveals no trend which would be a significant result except that the sampling was done in a stratified way, by village, and the ups and downs by year and really no more than a comparison of villages and it is noticeable that the transmigrants in each village tend to have arrived in a given or the neighbouring year. Not too much can be drawn from this apparent lack of trend in the series. Some obvious results emerge (subsidies and government origin income decreasing with time. Food crop in come in the year of arrival being around half to a third the norm.

TABLE 8

IHCOME SOURCES BY YEAR OF ARRIYAL

GOVT	FOOD	ESTATE STOCK	OTHER	NON	OTHER	TRAN	TRAN	OTHER	OTHER	GOVT	
SUBS				AGRIC	AGRIC		\mathbb{N}	OUT	HN	OUT	ORIGIN

1974
$S M P=18$

| MEANS | 0 | 10874 | 11726 | 175 | 1111 | 12333 | 30978 | 49055 | 2725 | 5077 | 7256 | 0 | 103529 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1975 SMP $=86$
 1976 SMP=187
$\begin{array}{lllllllllllllll}\text { MEANS } & 0 & 7699 & 5748 & 2265 & 1967 & 2284 & 28395 & 5861 & 930 & 5874 & 3800 & 517 & 53809\end{array}$ 1977 SMP=38

| MEANS | 0 | 11882 | 15482 | 965 | 0 | 1859 | 22995 | 3335 | 1602 | 6513 | 2731 | 0 | 54917 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 1978

SMP $=108$
$\begin{array}{llllllllllllll}\text { MEANS } & 0 & 10504 & 6162 & 2222 & 68 & 8517 & 30151 & 7638 & 4069 & 9541 & 6186 & 0 & \\ 1979 & & & 61195\end{array}$ 1979
$S M P=113$
$\begin{array}{llllllllllllllll}\text { MEANS } & 0 & 21212 & 254 & 3979 & 362 & 4489 & 32292 & 3622 & 2618 & 8889 & 8558 & 1963 & 65558\end{array}$
1980
SMP $=355$
$\begin{array}{llllllllllllllll}\text { MEANS } & 0 & 19427 & 1147 & 2857 & 2036 & 5761 & 28516 & 2019 & 1076 & 6490 & 2435 & 3754 & 64435\end{array}$
1981
SMP=531
$\begin{array}{llllllllllllllll}\text { MEANS } & 2518 & 12604 & 118 & 2834 & 2842 & 8423 & 22253 & 2881 & 1637 & 6530 & 1998 & 5732 & 56030\end{array}$
1982
SMP $=408$
$\begin{array}{llllllllllllllll}\text { MEANS } & 9671 & 10156 & 643 & 2151 & 526 & 5869 & 22610 & 5675 & 2169 & 10603 & 3444 & 6676 & 52126\end{array}$
1983
SMP=283
$\begin{array}{lllllllllllllll}\text { MEANS } & 34486 & 12098 & 487 & 2094 & 1386 & 3549 & 26704 & 5913 & 1584 & 8245 & 2800 & 12891 & 63491\end{array}$
1984
SMP $=71$
$\begin{array}{lllllllllllllll}\text { MEANS } & 67149 & 5550 & 352 & 493 & 1059 & 2559 & 22954 & 3533 & 214 & 8635 & 4630 & 8069 & 44360\end{array}$

In Table 9 we consider the effect of education level of the household head on the household income level achieved. First, note the definition of income used here differs from that used previously; it was drawn from the Type 7 records and forms the component called "other income" in the tables above. We generally observe increases in income with higher levels of education, but it is not completely uniform. In Table 10 we cross classify education against the income definition used previously. Three observations were excluded; there were two college and one university graduate in the sample.
table 9
other income by education level of household head

	WAGES	PENS	 SH CRP	OTHER AGRIC	OTHER	OTHER NON AG	total INCOME
SAMPLE $=434$							
MEANS	10385	0	397	5437	1589	1719	19529
STD ERRORS	825	0	128	470	282	259	947
NOT COMPLETED							
PRIMARY							
SAMPLE=798							
MEANS	12335	298	473	6090	2128	1840	23167
STD ERRORS	678	150	102	373	248	177	832
PRIMARY SCHOOL							
SAMPLE=758							
MEANS	12818	3406	1918	5404	1753	1773	27074
STD ERRORS	845	619	1667	300	235	206	1971
JUNIOR HIGH SCHOOL							
SAMPLE $=134$							
MEANS	20024	9591	231	4472	2461	3020	39801
STD ERRORS	2912	2500	103	734	809	891	3726
HIGH SCHOOL							
MEANS	26134	3566	507	6093	3474	2413	42189
STD ERRORS	3998	2016	287	1042	2098	649	4751

The results below indicate a rising level of income with increasing education, but it does not eminate from farming activities. In fact, the increase stems from the "other income" category which is dissected above. Note, other income" increases from 19000 to 42000 rps stepping from the "no education" to high school categories. The wage component of this income tells the story; all the other components of income below seem invariant to the level of education of the transmigrant.

TABLE 10
InCOME BY EDUCATION LEVEL

GOV	FOOD	ESTATE STOCK	OTHER	NON	OTHER	TRAN	TRAN	OTHER	OTHER GOVT	TOTAL	
SUBS				AGRIC	AGRIC		\mathbb{N}	OUT	\mathbb{N}	OUT	ORIG

NO EDUC												
SAMPLE=	434											
MEANS 9636	13024	2395	2166	1556	3703	19529	5039	860	5123	1840	4810	51357
NOT PRIM												
SAMPLE $=$	798											
MEANS 6135	11718	1258	2199	2386	4813	23167	2938	1160	7434	3371	5335	52649
PRIM												
SAMPLE=	759											
MEANS 12237	14362	1648	2583	1273	6423	27061	4879	2254	7669	2988	5227	61191
JR HIGH												
SAMPLE=	134											
MEANS 5301	11337	703	2719	428	13711	39801	9665	4328	15948	7507	7531	8146.4
HIGH												
SAMPLE $=$	71											
MEANS 10344	11662	3095	4133	466	7389	42189	4784	1399	6735	5895	4626	76949

In Table 11 "other income" is examined by type of transmigrant. Apart from the significent advantage given by pensions of the military settlers, there is little to differentiate the four categaries. The lacal settlers gain a substantial bonus from rent and share cropping, not, as one might anticipote, the militory.

TABLE 11

OTHER IHCOME BY TYPE OF TRAMSMIGRANT

```
WAGE PENS RENT OTHER OTHER OTHER TOTAL
AGRIC NON AG INC OTHER
```

SPONS							
SAMPLE=	1800						
MEANS	12609	152	323	5602	1901	1780	22370
STD ERR	503	80	45	226	177	120	581
SPONT							
SAMPLE $=$	153						
MEANS	16166	723	281	5736	2186	1955	27049
STD ERR	1949	682	100	663	583	731	2127
MILIT							
SAMPLE=	57						
MEANS	12210	69721	640	4845	1360	3279	92056
STD ERR	3644	4983	283	1462	465	1112	5079
LOCAL							
SAMPLE $=$	186						
MEANS	14858	0	7577	5913	2503	2415	33270
STD ERR	1947	0	6786	652	535	541	7028

Cansidering ather income by village layout, we notice first the relative constancy of tatal other income. However, there are some differences in the components, wage income is highest on combination settlements, pensions and rent or share cropping income highest on linear settlements. In Table 13 the proposition that "experience counts" is examined. The totals suggest that being over 35 carries an income premium, yet this conclusion must immediately be played dawn due to the large standard errors. The subtotals also do not give strong pointers despite their signs of within group constancy, they too have large standard errors.

TABLE 12
OTHER INCOME BY YILLAGE LAYOUT
YAGE PENS RENT OTHER OTHER OTHER TOTAL
AGRIC NON AG INC OTHER

LINEAR							
SAMPLE $=$	856						
MEANS	11901	3022	1989	6154	1466	1818	26351
STD ERR	711	547	1478	323	236	163	1716
NUCL							
SAMPLE $=$	1221						
MEANS	13364	1413	269	5516	2464	1724	24753
STD ERR	633	325	59	278	229	167	813
COMB							
SAMPLE $=$	122						
MEANS	17418	368	327	2913	307	3930	25265
STD ERR	2787	367	326	584	177	908	2946

TABLE 13
INCOME BY AGE OF HEAD OF HOUSEHOLD

| GOVT | FOOD | ESTATE STOCK | OTH | NON | OTHER | TRAN | TRAN | OTH | OTH | GVT TOTAL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SUBS | | | AGRIC | AGRIC | | NN | OUT | N | OUT | ORIG |

0-20												
SAMPLE $=$	21											
MEANS 4107	10704	0	984	321	3730	25766	7686	583	4923	1078	3504	52046
STD ERR 4008	2635	0	518	256	2044	7780	4966	189	1763	665	950	9807
21-25												
SAMPLE=	198											
MEANS 9420	12637	818	1969	1408	7366	22654	2805	1389	5498	3129	4534	52791
STD ERR 2365	998	356	231	381	2010	2040	1074	330	965	1111	447	3015
26-30												
SAMPLE $=$	397											
MEANS 10730	11567	1118	2330	1832	7307	22519	3447	1470	6335	2827	6421	55044
STD ERR 2021	614	334	191	384	2227	1277	769	206	800	572	644	2752
31-35												
SAMPLE=	394											
MEANS 8840	13361	1546	2018	1520	5265	26232	3133	1560	6556	4315	5107	56608
STD ERR 1477	1121	390	171	292	1044	3397	515	288	886	1309	592	3780
$35+$												
SAMPLE $=$	1189											
MEANS 8508	13200	2015	2692	1703	5192	26543	5544	1857	8691	3125	5154	60179
STD ERR 1045	749	269	166	249	486	854	939	278	1231	476	308	1540

The results indicate remarkably little, a lot of variation in the data, some suggestions of differences between tidal and non tidal returns, some suggestion that the combination settlements achieve superior levels of income than non-combination settlements. This latter feature might be accounted for if the combination settlements were shown to have a higher proportion of military transmigrants. However, in Table 14 below we find that it is just due to the effect of one outlying settlement with a very high figure for food income.
table 14
income of combination farmers

GOV	FOOD									
	SUBS	ESTATE STOCK	OTHER	NON	OTHER	TRAN	TRAN	OTHER	OTHER	GOVT TOTAL
		AGRIC	AGRIC		\mathbb{N}	OUT	NW	OUT	ORIG	

140108
SAMPLE=1

MEANS 0	0	0	604	0	0	24000	0	0	0	6500	0	24604
STD ERR 0	0	0	0	0	0	0	0	0	0	0	0	0
140202												

TABLE 14 (cont)

OTHER INCOME OF COMBINATION FARMERS

-	WAGES	PENS	RENT	OTH AG	NON AG	OTHER	TOTAL
140108							
SAMPLE=1							
MEANS	24000	0	0	0	0	0	24000
STD ERR	0	0	0	0	0	0	0
140202							
SAMPLE=19							
MEANS	2842	0	0	13313	0	1289	17444
STD ERR	1325	0	0	780	0	707	1393
140205							
SAMPLE=4							
MEANS	11250	0	0	7750	3750	0	22750
STD ERR	9742	0	0	1441	3247	0	8938
630210							
SAMPLE=59							
MEANS	19118	762	0	1211	381	5508	26983
STD ERR	2595	756	0	791	266	1303	2973
640215							
SAMPLE $=20$							
MEANS	31000	0	0	0	0	0	31000
STD ERR	13377	0	0	0	0	0	13377
647101							
SAMPLE $=19$							
MEANS	13368	0	2105	0	0	6842	22315
STD ERR	5281	0	2049	0	0	3853	7921

The outlier is settlement 640215 with a food income alone of 96000 rps and a wage income of 31000 . Not surprisingly, the mean household income for that village is around 134000 rps , which together with the performance of a couple of other combination villages, drags the combined total up. A closer examination of the household records for that village revealed one househald of 7 members with a total income of around $950,000 \mathrm{rps}, 758$ of which originated from food and about 20% from sharecropping. The household looked like a genuine outlier rather than a series of keypunch errors. In the next section we examine the returns to tidal and dry-land farming.

Section 3.2

Comparison of Sponsored Dryland and Sponsored Tidal Transmigrants

In this section we compare the performance of sponsored dryland and sponsored tidal farmers using the same table layouts as previously. To start with the dryland farmers in Repelita 3 appear (fram totals) to be faring better than their Repelita 2 equivalents. An examination of the components reveals this can be accounted for by gavernment origin income together with food crops. Their returns from estate crops are less than those achieved by Repelita 2 farmers; other than that we abserve the usual high degree of variablity.

For tidal farmers we notice a dramatic, and significant degree of difference, compared to the dryland farmers and between the two repelitas. The income totals for tidal farmers in the two repelitas are 66000 and 33000 rps respectively. This breaks down by food (25000 to 9000), estate (3000 to 16), livestock (3000 to 1400), other (20000 to 11000), transfers in (9500 to 1600), and so on. There are some minor variations the other way. Anyway it would be sufficient to say that there was a dramatic deterioration in the income generating performance of the tidal farmers in Repelita 3. Subsequently we will pinpoint the villages involved and attempt to identify reasons, apriori, probably a futile task.

TABLE 15

HKCOME CROSS CLASSIFIED BY REPELITA AND INCOME ORIGIN
(SPONSORED DRYLAKD) EXCLUDES MILITARY, SPON E! LOCAL

,	GOYT SUBS	F000 CROPS	ESTATE	stock	OTHER AG	NON	OTHER WAGES
REPELITA 2							
SAMPLE $=358$							
MEANS	. 00	9482	4840	2303	1819	3646	26344
STD ERRORS	. 00	1151	754	284	480	807	1117
REPELITA 3							
SAMPLE $=$	874						
MEANS	12331	15053	575	3039	1038	6156	25058
STD ERRORS	1459	989	175	185	264	593	973
-	TRANS \mathbb{N}	TRANS OUT	OTHER \mathbb{N}	OTHER OUT	$\begin{aligned} & \text { GOVT } \\ & \text { ORIG } \end{aligned}$	TOTAL	

REPELITA 2

SAMPLE=358						
MEANS	5359	2001	5368	5659	771	52567
STD ERRORS	1489	690	1150	1302	142	2197

REPELITA 3
SAMPLE $=874$
$\begin{array}{lllllll}\text { MEANS } & 4635 & 1427 & 7229 & 2371 & 8658 & 62761\end{array}$

| STD ERRORS | 531 | 186 | 1316 | 375 | 506 | 1683 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

table 16

income cross classified by repelita and income origin (SPONSORED TIDAL)

:	$\begin{aligned} & \text { GOYT } \\ & \text { SUBS } \end{aligned}$	FOOD CROPS	ESTATE	STOCK	$\begin{aligned} & \text { OTHER } \\ & \text { AG } \end{aligned}$	$\begin{aligned} & \text { NON } \\ & A G \end{aligned}$	OTHER WAGES
REPELITA 2							
SAMPLE $=95$							
MEANS	. 00	25865	3220	3921	. 00	6222	20019
STD ERRORS	. 00	1488	583	721	. 00	1336	2436
REPELITA 3							
SAMPLE $=423$							
MEANS	13565	9457	16	1490	3247	3315	11402
STD ERRORS	1913	497	9	126	348	632	466
\cdots	TRANS w	TRANS OUT	OTHER时	OTHER OUT	$\begin{aligned} & \text { GOVT } \\ & \text { ORIG } \end{aligned}$	TOTAL	
REPELITA 2							
SAMPLE $=95$							
MEANS	9557	2391	8577	2809	282	66698	
STD ERRORS	8185	652	4294	1032	78	8390	
REPELITȦ 3							
SAMPLE $=423$							
MEANS	1613	1025	5979	532	4382	33871	
STD ERRORS	400	254	614	115	212	774	

In Tables 17 and 18 we compare sponsored dryland and tidal farmers. The results are much as before. Tidal sponsored farmers derive about twice as much income from food crops as do dryland and estate farmers. Curiously, the income sponsored transmigrants derive from estate sources were 3400 rps for dryland farmers and only 300 for estate farmers. The "other income" category yields 25000 rps for both tidal and estate farmers but 20000 rps for tidal farmers. Finally, note that government origin income is highest for estate farmers at 9300 rps and lowest for tidal farmers at 200 . This, presumably will be related partly to the gestation period of estate farming and partly to the number of tidal settlements in the last part of Repelita 3.

TABLE 17

INCOME CROSS CLASSIFIED BY TYPE OF SETTLEMENT AND INCOME ORIGIN FOR REP 2 (SPONSORED DRYLAND)

	GOYT SUBS	FOOD CROPS	ESTATE	STOCK	$\begin{gathered} \text { OTHER } \\ A G \end{gathered}$	$\begin{aligned} & \text { NON } \\ & \text { AG } \end{aligned}$	OTHER
DRY							
SAMPLE=594							
MEANS	7459	13190	3406	2478	1217	3408	2579
STD ERRORS	1666	1544	513	218	293	612	928
ESTATE							
SAMPLE $=638$							
MEANS	9946	13661	332	3148	1310	7306	25095
STD ERRORS	1296	453	111	220	360	730	1194
	-						
	TRANS	TRANS	OTHER	OTHER	GOYT	TOTAL	
	\mathbb{N}	OUT	N	OUT	ORIG		
DRY							
SAMPLE $=594$							
MEANS	4771	1592	7035	4409	3153	55804	
STD ERRORS	993	425	1851	834	276	2210	
ESTATE							
SAMPLE $=638$							
MEANS	4914	1596	6365	2319	9358	63517	
STD ERRORS	611	242	835	445	656	1619	

TABLE 18

INCOME CROSS CLASSIFIED BY TYPE OF SETTLEMENT AHD INCOME ORIGIN FOR REP 2 (SPONSORED TIDAL)

-	GOVT SUBS	$\begin{aligned} & \text { FOOO } \\ & \text { CROPS } \end{aligned}$	ESTATE	stock	OTHER AG	$\begin{gathered} \text { NON } \\ A G \end{gathered}$	OTHER
:							
TIDAL							
SAMPLE $=95$							
MEANS	. 00	25865	3220	3921	. 00	6222	20019
STD ERRORS	. 00	1488	583	721	. 00	1336	2436
	TRANS \mathbb{N}	TRANS OUT	OTHER IN	OTHER OUT	$\begin{aligned} & \text { GOYT } \\ & \text { ORIG } \end{aligned}$	TOTAL	
MEANS	9557	2391	8577	2809	282	66698	
STD ERRORS	8185	652	4294	1032	78	8390	

The issue of which type of settlement, linear, nucleated or combination, provides the best income returns. Income is further decompased by spansared dryland and sponsared tidal transmigrants. As nated befare, farmers in cambination settlements da best with tatal income for dryland and tidal farmers at 80800 and 64000 repsectively. These figures compare with subtatals of 53600, 60900 for linear and nucleated dryland farmers and 44000 and 32000 for linear and nucleated tidal farmers. Again, the standard errors an these tatals are quite large, making it difficult conclude that the difference is real rather than on illusion due to sampling variatian. The camponents of income for the spansored tidal and sponsared dryland farmers bear much the same pattern as observed previausly. Tidal farmers get the mast significant incomes, in absalute and relative terms, fram foad crops, especially on the combination settlements. However, the tidal farmers seem to have less access to income fram wages, share cropping and the remaining camponents of "other incame".

TABLE 19

income cross classified by type of village layout amd income origim (SPONSORED DRYLAND)

	GOVT	FOOD	ESTATE STOCK		OTHER NON		OTHER
	SUBS	CROPS			AG	AG	
LINEAR							
SAMPLE=413							
MEANS	. 00	12640	3885	2859	400	3860	24815
STD ERRORS	. 00	1042	653	317	131	554	1118
NUCLEATED							
SAMPLE=737							
MEANS	14623	12021	275	2731	1024	6274	26118
STD ERRORS	1717	403	95	180	314	723	1031
COMBINATION							
SAMPLE=82							
MEANS	. 00	30137	5215	3497	7795	5699	22365
STD ERRORS	. 00	9658	1669	527	1833	1504	3705

TRANS TRANS OTHER OTHER GOUT TOTAL
N OUT \mathbb{N} OUT ORIG

LIMEAR
SAMPLE $=413$

MEANS	3873	1162	7345	4086	2443	53616

| STD ERRORS | 986 | 159 | 2615 | 1063 | 222 | 2005 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

NUCLEATED
SAMPLE=737

| MEANS | 5653 | 1933 | 6856 | 3121 | 8795 | 60930 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| STD ERRORS | 776 | 389 | 765 | 489 | 595 | 1461 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

COMBINATION
SAMPLE=82

MEANS	2481	719	1871	1345	4298	80771

| STD ERRORS | 928 | 397 | 960 | 809 | 588 | 11635 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

TABLE 20

income cross classified by type of yillage layout and income origin (SPONSORED TIDAL)

GOVT FOOD ESTATE STOCK OTHER NON AG OTHER
SUBS CROPS AG

```
LINEAR
SAMPLE=264
MEANS 
STD ERRORS 
NUCLEATED
SAMPLE=236
\begin{tabular}{llllllllll} 
MEANS & 17915 & 7805 & 143 & 1639 & 4638 & 819 & 11480
\end{tabular}
\begin{tabular}{llllllllll} 
STDERRORS & 3267 & 735 & 46 & 203 & 507 & 277 & 700
\end{tabular}
COMBINATION
SAMPLE=18
\begin{tabular}{llllllll} 
MEANS & .00 & 40015 & 138 & 5978 & .00 & 3712 & 17941 \\
STD ERRORS & .00 & 2854 & 74 & 1172 & .00 & 1752 & 2384
\end{tabular}
            TRANS TRANS OTHER OTHER GOVT TOTAL
            INV OUT INV OUT ORIG
```

LINEAR
SAMPLE=264

MEANS	4753	1792	8012	1345	2421	44722

STD ERRORS

2994	409	1740	363	163	3237

NUCLEATED
SAMPLE=236

MEANS	1421	439	5059	496	5146	32602

STDERRORS	462	222	621	230	3.43	1065

COMBINATION
SAMPLE=18

| ME ANS | .00 | 4661 | 1944 | 1083 | 1488 | 64614 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| STDERRORS | .00 | 1421 | 1120 | 682 | 265 | 3077 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

In Tables 21 and 22 we examine the response of transmigrants to a question asking them to compare their income with that achieved two years previously. This is tabulated by sponsored dryland, sponsored tidal, and type of settlement. As before, tidal farmers in linear and cambination settlemenets seem well satisfied, while their compatriots in combination settlements do not. Curiausly, for dryland farmers, it is the nucleated and combination settlement farmers who appear to be doing best whilst the linear dryland farmers seem to be indicating their income is declining.
table 21
COMP ARISON OF CURRENT INCOME TO TYO YEARS AGO FOR TYPE OF YILLAGE (SPONSORED DRYLAMD)

	MORE	LESS	SAME	OTHER	
 LINEAR NUMBER	127	207	73	1	40
NUCLEATED	(31)	(51)	(18)	(0)	
NUMBER	300	257	146	10	
COMBINATION NUMBER	51	15	7	0	

TABLE 22
COMPARISON OF CURRENT INCOME TO TYO YEARS AGO FOR TYPE OF YILLAGE (SPOHSORED TIDAL)

MORE LESS SAME OTHER

LINE AR
 NUMBER

nucleated NUMBER

COMBINATION NUMBER

154	48	52	8	262
(59)	(18)	(20)	(3)	
44	118	50	23	235
(19)	(50)	(21)	10	
9	1	7	1	

3.3 Results by Subdistrict

With 31 sub-districts or villages it is not possible to detail all the cross tabulations as part of a report like this. Instead we consign the tables to Appendix B and discuss the results, with some summary tables, in the body of the text below. To commence we represent the villages with some additional information on class of settlement, typical date of arrival of settlers, how the settlers see their income compared to (i) two years ago and (ii) pre-transmigration, their source of income in their area of origin and their opinion about their health now compared to pre-transmigration.

In Table 23 column 4 gives the earliest date of settlement of each village, typically settlement was completed within two to three years. The next two columns ask the transmigrants to compare their income to two years 8go; it is clear the tend to point to improved income overall, with same notable exceptions. Columns 7 and 8 ask the same question in terms of income prior to transmigration and it is very clear that a significant majority of transmigrants consider themselves better off. The next three columns list the occupations of the settlers prior to migration. The other category includes non-agricultural and "other" in the original questionaire and has been included here to pick up "non-farmer" transmigrants in an attempt to see if any villages have a disproportionate number of non-farmer settlers and if those villages are low income villages. Finally, the last column reports the transmigrants' statements n their health. The idea of this information was to ascertain if the migrants in tidal areas suffered more from health problems than those assigned to dryland areas. This does not appear to be the case.

One possibility, that villages with high household incomes were, in fact, villages with a higher than usual proportion of pensioned military transmigrants, is dismissed by the results in Table 24. When total household income for a village is high it would be nice to be able to say that this is either because food income is high or other (especially wage) income is high, but such a simple explanation is not borne out by the figures.

Table 23

Question Responses by Village

Pror Sample	Class	Arriv	Income to Two Years Ago		Income to Transmigration		Source of Income in Area of Origin			Health of Origin	
			More	Less	More	Less	Food	Trees	Other	Bett	Wrse
Riau											
14010220	Dry	80	9	9	12	1	14	0	5	4	3
14010440	Dry	80	11	21	24	8	29	0	11	21	1
140108180	Dry	81	61	66	98	40	101	5	72	64	23
14020219	Tidal	79	9	1	14	2	14	2	3	1	4
14020520	Tidal	78	12	0	19	0	18	0	2	5	0
14040420	Dry	83	19	1	13	3	3	4	13	8	2
South Sumatra											
16010980	Dry	78	46	21	60	7	41	21	17	31	6
16011060	Dry	80	12	31	40	6	19	2	36	27	8
16017140	Dry	76	16	14	28	6	16	3	21	26	3
16020340	Dry	82	21	0	39	0	13	0	27	15	4
160204201	Dry	74	35	141	125	61	133	2	63	66	58
160205205	Dry	74	39	154	166	54	166	3	69	58	32
160212120	Tidal	81	63	19	116	1	92	2	26	83	7
16037459	Dry	82	4	45	30	8	26	4	29	11	6
160605101	Tidal	82	54	23	69	7	42	2	56	36	8
16060740	Tidal	80	29	0	35	5	31	4	5	21	0
Central Kalimintan											
62010240	Dry	83	32	0	32	3	15	0	25	6	4
62020320	Dry	83	12	3	7	1	3	0	16	3	0
620401120	Tidal	80	18	74	44	42	62	4	46	70	10
620413140	Tidal	81	31	60	78	12	71	1	66	37	9
630210178	Dry	80	85	40	132	17	74	1	101	70	18
63021120	Dry	82	8	1	17	2	8	0	12	8	1
63040320	Tidal	80	11	5	13	3	17	0	2	11	3
63040820	Tidal	80	5	8	15	0	12	0	8	11	1
East Kalimintan											
64010420	Tidal	80	6	9	16	1	11	1	6	7	1
64010920	Dry	76	23	8	26	3	25	0	15	20	2
64021520	Dry	80	17	1	18	0	18	0	2	8	1
64710120	Dry	74	7	10	17	2	6	6	4	16	0
Central Sulawesi											
720314100	Tidal	76	64	3	88	9	36	2	60	67	9
740307119	Dry	81	69	17	46	48	33	3	76	52	13
74031440	Dry	82	38	2	31	6	17	3	18	20	6

Table 24
Income Components by Village

Province	Income Components by Village						orner	
	Number Sample	Class hncome	Total e Crops	Food	Other Origin	Govt	Wages	Pensions
Riau								
	14010220	Dry	103426	16668	58886	9756	48310	0
	14010440	Dry	78011	16314	39040	9521	20775	0
	14020219	Tidal	67536	41859	17444	2895	2842	0
	14020520	Tidal	54858	24329	22674	110	11100	0
	14040420	Dry	99842	11418	71563	3333	61903	0
South Sumatra								
	16010980	Dry	51771	7572	28056	385	7818	3571
	16011060	Dry	62700	10219	37137	8153	13078	6511
	16017140	Dry	86030	9480	31161	3241	10751	3717
	16020340	Dry	35714	14525	8506	1846	4237	0
	160204201	Dry	56104	13321	34122	2086	14100	3668
	160205205	Dry	44820	11376	26203	823	13376	1609
	160212120	Tidal	35578	13303	12764	2320	2270	825
	16037459	Dry	70219	9595	48015	4621	30483	5244
	160605101	Tidal	55258	12503	32078	3490	4903	4071
\bullet	- 16060740	Tidal	76888	18033	20527	182	13587	0
Central Kalimintan								
	62010240	Dry	51258	17235	18471	11905	6040	1110
	62020320	Dry	71348	8705	48542	5042	4775	0
	620401120	Tidal	36717	4974	13619	2212	5861	0
	620413140	Tidal	33133	9121	11316	7953	1428	1007
	630210178	Dry	57088	12710	36283	6160	12623	2756
	63021120	Dry	82851	9444	27961	6883	12700	3000
	63040320	Tidal	31307	7697	12632	5516	9775	0
	63040820	Tidal	45752	10094	25512	4663	22373	0
East Kalimintan								
	64010420	Tidal	111802	22542	48781	137	37250	0
	64010920	Dry	92254	33560	44253	5016	31412	3525
	64021520	Dry	167321	96527	40528	2277	31000	0
	64710120	Dry	75889	9034	33850	257	13700	0
Central Sulawesi								
	720314100	Tidal 6	601571	10412	32967	33	14935	2579
	740307119	Dry 87	87754	15364	25356	27288	14499	0
	74031440	Dry 6	693101	11490	20557	13647	8842	0

Further tables are presented in Appendix B. The first section is devated to questions relating to income. Table B1 provides the income breakdown by village already given in Table 22, together with standard errors. Tables B2 -B4 give full details of three questions summarised in Table 21, i.e. relating to income two years ago, income prior to transmigration, and income source in orea of origin. In mast settlements the transmigrants income sources remain unchanged over a two year periad; however, one (140404) has 19 respondents from whose income patter stands out as originating bath currently and twa years perviously from ather non-rural origins. The income figure of that village is 99842 per household but 75% of that income originates from other non-agricultural sources. Table B5 indicates that around a third to a half the transmigrants list their occupations priar to migration as being in the other class. A few villages are dominated by this group of people, notably 140404 , 620102, 620203 and 630211; the total household incomes for these villages are 99842, 51258, 71348 and 72851 respectively. In other words, their incomes tend to be on the higher side but in only two of the four cases could it be said to originate predominantly from non-agricultural origins. The next Toble is $B 8$ which lists those villages still receiving subsistence support.

The subsequent tables in Appendix B look ot socio-economic questions. Table $B 9$ lists the response to the "family members awoy at primary school question; Table $B 10$ asks the same question with respect of junior high school. In
About 60\% of families have children away- at primary school, but that figure drops to $15-20 \%$ for junior high school. Tables B11 and B12 contain the responses to questions on the provision of education services; it is very clear that, both in regard to primary and secondary education, the transmigrants questioned generally regord the education facilities os being superior to thase existing in their oreas of origin. Table B13 contains responses to the
"transportation" question. Here, the consensus appears to be that transportation facilities are worse. As mentioned, there is no evidence that the health of transmigrants in tidal areas is worse than their counterparts on the dryland sites and when the response to the question on medical services (Table B15) is examined it is clear that the level of services is about the same as in the areas of origin.

The remaining questions relate to housing (Table B16), which is generally seen as better and land ownership and usage. From the results in Table B18 it is apparent that about 35% of migrants owned same land before moving and there is a considerable spread of responses between villages. Table $B 19$ lists land use by village (average per householder). Table B20 provides annual figures for food production, sales and income, tree crop production sales and income and finally income derived from cattle and poultry. The last two tables also relate to land cultivation and contain the responses to the question comparing the amount of land cultivated compared with two years ago and the reason why less land is cultivated. The usual response is that the same amount of land is being cultivated and when less is cultivated it is because it "doesn't pay". The last two tables, B23 and B24, were added as on afterthought to the question, what if the villages are so remote they have no access to markets? The most popular commercial outlet for food crops is the marketplace, whilst estate crops (the sample is much smaller), tend to be disposed of to cooperatives or traders.

As can be seen we have been overwhelmed by a mass of data; tabular presentation is only of limited usefulness in analysing all the detail as it does not isolate underlying influences. Because of this we turn to regression analysis in section 4.

Section 4

Exploratory Regression Analysis

In this section we apply regression analysis in an attempt to isolate the causal influences on the various components of income. In a strict sense we are not identifying causality, we are advocating no theoretical model of wage or income determination. We are, however, looking for association between factors likely to influence income in a partial derivative context; that is, with the effects of variation in other explanatory variables removed. Such an analysis is more valuable than the preceeding tabular exercise, looking at a one or two way classification for a particular variable or variables. The hidden influences, which might underlie an apparent relationship in a tabular or graphical presentation, are brought out using multiple regression.

In the first set of results, presented in Table 25, an attempt is made to account for the variation in the various components of income by a selected set of explanatory variables. In some cases the variables are continuous; for example, age of head of household, number of adults in household, year of arrival, area of land opened (in 00 hectares), or areas of land under cultivation for particular purposes. The remaining variables are binary (0 or 1) dummies: for example, the variable Rep2 is a variable which takes on the value 1 if the household arrived in Repelita 2, but is zero otherwise. A second dummy variable for Repelita 3 (which would be zero for a rep 2 household and one for a rep 3 case) cannot be included because together they are equivalentto on intercept term, which is already included in the equation. Had the second dummy (for Repelita 3) been included in place of the first dummy its coefficient would have been the negative of its partner. The reason is that the binary variables together measure the shift in the dependent
variable, up and down, due to the components of a particular explanatory variable.

Other dummy variables are included for type of settlement (small dry, large dry, estate and tidal), type of village, actual subdistrict, sex of household head, education level of household head, classification of migrant, area of origin of migrant, means by which the settler is able to dispose of food and/or tree crops (market, trader, co-op or other). This collection of binary variables, 74 in all, exhausts the possible set of reasonable explanators in the dato set.

In Table 25 we list the dependent variable across the row, beneath the title. Thus we are trying to explain the variation in wages, other agricultural income, income from food, income from tree crops, and so on. In each case the set of explanatory variables is the same; however, we only report those coefficients which are significantly different from zero at the 5% (*) and $1 \mathscr{F}_{\left({ }^{* *}\right)}$ levels. This is to avoid the temptation of placing too much weight on results which are statistically insignificant. The effect of including these insignificant variables in a regression equation is a general loss in the precision with which the effects of the remaining variables is measured but it should not bias the remaining estimates. After presenting the results we will indicate why this is an exploratory exercise and we will proceed with a further analysis.

To interpret the results in Table 25 note that the intercept term is extremely large; it is composed of the unobserved constant and all the neglected dummy variable effects. No interpretation can be placed on this term. Next is the effect of the age of the head of household, this is only significant in the case of wages and non-agricultural income. The coefficient
of -142 in the wage equation means a household head of 30 years of age on average receives 1420 rps less per month from wage income than does a 20 year old household head. Causation is not implicit in the result as the 30 year household head may be more established and may derive more income from other sources, without the need to seek wage remuneration. The results for the number of adults indicate that a household with 5 adults receives 16920 rps more, on average, in total income per household than a family with 2 adults. This would seem to suggest that the typical extra adults in a household are dependants rather than active production members. Year of arrival has a negative relationship with wage and other (which includes wages as a major component) income. The later a household's year of arrival, the less the average income that household draws from wages; this would appear to suggest that the opportunities for earning wage income increase with the age of a settlement, or possibly that the newer settlers are too busy getting established to be able engage in direct wage generating activities. The differences implied are quite startling, on average a household arriving in 1984 earns 23120 less rps per month from wage sources than one which arrived in 1974.

Table 25
Regression Coefficients for Various Income Categories as a function of the Specified Variables

	wages	other agriculture	food	tree crops	nonagriculture	other	total income
constant	214771**					274984**	
age head	-142**				$-137 *$		
number adults	1819**	435*	1058*		1133*	2004**	5640**
year arrival	-2312**					-3060**	
land opened	-24*						
irr sawah open					-108*		
tidal open			68**				
bunded open		14*	75**				
swamp open							
dry field			30*		$-30 *$		62*
fish pond	122*		123*				
tree crop		-16**	53**	35**		-56*	
other food		-84*					
repelits 2			$-10123 * *$				
small dry		4544*					
large dry		5437*					
estate	17212*	5667*					
linear	-19429**	-4322**			10450*	$-25633 * *$	
nucleated	-8827*				12891**		
vill 140102	49249**					49432**	
vill 140104	11868*						
vill 140108	14635**				-11366*		
vill 140202		13995**	31108**				
vill 140205		9626*		-4445*			
vill 140404	46146**	7232*		-3695*		50474**	
vill 160109		13410**				21415*	
vill 160110	15700**	8521**				22594*	
vill 160171	24362**	11885**		16117**		28155*	
vill 160203		-3818*			-16142*		-39884**
vill 160204	9031*	10155**			-12193*	15647*	
vill 160205							-22970*
vill 160212		10828**					
vill 160374	22522**				$-17452 * *$	24302**	
vill 160605		7898**					
vill 160607		10227**					
vill 620102					$-17864 * *$		-33886*
vill 620203		39783**	-17016*			51725*	

Table 25(cont.)
Regression Coefficients for Various Income Categories as a function of the Specified Variables

	wages	other agriculture	food	tree crops	nonagriculture	other	total income
vill 620401		6738*					
vill 620413							-43511*
vill 630210		-3739*					-26041*
vill 630211							
vill 630403			-19426*				
vill 630408							
vill 640104	33365**				30623**	40910**	51614*
vill 640109	38695**		20816**			37335**	28670*
vill 640215	22115**	-8005**	74423**	5990**	18049*		77213**
vill 647101				-8220**			
vill 720314							
vill 740314					-10614*		
male							
no education							
not compl prim							
primary school							
jr high school							
high school spons migrant							
spont migrant							
military					-12090*	60222**	35155**
food/orig	-4841**	-1231 **			$-2924 *$	-8121**-	
trees/oris					$-6984 *$		-12859
stock/origin	-13057*						-14191
fish/orig							-6192
non-ag/orig						-6643*	-7300
owned land/origin			1873*				8919**
from riau/sumatr							
from java							
from bali							
from kalimintan							
food sold market		1147*	4386**				
food sold trader	$-3125 *$	1667**	8038**	-672*			
food sold co-op		2557*		-2232**			
tree sold market	- 10739 *		8606**	7275**			22575**
tree sold trader		4297**		18352**			20360*
tree sold co-op	$-14801 * *$			25670**			24158*
R-squared	. 256	. 311	. 261	. 668	. 098	. 198	. 222

The next set of variables relate to land usage, amaunt of land apened, bunded paddy used in production, irrigated sawah used in production, and so an. As one might anticipate, this has little effect on wage, non agriculture and other incame, but is a significant determinant of food income. The units of measurement are in hundreds (actually .00 ha). Hence, on average, a difference of 1 hectare apened makes a difference of 6800 rps to hausehold income from foad, if the land is tidal. The difference is slightly more for bunded land and much more for fish ponds.

Immediately below these continuous variables is the first of the dummy variables - Repelita 2. The effect of arrival in the second or third repelita is generally insignificant for mast income categories. The ane exception to this is the faad group, where the results suggest a significantly lawer food-incame performance for this graup of transmigrants. The effect of being in the second or third repelita is insignificant on tatal incame, suggesting (perhaps) that the transmigrants compensate by turning their efforts to other activities.

The effect of settlement type on income is generally negligible, with the exception of the other agriculture category. In this case the tidal categary experiences an income reduction of around 15000 rps , whilst the other three categories show average levels of hausehold income of around 5000 rps . One notable figure here is the relatively high wage earnings of estate settlers, when other effects are removed.

The next set af dummies account for the village layout; linear, nucleated or combination. The results point to wage income of combination farmers being higher than thase on linear or nucleated settlements, whilst non-agricultural income is less. There is no significant variation in tatal income due to type of
village and no significant variation in food income. The outlier noticed in the tabular presentation is subsumed as part of the overall randam variation.

Following the village layout dummy variables are 31 dummies for the actual villages themselves. These can be interpreted as "with effects such as age, sex of head, year of arrival, and so on removed, what is the average effect on income of a particular transmigrant household being in a given subdistrict. Some villages show up particularly well, others with negative total income dummies rather poorly. A pattern emerges of subdistricts in Riau and Sumatro deriving notable contributions to income from wages, other agriculture and the other income category. With the exception of subdistrict 640215 , already commented on, there is a fair amount of variation in income derived from food production, so that subdistrict is not a significant determinant of food income.

The next results are slightly surprising, the presence or absence of a male as head of household is of no consequence to the various levels of income achieved. Education is unimportant. The migrant categories do not differ from each other in terms of income earning capacity, with the obvious exception of the income obtained by the military settlers from the other income (including pensions) category. Note that the military, on average, receive less income from non-agriculture than the other categories of migrants, after adjustment for other influences.

The final set of variables were introduced to assess the importance of trading arrangements on income generation. In the case of wages the significant terms are negative for market, trader and co-op disposal of food and tree crops. This suggests that in the absence of such outlets it is mare profitable for migrants to seek wage generating employment. The other returns are generally significant and positive; a household disposing of food vis
markets tends to receive 4386 rps per month on average, if done through a trader this figure becomes 8038 rps , and so on. The tree crop income result is interesting in that it demonstrates that those farmers who use the co-op as their outlet receive, on average 25670 rps compared to 18352 rps via traders and 7275 rps via markets. Likewise the effect of access to commercial disposal of produce is extremely important in terms of its contribution to total income, of those who dispose of their produce in this way.

Finally, the measure of goodness of fit is given in the last row of Table 25; whilst these results indicate that relatively low proportions of the variation in the sources of income have been explained a number of individually significant influences have been discovered. Furthermore, in each case the F test on the overall relationship, calculated as $\left[r^{2} /(n-k)\right] /\left[\left(1-r^{2}\right) / k\right] \sim F_{n-k, k}$ would lead to rejection of the null hypothesis - indicating that the equations do, in fact, explain a significant proportion of the variation in the dependent variables.

One problem present in the treatment of the income equations used in Table 25 is that in many cases the fraction of the dependent variable observations which is non zero is relatively small. The appropriate estimator in this case is a Tobit model rather than least squares. The bias arises because the dependent variable follows the zero axis for some way before assuming positive values. The least squares model, fits the entire data set and the line will straddle both the zero observations and the positive income terms. What is needed is a regression model which predicts if the household will avail itself of a particular income source and, given that it does, haw much the conditional response of income to the explanatory variables is. One way to produce an asymptatically unbiased estimator of the slope coefficients was rediscovered by Greene [1981] and is based on an earlier paper by Pearson and Lee
[1907]. Greene proves, under rather over-stringent conditions for our purposes, that all one need do is estimate the least squares regression using only the subsample of observations for which the dependent variable is non-zero. The resulting least squares slope coefficients are then scaled by the reciprocal of the non-limit sampling fraction to produce the asymptotically unbiased estimates. No standard error adjustments were given in that paper and the problem appears to be that the standard errors on the coefficients can be quite large if the proportion of non-zero dependent variables is low. In Tables 26 and 27 below, we have re-estimated the equations based on the subsample of observations for which the dependent variable is positive. The sample fraction can be calculated from the final row in each table. Thus, for wages in Table 26 we find that 1012 of the 2199 households obtain income from wages which means the slope coefficients must be multiplied by 2199/1012 to be asymptotically unbiased. One problem, which occurs in the context of dummy variable regression, is that selection of a subsample can mean selection of all of one type of a given dummy variable. In other words what had been a dummy variable becomes a column of ones and one or more columns of zeros, leading to singularity of the moment matrix. We avert this by examination of the results and deletion of sets of regressors to which this happens. For one income source with à very small non-limit sampling fraction, rent and sharecropping income, this was a particular headache, and the equation was eventually completely eliminated.

Table 26
Regression Coefficients for Yarious Income Categories as a Function of Specified Yariables

	wages	other agric	other non-agric	other income
constant	286225**	-39845	79071	-84199**
age head	-43	-34	-38	28
number adults	790	805**	350	25
year arrival	-3530**	568*	-779	977**
land opened	-33	-9	-13	8
irr sawah open	-90	-57**	33	24
tidal open	-30	-5	-6	5
bunded open	-57	3	42	8
swamp open	105	-47	12	-117
dry field	45*	8	42	-2
fish pond	136	14	8	12
tree crop	-7	8	19	-1
other food	-151	-195	-867**	-57
repelita 2	-9308	4196**	-5560	862
small dry	-2946	2882*	-33847**	20270**
large dry	7994	4150**	-26796*	15251*
estate	24677	-1326	-55148**	32923**
linear	-5968		9129	-12759*
nucleated	746		10334	-10611*
vill 140102	39450**		7783	11307
vill 140104	18305*		2641	19623**
vill 140108	19817**		11239*	12573**
vill 140202	13861			8036
vill 140205	21518		-25265	18956
vill 140404	30955*		32745	
vill 160109	10076		8445	-3638
vill 160110	3399		12769.	1963
vill 160171	18208		-11749	2220
vill 160203	-14854*		6998	4915
vill 160204	5920		4944	-708
vill 160205	5996		13900**	1743
vill 160212	17266		-25690	15412*
vill 160374	11117		13798**	1773
vill 160605	6425		-23727	17892*
vill 160607	22031		-24658	
vill 620102	-4364		1096	-3747
vill 620203	11693		12199	-1482
vill 620401	13162		-23366	12450
vill 620413	5562		-22871	10364
vill 630210	3558		20590**	727
vill 630211	20615			7138
vill 630403	9716			17986*
vill 630408	16737		-16216	15675

Table 26(cont)
Regression Coefficients for Various Income Categories as a Function of Specified Variables

	Wages	other agriculture	other non-agric	other income
vill 640104	65407**			118418**
vill 640109	54368**		7491	-3645
vill 640215	87911**			
vill 647101	1762			29842**
vill 720314	14204		37611**	19892**
vill 740314	6662		-3097	-609
male	-988	756	-735	1173
no education	12444		-653	-208
not compl prim	13173		-985	43
primary school	15277		-1401	-320
jr high school	25172		2104	3810
high school	21572		2733	505
spons migrant	4221	-319	7265	-1420
spont migrant	9713	-187	6078	-2204
military	30361**	-527	8469	468
food/orig	-5872**	-2031**	1745	10
trees/orig	-1036	-2129	10851**	1622
stock/origin	-32390**	-6111	3179	155
fish/orig	-2924	-544	1408	-861
non-ag/orin	-809	-386	3121	-164
owned land/orig	2914*	1558**	483	-452
from riau/sumtr	5166		5298	1771
from java	-1072		-4122	2660
frombali	8039		-7243	5791
from kalimintan	20861**		4509	664
fd sold market	1217	845	3663*	-139
fo sold trader	-551	4785**	-991	460
fo sold co-op	-8146	3921	-2513	2089
tr sold market	-1596	-562	1777	729
tr sold trader	7514	17638**	-3580	-8267
tr sold co-op	11	519	30284**	2389
R-squared	. 382	. 153	. 359	. 538
Sample	1012	1246	509	790

Table 27
Regression Coefficients for Yarious Income Categories on Selected Regressor Variables

	food	treecrops	stock	other agriculture	other income	total income
constant	-10368	15976	24982	54688	263548**	95979
age head	-25	-73	16	-72	-85	-166
number adults	1064*	1658*	331	461	1749*	5640**
year arrival	53	-187	-208	-459	-2950**	-430
land opened	-3	-27	4	-19	-27	-50
irr sawah open	46	26	-8	-40	-47	-136
tidal open	69**	31	-16*	-28	0	57
bunded open	71**	15	-8	20	-11	66
swamp open	-17	-72	45*	1123**	20	270
dry field	28*	31	0	-19	20	62
fish pond	124*	-224	-194	-702**	79	283
tree crop	55**	197**	-2	76**	-40	51
other food	-106	69	18	-326	-113	-303
repelita 2	-11606**	-30806	-454	22239**	-6211	-9552
small dry	-535	-15917	-4761	-12453*	-7811	-946
large dry	1970	-11266	-2450	-7344	-4571	4206
estate	3640	-26660	-4692	30641*	-4567	9486
linear	4208	2503	-605	248	-11530	-8013
nucleated	-2340	-2198	243	1472	6624	-345
vill 140102	-5032	3448	5565*		50232**	21662
vill 140104	6727	18536	2875		14669	-738
vill 140108	-2050	22210*	2752		13475	-20461
vill 140202	34774**	21358	1156		771	-1653
vill 140205	15727	27631	144		1257	-21610
vill 140404	-2128		5072		64579**	21038
vill 160109	-722	68556**	4819		23118*	-14605
vill 160110	-9256	31695	9386**		24686*	-12230
vill 160171	-784	69804**	3122		24058	2370
vill 160203	7650		4172**		-13773	-39885**
vill 160204	6216	39463**	4036*		14780	-13468
vill 160205	4654		2477		8612	-22970
vill 160212	-6901		508		7968**	-27493
vill 160374	-748	18925	752		24196	-13814
vill 160605	-6642	-7911	8		19359	-15773
vill 160607	-2326	27419	-3934		6533	-449
vill 620102	8557		5496		-6640	-33886*
vill 620203	-15683*				51183**	-4202
vill 620401	-7826		-1095		-13105	36231
vill 620413	-7595	1909	-1106		-12747	-43511*
vill 630210	13	8012	2304		13394	-26042*
vill 630211	171		1174		10333	-2941
vill 630403	-17565		394		6722	-37553
vill 630408	-9190		-1355		-899	-32479
vill 640104	16375	22918	11694**		62275**	51614*
vill 640109	23023**	40837**	9361**		50144**	28671

Table 27(cont)

Regression Coefficients for Various Income Categories on Selected Regressor Variables

	food	treecraps	stock	other agriculture	other income	total income
vill 640215	85188**	39461**	7011**		85486**	77214**
vill 647101	13821	45866**	2075		13284	-1087
vill 720314	12017*	42472**	3079		10523	-8816
vill 740314	2867	11715	1642		898	4234
male	703	-5444	440	-6056	-2186	1230
no education	10226	4655	-6777		3964	6842
not compl prim	8222	313	-6808		4704	4691
primary school	8587	705	-6350		6978	8653
jr high school	7573	7487	-5358		14645	23632
high school	9130	8426	-3460		15318	22676
spons migrant	-1536	-5943	688	-6919	-6089	-12887
spont migrant	-2141	-6158	389	-8691	-2070	-9189
military	-1856	-2526	674	-24176	52249**	35156**
food/orig	25	3099	6	3140	-8208**	-11488**
trees/orig	-7	1529	1341	157	-2507	-12859
stock/origin	7772	2038	4228**	16403	-16558	-14191
fish/orig	573	5326	693	12183**	-7785	-6192
non-ag/orig	783	-1056	2478**	-598	-5650	-7300
owned land/orig	1954*	876	497	-547	3261	8919**
from riau/sumtr	-3570	-11334	179	18938**	11928	6258
from java	572	7617	-104	15849	1715	7608
from bali	1830	8663	2098	13337	6666	9800
from katimintan	-1587	4003	925	5019	5555	17445
fd sold market	3703**	2670	717	2578	1975	5488
fd sold trader	6808**	-3616	-624	-1369	1220	3959
fo sold co-op	3374	-13398**	151		663	-8181
tr sold market	9766**	2255	1128	9484	-5557	22575**
tr sold trader	5344	-41	20	6119	5278	20361*
tr sold co-op	-1469	796	1406	10042	-945	24159*
R-sqd	. 267	. 806	. 177	. 700	. 222	. 222
Sample	2095	250	1100	237	1955	2199

As mentioned, to interpret the coefficients it is necessary to multiply the slope coefficients by the recipracals of the sampling fractions. For wages, we note that year of arrival is again significant, and the interpretation is the same as before. Many of the previously significant variables, in the statistical sense, are no longer so. However, subdistricts 64104-64215 again show up as being different from the rest in relation to wage income. The military transmigrants now appear as a group with a significantly higher wage incame than other groups; whilst migrants who were invalved in food and stack production in their areas of origin do not tend to seek wage income in the new areas.

Skipping to the variables explaining food income, in Toble 27, we note that 2095 of the 2199 households derive some revenue from food. Given the non-limit sampling fraction is so low it may be anticipated the results will be much the same as for Table 25, and this is indeed the case except that same previously insignificant variables now appear significant.

Proceeding to treecrops it is advisable to first note that the sampling fraction is small. Only 250 of the househalds derived income from treecropping. Of those househalds that do derive income from treecropping we note that the explanation provided by the regressor variables is very high; 80% of the variation in the dependent variable has been explained. However, when one looks to the reasons we con explain this veriation, it is rother disoppointing. The most significant set of explanatory variables are the subdistricts (vill) themselves. All this means is that this group of househalds have a different pattern in relation ta treecrop income than other households.

Proceeding quickly through the remaining columns in Table 27 note that the derivation of stock income in the transmigrant areas relates positively to that same activity being the primary source of incame in the transmigrants area of origin. "Other agriculture" involves few transmigrants and there is little of significance in the results. The results for "non-8griculture" involved large and implausible coefficients, presumably due to a dummy variable problem as the non-limit sampling fraction was low. Hence the column was deleted. The remaining two columns of Table 27 are for "other income" and "total income" and the results in the former case are essentially the same as in Table 25 (with 1955 non-limit observations) while in the latter case they are exactly the same.

To summarise, regression analysis provides some pointers as to the factors influencing income determination; however, as with the tabular analysis of the previous section the results tend to be inconclusive and should be interpreted with caution.

Section 5

Comparison of Consumption Patterns

The transmigration survey tape includes a section drawn from a susenas style questionnaire. Consumption of 19 food items, in the last week, is recorded in quantity and expenditure terms. For non-food items the information is recorded on a monthly basis, for expenditure only. Collecting disparate commodities under a single label poses aggregation problems whether one is considering food or non-food items: the quantities in the food group are not particularly meaningful given the different items they represent and the different quality levels possible within those same items. Nevertheless, getting back to the quantity level enables us to make some comparisons of consumption between transmigrant households and other households in transmigrant areas or households in rural Java. Income comparisons would not be particularly useful in the absence of knowledge of the prices paid for commodities in the areas under comparison. One proposition to be examined below is whether price levels are generally higher in transmigrant areas.

The commodity classification used in the survey is listed on page 10 of the User Guide to the 1984 Transmigration Survey. There are 19 food and 19 non-food items. As mentioned, the food group are on a weekly basis and include quantities as well as expenditures. To form total monthly expenditure per household the weekly food figures are multiplied by 30/7. The results below have been converted to a per capita basis. Unfortunately, it was not possible to weight this "per capitaisation" by child-adult factors as the only information on the extracts of the susenas tapes used related to total number of individuals in each household.

Three Susenas tapes were made available to the author. They were released very soon after the material was corrected and as a result still contain some discrepancies. When obvious inconsistencies were noticed the entire household record was removed from the sample. The result was that the samples for the respective groups were: dryland transmigrants - 1555, tidal transmigrants - 640, susenas (transmigrant areas) - 2755, susenas (rural Java 1) - 6490, susenas (rural Java 2) - 1593. We experienced a few minor problems in matching the 38 commodities used in the transmigration survey, in the absence of document translations. As will be noticed below, the consumption patterns for some items differ markedly between the transmigrant and non-transmigrant areas, and the worry is that this could in one or two cases by due to inappropriate aggregation.

Table 28 presents the quantities and expenditures on each item in the food and non-food categories. Obviously, qty refers to quantity whilst exp refers to expenditures. Standard errors are recorded in parenthesis and it will be noted they are almast invariably small relative to their group means.

The quantity of rice consumed per head is lower on dryland than tidal settlements but is slightly higher than in other areas, with the exception of Rural Java (2), which covers the provinces of ... and. The quantity of fresh (and dry) corn consumed per capita is much higher for dryland transmigrant families than any other in the samples. In the ground corn categary it will be noticed that the quantity consumed is higher on dryland than tidal settlements, very low amongst non-transmigrants in transmigration areas but extremely high in the Java-2 areas. For cassava, sweet potatoes and "other starch" we notice very much higher consumption
levels amongst the transmigrants when compared with the remaining groups considered here.

Table 28
Weekly Food Consumption:
Quantities and Expenditures per Capita (standard errors in parenthesis)

transmig	transmig non-	rural	rural
dryland	tidal	transmig	Java 1

rice qty	235	255.3	220.7	221.2	145.0
	(4.0)	(7.7)	(1.7)	(1.3)	(2.1)
rice exp	739.2	785.7	817.4	697.4	432.8
	(13.0)	(24.3)	(6.9)	(4.3)	(6.6)
fresh corn qty	30.0	8.8	7.1	6.5	1.3
	(2.6)	(2.2)	(0.6)	(0.4)	(0.3)
fresh corn exp	30.3	11.8	9.6	5.9	1.5
	(2.7)	(3.9)	(0.9)	(0.4)	(0.4)
dry corn qty	6.4	3.18	0.8	0.85	4.8
	(1.1)	(1.0)	(0.2)	(0.1)	(0.9)
dry corn exp	7.9	4.0	1.23	0.96	5.1
	(1.1)	(1.1)	(0.3)	(0.1)	(1.0)
ground corn qty	21.9	14.0	4.8	29.3	92.3
	(2.0)	(1.7)	(0.5)	(1.0)	(3.2)
ground corn exp	28.3	16.2	7.2	33.3	114.5
	(2.8)	(2.1)	(0.8)	(1.1)	(4.0)
cassava qty	109.4	61.8	54.4	32.6	29.0
	(6.0)	(4.0)	(1.7)	(0.8)	(1.7)
cassava exp	35.3	24.5	38.2	17.2	16.2
	(2.2)	(2.0)	(1.4)	(0.4)	(0.9)
ground cassava qty	53.5	39.4	6.6	8.0	4.4
	(3.4)	(4.9)	(0.7)	(0.5)	(0.7)
ground cass8va exp	26.7	36.0	6.5	6.9	2.5
	(1.8)	(3.7)	(0.7)	(0.4)	(0.4)

Table 28(cont.)
Weekly Food Consumption Quantities and Expenditures per Capita (standard errors in parenthesis)

transmig transmig non-	rural	rural	
dryland	tidal	transmig	Java 1

sweet potato qty	10.6	10.3	0.7	1.5	4.2
	(1.4)	(1.8)	(0.1)	(0.1)	(0.5)
sweet potato exp	8.4	5.6	3.2	4.0	5.6
	(1.1)	(1.0)	(0.4)	(0.3)	(0.6)
other starch qty	34.0	40.6	27.1	3.5	2.9
	(2.9)	(3.8)	(1.4)	(0.2)	(0.4)
other starch exp	22.0	24.6	36.1	3.1	2.2
	(1.9)	(2.2)	(1.8)	(0.2)	(0.3)
fish qty	153.9	134.4	80.1	54.3	39.8
	(5.0)	(6.6)	(1.8)	(0.8)	(1.2)
fish exp	158.6	156.9	373.1	143.7	129.3
	(5.3)	(9.4)	(6.2)	(2.5)	(3.3)
meat qty	13.3	4.3	6.3	3.3	1.7
	(1.8)	(1.4)	(0.4)	(0.1)	(0.1)
mest exp	34.4	9.3	83.0	53.7	36.7
	(1.8)	(2.5)	(4.4)	(2.1)	(3.0)
eggs qty	73.7	46.7	58.2	55.5	59.2
	(3.5)	(4.4)	(1.9)	(1.2)	(2.6)
eggs exp	60.2	42.4	58.6	42.9	38.1
	(4.1)	(3.8)	(1.9)	(1.0)	(1.8)
milk qty					
	27.7	8.8	2.5	1.0	0.7
milk exp	(2.6)	(1.7)	(0.2)	(0.1)	(0.1)
	26.6	18.1	28.8	11.6	11.4
	(4.5)	(3.0)	(1.6)	(0.7)	(1.7)

Table 28(cont.)
Weekly Food Consumption: Quantities and Expenditures per Capita (standard errors in parenthesis) transmig transmig non- rural rural dryland tidal transmig Java 1 Java 2

vegetables qty	195.3	170.0	37.4	40.8	
	(6.2)	(6.4)	(0.7)	(0.5)	36.1 (0.8)
vegetables exp	203.7	178.4	250.0	194.3	157.2
	(4.7)	(8.2)	(4.0)	(1.8)	(2.5)
beans qty	132.6	80.9	6.1		
	(5.0)	(5.4)	(0.2)	(0.2)	$\begin{aligned} & 12.0 \\ & (0.3) \end{aligned}$
beans exp	99.5	56.5	43.5	97.8	107.8
	(3.2)	(4.0)	(1.7)	(1.4)	(2.7)
fruit qty	148.4	105.4	44.7	26.0	
	(5.6)	(5.7)	(1.1)	(0.5)	(0.6)
fruit \exp	98.0	80.1	143.1	87.8	52.2
	(3.4)	(5.1)	(4.1)	(2.1)	(3.4)
other qty.	195.3	174.8	26.4	14.8	
	(6.1)	(6.6)	(1.1)	(0.4)	$\begin{aligned} & 14.3 \\ & (0.8) \end{aligned}$
other exp	405.5	356.9	518.8	322.7	341.6
	(9.1)	(13.5)	(6.3)	(2.7)	(5.0)
proc food qty	48.3	35.0	22.1	16.7	
	(3.2)	(4.2)	(0.8)	(0.5)	(0.8)
proc food exp	38.3	30.0	165.6	218.3	213.1
	(3.0)	(3.9)	(11.9)	(5.3)	(10.8)
tobac \& alcohol qty	177.9	151.9	143.9	66.9	
	(6.1)	(6.4)	(8.9)	(1.0)	$\begin{aligned} & 89.9 \\ & (2.5) \end{aligned}$
tobac \& slcohol exp(6.0)	196.6	199.3	291.4	167.6	180.1
	(8.4)	(7.5)	(2.8)	(5.7)	180.1

Table 29

	Monthly Per Capit (standar transmig dryland	a Expend d errors tronsmig tidal	itures on in parent nontronsmig	hesis) rural Java 1	Items rural Java 2
energy/ fuel	$\begin{aligned} & 696.0 \\ & (19.5) \end{aligned}$	$\begin{aligned} & 738.1 \\ & (23.8) \end{aligned}$	$\begin{aligned} & 1002.2 \\ & (21.4) \end{aligned}$	$\begin{aligned} & 1464.0 \\ & (13.6) \end{aligned}$	$\begin{aligned} & 1516.1 \\ & (26.3) \end{aligned}$
housing	$\begin{aligned} & 354.8 \\ & (32.5) \end{aligned}$	$\begin{aligned} & 238.9 \\ & (36.4) \end{aligned}$	$\begin{aligned} & 1327.5 \\ & (37.8) \end{aligned}$	$\begin{aligned} & 908.8 \\ & (13.4) \end{aligned}$	$\begin{aligned} & 745.8 \\ & (34.7) \end{aligned}$
personal effects	$\begin{aligned} & 317.7 \\ & (9.1) \end{aligned}$	$\begin{aligned} & 242.1 \\ & (10.4) \end{aligned}$	$\begin{aligned} & 267.1 \\ & (11.6) \end{aligned}$	$\begin{aligned} & 163.8 \\ & (6.6) \end{aligned}$	$\begin{aligned} & 208.5 \\ & (18.2) \end{aligned}$
casmetics	$\begin{aligned} & 143.2 \\ & (5.6) \end{aligned}$	$\begin{aligned} & 104.0 \\ & \{5.9) \end{aligned}$	$\begin{aligned} & 337.8 \\ & (17.3) \end{aligned}$	$\begin{aligned} & 190.4 \\ & (6.8) \end{aligned}$	$\begin{gathered} 222.6 \\ (20.0) \end{gathered}$
medical	$\begin{aligned} & 189.2 \\ & (12.8) \end{aligned}$	$\begin{aligned} & 120.3 \\ & (16.3) \end{aligned}$	$\begin{aligned} & 376.9 \\ & (18.8) \end{aligned}$	$\begin{aligned} & 398.5 \\ & (40.1) \end{aligned}$	$\begin{aligned} & 339.1 \\ & (24.9) \end{aligned}$
schooling	$\begin{aligned} & 198.1 \\ & (12.2) \end{aligned}$	$\begin{aligned} & 140.7 \\ & (13.0) \end{aligned}$	$\begin{aligned} & 225.4 \\ & (12.5) \end{aligned}$	$\begin{aligned} & 244.1 \\ & (11.2) \end{aligned}$	$\begin{aligned} & 216.7 \\ & (19.3) \end{aligned}$
```local transport```	$\begin{aligned} & 158.2 \\ & (12.3) \end{aligned}$	$\begin{aligned} & 124.1 \\ & (18.4) \end{aligned}$	$\begin{aligned} & 48.1 \\ & (9.3) \end{aligned}$	$\begin{aligned} & 67.8 \\ & (6.6) \end{aligned}$	$\begin{aligned} & 85.0 \\ & (13.1) \end{aligned}$
other transport	$\begin{aligned} & 270.9 \\ & (66.1) \end{aligned}$	$\begin{aligned} & 198.2 \\ & (73.7) \end{aligned}$	$\begin{aligned} & 208.7 \\ & (26.2) \end{aligned}$	$\begin{aligned} & 207.5 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 180.4 \\ & (16.7) \end{aligned}$
recrestion	$\begin{aligned} & 62.4 \\ & (16.0) \end{aligned}$	$\begin{aligned} & 54.8 \\ & (31.5) \end{aligned}$	$\begin{aligned} & 16.2 \\ & (3.1) \end{aligned}$	$\begin{aligned} & 23.8 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 35.6 \\ & (6.9) \end{aligned}$
material (cloth)	$\begin{aligned} & 248.6 \\ & (23.6) \end{aligned}$	$\begin{aligned} & 177.7 \\ & (31.5) \end{aligned}$	$\begin{aligned} & 288.2 \\ & (17.6) \end{aligned}$	$\begin{aligned} & 628.1 \\ & (24.9) \end{aligned}$	$\begin{aligned} & 914.0 \\ & (77.2) \end{aligned}$
readymade clathes	$\begin{aligned} & 558.0 \\ & (46.6) \end{aligned}$	$\begin{aligned} & 452.5 \\ & (49.1) \end{aligned}$	$\begin{aligned} & 1705.8 \\ & (65.3) \end{aligned}$	$\begin{aligned} & 2181.9 \\ & (450.3) \end{aligned}$	$\begin{aligned} & 1613.4 \\ & (78.0) \end{aligned}$
hats, shoes socks	$\begin{aligned} & 402.7 \\ & (42.9) \end{aligned}$	$\begin{aligned} & 302.5 \\ & (41.9) \end{aligned}$	$\begin{aligned} & 1002.5 \\ & (59.2) \end{aligned}$	$\begin{aligned} & 1483.0 \\ & (243.0) \end{aligned}$	$\begin{aligned} & 1388.4 \\ & (80.7) \end{aligned}$

Table 29(cont)
Monthiy Per Capita Expenditures on Non-Food Items
(standard errors in parenthesis)
transmig transmig non- rural rural dryland tidal transmig Java 1 Java 2

furniture	101.8	16.3	187.7	136.7	132.5
	$(16.5)$	$(5.9)$	$(17.5)$	$(12.9)$	$(22.2)$


  bedding	184.7   $(20.9)$	69.8	285.3	157.9	125.8
			$(18.8)$	$(10.8)$	$(14.7)$
kitchen	370.3	238.2	370.1	248.2	245.2
utensils	$(40.6)$	$(35.8)$	$(18.2)$	$(10.9)$	$(29.5)$


household	129.4	64.9	168.0	142.8	184.9
items	$(15.1)$	$(9.5)$	$(11.2)$	$(7.2)$	$(14.9)$


durable	310.7	186.4	400.7	626.5	604.5

goods.
(45.9) (57.8) (42.2) (62.0) (70.6)
$\begin{array}{llllll}\text { taxes \& } & 26.8 & 40.3 & 104.5 & 122.8 & 207.0\end{array}$ insurance (4.9) (10.2) (9.4) (6.9) (23.7)
$\begin{array}{llllll}\text { ceremonial } & 571.9 & 349.5 & 419.0 & 299.3 & 339.5\end{array}$
costs (61.4) (65.3) (43.2) (26.9) (30.4)
$\begin{array}{llllll}\text { total non- } & 9512 & 8726 & 12322 & 9039 & 7919\end{array}$ food
$\begin{array}{llllll}\text { total food } & 5295 & 3859 & 8741 & 9696 & 9305\end{array}$ (monthly)
total
$\begin{array}{lllll}14807 & 12586 & 21064 & 18735 & 17224\end{array}$ expenditure

sample	1555	640	2755	6490	1593

Next, turning to fish, it will again be noticed that the quantities consumed per capita are much higher in the transmigrant areas (dry and tital); expenditures however, are at similar or lower levels than for non-transmigrant households. For meat it will be noticed that the quantities consumed tend to be higher (much higher in the case of dryland farmers), whilst the expenditures are much lower. Egg consumption is roughly the same accross all groups with the dryland transmigrants again recording the greatest per capita consumption figures. The same is true of milk (and vegetable) quantities, but is not so marked in the comparison of milk expenditures. For beans, enormous differences will be noticed. Dryland transmigrants consume over 20 times the quantity of beans of their non-transmigrant compatriots in transmigrant areas and 10 times the quantity of Javanese rural households. Again, expenditure levels are relatively similar. The same could be said of fruit, processed foods and the "other category. The impression is of higher consumption levels and lower unit values (prices). The final food item is tobacco and alcohol. We again note higher consumption levels, this time in all transmigrant areas, than in rural Java. Per capita expenditure levels; however, are about the same.

Next, turn to monthly expenditures on non-food items. The transmigrants pay far less for housing, energy and fuel than do households in the three other groups. Expenditure on the medical and schooling categories is lower for transmigrant households than the other three groups. Expenditure on local transport is considerably higher, expenditure on "other transport" about the same. There are some marked differences in the clothin category. The rural Javanese spend far more on material, readymade clothes and the "hats, shoes and socks" category then do the transmigrants. In addition, the nontransmigrants in the transmigration areas also outspend the transmigrants in those categories. For durable items like furniture, mattresses and bedding,
kitchen utensils and household items the expenditure levels are about the same. The lowest spending group in each case being the tidal transmigrants. Finally, in the case of durable goods, the expenditure of the transmigrants is quite restrained relative to the three non-transmigrant categories.

The last two categories relate to services; "taxes and insurance" and "ceremonial costs". In the former case the transmigrants expenses are considerably lower than non-transmigrant households; in the latter they are about the same for the tidal farmers, but the dryland transmigrants outspend the next closest group by 130 rps per capita per month.

Total per capita expenditure on non-food is considerably lower for the transmigrant households, but the most significant part of this saving is derived from housing and energy (say a saving of 1500 rps per month). Lower expenditures on the clothing group contribute a further 2200 rps per capita per month. There may be social reasons for this particular expenditure difference.

The upshot is that one cannot base a welfare comparison of transmigrant versus non-transmigrant households on simple expenditure levels. By that criterion it would appear that non-transmigrant households in the transmigrant areas are better off than any other group, with rural Javanese households next and the transmigrants a poor third. Whilst it may be true that the nontransmigrant/transmigrant area households are better off than any other group the relative price effects which show up in food consumption and the higher expenditures of the Javanese on housing and energy point to a reversal of the above ordering. As the survey questions on welfare compared to area of origin indicate, the transmigrants appear better off than their counterparts in rural Java.

Table 30

## Unit Values for Food Items

$\left.\begin{array}{llll}\text { transmig transmig } & \text { non- } & \text { rural } & \text { rural } \\ \text { dryland } & \text { tidal } & \text { transmig } & \text { Java 1 }\end{array}\right]$ Java 2

rice	3.1	3.0	3.7	3.1	2.9
fresh corn	1.0	1.3	1.3	0.9	1.1
dry corn	1.2	1.25	1.53	1.12	1.0
ground corn	1.2	1.1	1.5	1.1	1.2
cassava	0.3	0.3	0.7	0.5	0.5
ground cassava	0.4	0.9	0.9	0.8	0.5
sweet potato	0.7	0.5	4.5	2.6	1.3
other starch	0.6	0.6	1.3	0.8	0.7
fish	1.0	1.1	4.6	2.6	3.2
meat	2.5	2.1	13.1	16.2	21.5
eggs	0.8	0.9	1.0	0.7	0.6
milk	0.9	2.0	11.5	11.6	16.2
vegetables	1.0	1.0	6.6	4.7	4.3
beans	0.7	0.6	7.1	8.1	8.9
fruit	0.6	0.7	3.2	3.3	3.7
other	2.0	2.0	19.6	21.8	23.8
proc food	0.7	0.8	7.4	13.0	16.1
tobac \& alcohol	1.1	1.3	2.0	2.5	2.0

Finally, the calculated unit values (prices) are presented in Table 30. These show some discrepancies which point to quality differences between the items being considered. Prices for basic staples, rice through to other starch are within acceptible ranges of one another; fish and eggs likewise. Meat and all other items in the food budget, except alcohol and tobacco are very much dearer in Java and other areas. Whilst this may be plausible for milk, vegetables, beans and fruit; the most likely explanation for the remaining items is that different items are being consumed in those categories. An example would be if processed foods in the transmigrant areas are predominantly necessities, whilst in Java relative luxuries are included.

## 6. Preliminary Conclusions

The first part of the analysis was a simple collection of tables, or a two way classification of variables which might be related to income determination. One minor embellishment over usual reports of this kind was that standard errors were calculated and included. The result of this inclusion was that most trends in the tables were, in fact, an illusion. At first glance this seems disappointing; however, the presence of predominantly negative results indicates how complicated are the factors in determining which transmigrants will be successful in an income generation sense.

Many of the results in Section 3 are important in their own right. Duration of time since transmigration appeared unimportant (Table 8); however, this could be a counfounding of a number of other effects. For example, a better selection of sites in later years. Education, appeared important, if the standard errors are ignored; yet, a closer examination of the results reveals that it is wage, not farm income, which is driving this result.

Tidal farmers are pretty conclusively shown as being worse off than any other group - something which was known already. Settlement type, per se, makes very little difference. It also appears to make very little difference which type of transmigrant is being considered, once the persions of the military settlers are removed. One exception to this is the local transmigrants, who do appear to fare better, and this could be attributed to greater participation in sharecropping and other activities. There is a slight upward trend by age of head of household, but this is
probably a reflection of the number of adults in the household increasing with the age of its head.

A collection of detailed responses to the questionaire, by subdistrict, are presented in Section 3.3. It is difficult for the non-specialist to appraise these, and they are left to the reader. In passing one can note that the response to the health question by the tidal farmers is much the same as that of the dryland farmers. Further detailed results are given in Appendix $B$ and the reader is referred to pages 41 and 42 for a discussion.

Because of the problems of separating all possible influences on income, regression analysis was tried in Section 4. The complications casued by the Tobit nature of the problem for income subcategories, meaning that one needs to forecase whether a household will ayail itself of an income source and then how much it will earn, led to the use of least squares and then adjusted least squares estimation. Neither was particularly successful and more work needs to be done to explain subcategory income. As all households earn some income these problems do not relate to the total category. The results in Tables 25 and 27 indicate that very few of the explanatory variables are statistically significant. Number of adults is important (age of head is not). The amount of land pened is not significant; however, the presence of a fish pond is. Some subdistricts show significant positive influences, some negative; more detailed knowledge could make sense of this. Education shows up as an unimportant factor in determining total income. However, being a military transmigrant results in a statistically significant income boost of 35155 rps. On the other hand, if the household head was a farmer in his area of origin, all other influences removed, he (or she) will tend to have a lower income (and that result is statistically significant). Finally, four factors
which significantly and positively affect total household income: land ownership in area of origin and marketing arrangements for cash income from tree crops. Despite the multitude of explanatory variables used, the regression equation only accounts for $22 \mathscr{F}$ of the variation in total income. In itself that is quite enlightening and could be interpreted as, (i) an indication of a need for further work or, (ii) an indication of the essential randomness of the data.

Section 4 considers the well-being of the transmigrants by looking at consumption rather than income data. This was an obvious strategy in the absence of price information enabling inter-spatial comparisons. Unfortunately, the absence of detailed household information on the extracts of the Susenas tapes made available to the author made comparison of equivalent households impossible. The results below are just a comparison of household consumption in the transmigrant areas with those in rural Java. It would be possible to select a subdistrict in rural Java for further comparisons, but the results on food consumption, in particular, strongly suggest the transmigrants are much better off than their compatriots in rural Java. The quantity comparisons indicate per capita consumption levels so much higher that one is left with doubts about the quality and cleanlieness of the data. The results are given in Tables 28 and 29 and discussed in the adjacent pages.

This represents a preliminary report, there is clearly a need for a great deal of further work, in collaboration with an Indonesian specialist, if one is to be able to extract a more positive story on the income determination side.

## USER GUIDE TO 1984 TRANSMIGRATION DATA

FILENAME: TRANSDAT
LOCATION: Bocked up on TSR tape 600142
FORMAT: Free format voriable length integer records (locked)

## RECORD DESCRIPTION:

There are 13 record types identified by the first digits. Types 1, 12 and 13 relate to the original type 01 records in the raw transmigration dota topes.

Record Type 1
Location and Basic Information
Item 1 record type
2 Repelito (2 or 3)
3 type of settlement (for Rep 21=dry land, 2=estate, $3=$ tidal) but ( for Rep 3, 1=small dry, 2=large dry, 3=estate, 4=tidal)
4 Province-district-subdistrict; 6 digit record
5 sample number
6 family number.
7 number of family members

## Record Type 12 Family member information

Item 1 record type (12)
2 number of family member
3 relation to head(1=head, $2=$ wife, husband, $3=$ child, 4=nephew,niece, $5=$ grandchild, $6=$ grandparent, $7=$ relative, $8=8$ ervant, $9=0$ ther)
4 sex ( $1=$ male, $2=$ femole )
5 age
6 education( $1=$ no school, $2=$ not compl. primary, $3=$ primary,
$4=$ not compl high 8 chool, $5=$ high school, $6=$ college,
$7=$ university)

Item 1 record type (13)
2 year of arrival
3 province of origin
4 Kabupaten of origin
5 type of transmigrant (1=sponsored, 2= spontaneous, $3=$ military, $4=$ local)
6

## received income

28
29 comparison of current income to income two years ago ( 1 =more, 2=less, 3=same, 4=other)

## Record Type 2

Item 1	record type (2)	
2	govt allocation	wetland (hectare-3digits
		$0.00)$
3		dryland
4		total
5	how much received	wetland
6		dryland
7		total
8	how much opened by govt	wetland
9		dryland
10		total
11	opened by transmigrant	wetland
12		dryland
13		total
14	total opened	wetland
15		dryland
16		total
17	unopened	wetland
18		dryland
19		total
20	used by others	wetland
21		dryland
22		total
23	land sold or rented	wetland
24		dryland
25		total
26	omount under your control	wetland
27		dryland
28		total
29	under dispute	wetland
30		dryland
31		total

## 4

```
Record Type 3 Land Use
Item 1 Record type (3)
 2 Irrig sowah (0,00 ho)
 3 tidal
4 bunded
5 other (eg swomp)
dry fields
fish ponds
8mallhold tree crops
9 other
10 sub-total
Non-agricultural land
11 business yard
12 unused sowor
13 dryfields
14
15
17 more or less land cultivated than two years ago (1=more,
 2=less, 3=same, 4=other)
18 If less, why? (1=doesn't pay, 2=no time, 3=not enough
 labour, 4=other)
```

Record Type 4			
	Yields, Expenses and Income from Food Crops		
Item 1	record type(4)		
2	type of crop		
3	harvested area		
4	production		kilos
5			value
6	seed	prod sendiri	kilos
7			value
8		pembelion	kilos
9			value
10		pembagion	kilos
11			value
12	fertilizer	pembelian	kilos
13			volue
14		pembagion	kilos
15			value
16	pesticide	pembelion	kilos
17			value
18		pembagion	kilo
19			value
20	manure		value
21	labour payment		value
22	taxes		value
23	other expenses		value
24	payment in kind		kilos
25			value
26	subtotal		
27	income		
28	amount sold		kilos
29			value
30	place sold ( $1=m$	orket, 2=teng	lok, $3=$ co-0p, $4=0$ ther)

## Record Type 5

## Yield, Expenses and Income from Estate Crops

Item 1	record type(5)		
2	type of crop		
3	harvested areo		
4	production		kilos
5			value
6	seed	prod sendiri	kilos
7			value
8		pembelion	kilos
9			value
10		pembagion	kilos
11			value
12	fertilizer	pembelion	kilos
13			value
14		pembagion	kilos
15			value
16	pesticide	pembelian	kilos
17			value
18		pembagion	kilos
19			value
20	manure		value
21	labour payment		value
22	taxes		value
23	other expenses		value
24	payment in kind		kilos
25			value
26	subtotal		
27	income		
28	amount sold		kilos
29			value
30	place sold ( $1=$ market, 2=tengkulak, $3=$ co-0p, 4=0ther)		

## Record Type 6

## Income from Other Activities

```
Item 1 record type(6)
 2 source(1 1=cottle,12=poultry, 13=oth livestock, 14=0ther,
 milk eggs, 19=sub-totol, 20=fish, 30=forestry labour,
 41=industry/handcrafts, 42=trade, 43=0ther construction)
 3 production(value)
 4 sales(value)
 5 consumed or given away
 6 sub total
 7 cost of production
 8 income
```


## Record Type $7 \quad$ Other Income last Manth

Item 1 record type
2 wages received by hh members
3 pensions
4 rent \& share cropping
5 other agricultural income
6 other non-agricultural income
7 other income
8 total
9 money received
10 inheritance
11 gifts
12 total in
13 money sent
14 gifts given
15 total out

## 6

## Record Type 8

Other Financial Items last Month
Item 1 record type (8)
2 Incoming
sole of valuables
sale of non-portable assets
sole of possessions
sovings withdrawls
insurance
repoyment of loans
powning
lottery
other
11
12
13
14
15
total incoming
Outgoing
purchase of valuables
purchase of non-portable goods
assurance premiums
savings
paying off loans
recovery from powning
lottery payments
other outgoings
total outgoings

Record Type 9		Assistance from Government	
Item 1	record type (9)		
2	agricultural inputs	seed	cost
3			value
4		fertilizer	cost
5			volue
6		pesticide	cost
7			volue
8	agricultural implements		volue
9	cottle		cost
10			value
11	other assistance		value
12	Receiving subsistence suppor	( $Y=1, N=2$ )	
13	If yes, since	(4) digit	
14	Volue of subsistenc payment		
15	Value of total assistance in	t year	
16	Income		food crops
17			estate crops
18			livestock
19			other ag.
20			non-ag
21			other inc
22	incoming transfer payments		
23	outgoing transfer payments		
24	other funds coming in		
25	other funds going out		
26	government support		
27	total income		

## Record Type 10

Consumption Expenditure


## Record Type 11

## Family Welfare

Item 1



## record type (11)

how does hh income compare to before migration (1=better, 2=worse, 3=just as good, 4=just as bad) how does hh income compare with two years ago (1-4) main source of income in area of origin ( $1=$ foodcrops, 2=treecrops, $3=$ livestock, 4=fish, 5=non-og, 6=other)
main source of income two years ago fomily members away at primary school ( $1=Y, 2=N$ ) family members away at jr. high ( $1=Y, 2=N$ )
Is chance of getting primary education better or worse than in area of origin? (1=better, 2=worse, 3=just as easy. $4=j u s t$ as hard)
Is chance of getting to jr high better or worse than in area of origin ( $1-4$, as above)
transportation compared to area of origin (1-4, as above) health compored to aree of origin (1=better, 2=worse, $3=$ just 08 good, $4=j u s t$ as bad) if sick, compare medical services to area of origin (1-4) housing compared to orea of origin (1-4) what have you done to improve your housing ( $1=$ improved quality, 2=expanded, 3=both, $4=$ neither)
possessions
be

bed	before   after   before
dresser	ofter   before   ofter
sitting room suite	before   ofter   before   after
eating table \& chairs	before   ofter
pressure lamp	
sewing machine	

## possessions (cont.)

rodio, recorder
T.V.
cort
bicycle
motor bike
boat
gold(gram)
cottle(number)
did you own land before moving ( $1=Y, 2=N$ )
how much land do you still own in your area of origin ( $00,00 \mathrm{ha}$ )
still own land in area of origin ( $1=Y, 2=\mathrm{N}$ )
if so, how much (4 digits)
When in area of origin did you own a house (Y/N)
if yes, area (sq metres)
do you still have o house in area of origin (Y/N)
before
after
before
ofter
before
after
before
after
before
ofter
before
ofter
before
after
before
ofter

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline wroni cruss \& chasima \& ar locatiot. \& vo income of \& estock \& other matic \& non agric \& <br>
\hline Saber \& $\checkmark 5$ \& 1006.60 \& 1369.45 \& 6E72.70 \& 2787.55 \& 7867.4. \& $55_{56806}$ <br>
\hline Stite \& ${ }^{5}: \frac{3}{6}$ \&  \& 6653:93 \& 15xe: ${ }^{\text {ch }}$ \& 1779.75 \& 2827.08 \& S6Ps.31 <br>
\hline Ans 4 c \& ${ }^{1}$ : 3 32 \& 1636
1826.75
18 \& 3030.:52 \& 5759.92 715 \& 5087.27 \& 37578.77
$\geq 2988.05$ \& 30040.63
3760.18 <br>
\hline si \&  \& 7695.35 \& 3878:91 \& ${ }^{1858} 59$ \& 288:03 \& ${ }_{1}^{13} 9363678$ \& 303935:98 <br>
\hline  \& 970.37 \& -18590: 25.18 \& 40.89\% \& 6516:26 \& ${ }^{27} 8.37$ \& 3569:37 \& ${ }^{17} 7646.74$ <br>
\hline  \& ${ }^{36}: 9.15$ \& 243280 \& 159783.58 \& 61188.73 \& 2:03 \& 9607:50 \& 226759590 <br>
\hline  \& \$10:90 \&  \& 3:00 \& 3800:00 \& 29001.037 \& 2522:40 \& 71563.00 <br>
\hline TO"EAnsions \& 238:\% ${ }^{\text {d }}$ \&  \& 79779:86 \& 298:06 ${ }^{6}$ \& \{2¢ 51.87 \& ${ }^{38867} 31726$ \& 2e9560:30 <br>
\hline  \& 297.20 ${ }^{2}$ \& ${ }^{12219} 88.9 .928$ \& 1589 \& 4650:32 \& ${ }^{12923} 51215$ \& ${ }^{25580} 1624.63$ \& 3713728:25 <br>
\hline  \& 1710:98 \& 9680:75 \& 38012.85 \& 2907:25 \& ${ }^{9850} 908$ \& ${ }_{162}^{2268} 8.85$ \& 3178183.75 <br>
\hline  \& \% $1: 3020$ \& 14525:07 9 \& 3.00 \& 6227:65 \& 196.88
3 \& 38291.50
1619.65

1985 \& ${ }^{8506.25} 75$ <br>
\hline  \& ${ }_{6}^{62}: 6.58$ \& ${ }^{1332515} 97.78$ \& 158:75 \& 2688096 \& 126:888 \& ${ }^{2} 18185353.32$ \& 32122.31 2616 <br>
\hline  \& 9575.50 1458 \& ${ }^{11376} 898.19$ \& ${ }^{2} 288$ \& 31717:983 \& 372: 98 \& ${ }^{11564} 76397$ \& 26203.57 <br>
\hline STE NER \&  \&  \& 1:87\% \& 2511.59 \& 1 33$\}: 8{ }^{\text {\% }}$ \& $4{ }^{15858} 8.38$ \&  <br>
\hline suple sis \&  \& 95959.02 \& 2568.36 \& 456.976 \& ${ }_{1}^{80}$ : 515 \&  \& 480142.25 <br>

\hline  \& 8235:36 \& | 12503.86 |
| :--- |
| 1037 |
| 185 | \& ${ }_{5}^{8}: 72$ \& ${ }^{1268} 8.80$ \& ${ }^{2505} 9.85$ \& ${ }^{15563} 13500$ \& $32078: 32$

1267202 <br>
\hline STMEE \& ${ }^{175}$ : 0 : 6 \& 1903\% 16010 Re \& 18368:76 \& 4008.95 \& ${ }^{31}: 40$ \& 219972:48 \& 20527:25 <br>
\hline  \& 113255: 6 ¢ 29 \&  \& ${ }^{1}: 145$ \& ${ }^{8095} 59.11$ \& 860.02 \& 92700:88 \& $18671: 28$
207109 <br>
\hline City \& $75: 88$ \& 8795:50 \& 2.98 \& 75:88 \& 91295:95 \& 26067:88 \& 48565.59 <br>
\hline (uitis 120 \& ${ }^{19} 1.68$ \& ${ }^{4976.78} 8$ \& ${ }^{1}: 97$ \& 1671:79 \&  \&  \& 13019:39 20918 <br>
\hline  \& 349999.96 \& 91218:36 \& \$09:78 \&  \&  \& 13959\%:86 \& 113196:9\% <br>
\hline  \& 66:83 \& 12710.788
888.98 \& ${ }_{56}^{204.20}$ \& 3212.96

40158 \& | 383 |
| :--- |
| 78.68 |
| 88 | \& 28846.55 \& 36283.488

2660.988

28885 <br>

\hline  \& 77:58 \& 9446:189 \& 2. Ef $_{10}$ \& 35599. 816 \& 2993:78 \& 13333:88 \& | 27861.25 |
| :--- |
| 6863 |
| 888 | <br>

\hline  \& 195.08 \& 7697.85
677 \& ${ }^{2} .805$ \& ${ }^{2} 4888.105$ \& ${ }^{88} 878$ \& 23999980 29818 \& 12032.75
1083
105 <br>
\hline  \& 200:88 \& ${ }^{198988.15}$ \& 1:29 \&  \& \}¢¢5:88 \& 22510:90 \&  <br>
\hline  \& 83:25 \& 22542.65 \& \$980.7.5 \&  \& 8000:00 \& 868530.25 \& 488881.75 <br>

\hline | SARPEE 4 |
| :--- |
| Stitnss | \& $\left.{ }^{9} 97.72\right\}$ \& 3 3888989 \&  \& 92411:95 \& 188.13 \& 11380.85 \&  <br>

\hline Plem ${ }^{\text {cte }}$ \& 80:.50 \& 9655798.00 \& ${ }^{162315} 685$ \& 2154.635 \& 16959:979 \& 78887.50 \& 40528.75
3346.20 <br>
\hline Sixphe $=20$ STOLEREORS \& 13.50 \& 203368.85 \& 7965.18 \& 2096:35 \& 4178868 \& 119695: ${ }^{\text {¢ }}$ \& 33858:98 <br>
\hline  STE ERRORS \& 28:96 \& 10412:97 967 \& ${ }_{3180}^{88} .15$ \& ${ }_{6}^{6777} 8858$ \& ${ }^{17748} 1372.48$ \& 16756:82 \& 32967.58 2300.32 <br>

\hline $$
\text { PRE } 110
$$ \& 5 ${ }_{5}$. 78 \&  \& ¢78\%: 28 \& ${ }^{517} 705.68$ \& 90782:53 \& 27541.50 \& 253885.18 <br>

\hline  \& 69:3发 \& 1169\%:78 \&  \& 2738:797 \& 368\% 3 \% ${ }^{\text {\% }}$ \& 2 E 596.95 \& 20¢5¢57: 4 \% 3 <br>
\hline
\end{tabular}

	teaus lit	thans out	ano income	other out	covt oric	¢12
	1470.5:58	14890:35	${ }_{3}^{1767672.95}$	20122: 80	9752:06\%	
	${ }_{80} 877.36$	3125: ${ }_{110}^{10}$	2668.75	2676:32		78011:25
Sithe	2415 ¢ 208	2867:13	${ }^{14380} 278087$	2826:79\%	11880:7\% 714	¢ 565858
	30.05	5313:16	11.3737	77720:11	2895:59	67530 $2186: 53$
	\$5929:80	198555000	${ }_{15925}^{1585} 9$	10975 336	110.03 6.71	54858.75 4.160 .36
	119888:969	1937:35		3 3 ¢ 3 : 59	3333:88	$9985\} 3: 86$
SAMPEEES 80 SIP ERPors	159115:727	4939.71 68086	28022.06	112659.63	385:67	517711:20
SI	13705:77	83331:28	20000:85	247800888	8159:12	${ }^{6} \mathbf{6} 5480088.25$
	12885:60		f60601.77	22596:30	32450:20	${ }^{56030} 535: 16$
	6610:931	23 2cie: 20	5675:00	1228888	1842:37	${ }_{3}^{35114685}$
	7901:93	3465.737	71918:28	6409:76	2086:33	S6106\%:05
SAYPLE 261	62995:57	S009:39	8009:993	1890.70 88	823:45	"17820:07
	108789896	13901:07	12092.962	${ }^{1797} 296824$	${ }^{2325} 12.19$	355775.65
	${ }^{1641724: 80}$	90196. 973	219868818	88150:084	4821.73	7 921898.85
STMPENE 101	6320.31	16700:30	28831.23	8999.93	34959	55285:98
	1385339:973	2\}เชิ: ${ }^{\text {¢ }}$	85196.988	58824:4\%	181:90	796272:82
	207\% 2085	1530 4765	26639:50	885:39	1190985	51258.05
	564. ${ }_{3}$	2:88	4550789	5:88	5042:8\%	71368.86\%
sio frbors	11523.51	1958.37   39.22	10216:78	2390.62	${ }^{217212,313}$	8717:11 292:28
	1996:90	3571:98	12378:8929	- 36092.63	7933:26	331333:91
	15¢¢: 5 \%	2¢ici:36		${ }^{26} 36: 30$	${ }^{6} 199$ :3?	2989\%能
20	35750:00	2680.00 34305	12438.30 7703	${ }_{2635}^{530685}$		12esti.30
${ }_{\text {ors }}{ }^{20}$	3890:00	400:80	${ }_{11}^{81} 163$	$811: 37$	5516:75	${ }^{31} 179753.75$
	216160:60	2519, 817	${ }^{3590} 1103.85$	68079:50	${ }^{4} 863.485$	45752:90
SAMP STDERRORS	98, 9 ¢ 58	52.75	237481:107	\$1599:75	137.25	111802.35
STEANRSORS	Esfers: 17		8698:36	188998: 89	${ }^{51} 182: 39$	933 356.5
		23770.c0	3564:35	${ }^{427} 273025$	2277:19	167321:40
	159880:35	2700:68	10758: 48	¢88: ${ }^{3} 8$	259:63	7588980
	171773:39	88907: 26	125353:07	2350921	33:87 ${ }^{\text {¢ }}$	${ }_{5}{ }_{5}$
	1066:99\%	17978:13	96070:19	2203:9\%	${ }^{27} 888895$	87996:60
Stotereme	¢¢¢ 98.50	216900\%	16312.32	107585	120429:27	09310:00 626


	BETTER	WORSE	JUST AS GOODJUST	AS BAD
$140102$   FREQUENCIES	12	6	1	1
140104 L	19	13	7	1
140108	78	46	50	5
FREQUENCIES				
FREQUENCIES	18	1	0	0
FREQUENCIES	10	0	10	0
140404 CIES	17	2	1	0
160109 des	50	21	9	0
160110			15	2
FREQUENCIES	34	9	15	
FREQUENCIES	34	1	5	0
FREQUENCIES	28	4	8	0
160204 $F$ CREUENCIES	78	105	13	5
160205 ${ }^{\text {FREQUENCIES }}$	132	62	37	3
160212	90	14	15	0
160374 NTES	18	12	29	0
FREQUENCIES	18	12		
FREQUENCIES	56	22	23	0
FREQUENCIES	5	2	32	1
GREQUENCIES	5	3	17	0
62020 ?	9	4	5	2
620401	30	61	27	2
620413 Cles		33	48	27
FREQUENCIES	32	33		
FREQUENCIES	93	25	41	15
FREQUENCIES	9	0	11	0
O30403 FREQUE CIES	8	2	1	9
$\begin{aligned} & 630408 \\ & \text { FREOUENCIES } \\ & 640104 \end{aligned}$	11	2	3	4
frequencies	13	2	5	0
FREQUENCIES	19	6	8	7
G40215 ${ }^{\text {FREQUENCIES }}$	17	1	2	0
647101		7	2	C
FREQUENCIES	11	7		
FREQUENCIES	87	2	10	1
FREQUENCIES	69	10	39	1
FREQUENCIES	33	4	2	1



Table B4


	AG	tree	Stock	FISH	NON AG	Other
14J10?   fregufncies	14	0	$\bigcirc$	1	$\bigcirc$	5
14. ${ }_{\text {PREUENCIES }}$	29	0	0	0	1	10
$14010^{\circ}$   fREQUENCIES	101	5	0	2	7	65
FREQUENCIES	14	2	0	0	2	1
140205	18	0	0	0	1	1
FREQUENCIES 143404	18				1	1
FREQUENCIES	3	4	0	0	3	10
FREQUENCIES	41	21	1	0	3	14
FREQUENCIES	19	2	1	2	8	28
FREQUENCIES	16	3	0	0	2	19
FREQUENCIES	13	0	0	0	0	27
FREQUENCIES	133	2	1	2	4	59
FREQUENCIES	166	3	1	2	10	59
FREQUENCIES	92	2	0	0	2	24
FREQUENCIES	26	4	0	0	3	26
FREGUENCIES	42	2	1	0	13	43
FREQUENCIES	$\geq 1$	4	c	0	1	4
FREQUENCIES	15	0	0	0	1	24
FREQUENCIES	3	0	0	1	3	13
623401						
FREQUENCIES	62	4	1	7	6	40
FPEQUENCIES	71	1	1	1	3	63
FREQUENCIES	74	1	0	1	15	86
FREQUENCIES	8	0	c	0	0	12
FREQUENCIES	17	0	0	1	2	0
FREQUENCIES	12	0	$\bigcirc$	0	0	8
$\begin{aligned} & \text { FREQUENCIES } \\ & 640109 \end{aligned}$	11	1	1	1	0	6
FREQUENCIES	25	0	C	C	1	14
FREOUENCIES	18	0	c	0	0	2
FRERUENCIES	6	c	1	3	0	4
72J?14 ${ }_{\text {FREIES }}$	36	2	1	0	21	39
FREOUENCIES	23	3	5	2	18	58
FPGUENCIES	17	3	,	-	4	14



Table B9



secondary education better or worse than in area of origin


Table B13


143102	3ETTER	WORSE	AS GOOD	AS	EAD
FREOUENCIES	4	3	13		0
FREQUENCIES	21	1	18		0
FREQUENCIES	64	23	92		1
FREQUENCIES	1	4	14		0
FREQUENCIES	5	0	15		0
FREQUENCIES	8	2	10		0
FREQUENCIES	31	6	43		0
frequidincies	27	8	25		0
frequencies	26	3	10		0
FREOUENCIES	15	4	21		0
FREQUENCIES	66	58	76		1
FREQUENCIES	58	32	149		2
fREQUENCIES	83	7	30		0
160374					
FREQUENCIES	11	6	42		0
FREQUENCIES	36.	8	57		0
FREQUENCIES	21	0	19		0
FREOUENCIES	6	4	30		0
FREQUENCIES	3	0	17		c
FREQUENCIES	70	10	40		0
FREQUEINCIES	37	9	90		4
FREOUENCIES	70	$1 \varepsilon$	90		0
FREQUENCIES	$\delta$	1	11		0
FREQUENCIES	11	3	$\epsilon$		0
FREQUENCIES	11	1	$\varepsilon$		0
frequencies	7	1	10		1
FREQUENCIES	20	2	17		1
frénuencies	8	1	11		0
freoulencies	16	0	4		c
720314					
FREGUENCIES	67	9	24		0
frequencies	52	12	54		0
74)?14					
frequencies	20	6	14		0



	better	WORSE	AS G000	AS	BAD
$14310 ?$   frequeincies	10	5	3		2
140104					
FREQUENCIES 140108	25	9	6		c
FREQUENCIES	84	59	37		0
FREQUENCIES	14	2	3		0
FREQUENCIES	15	0	5		0
FREQUENCIES	7	8	,		0
16J109 FREQUNCIES	57	12	11		0
165110					
FREGUENCIES	27	14	18		1
FRESUENCIES	22	11	4		3
FREQUENCIES	35	0	5		C
16REGUENCIES	102	59	30		10
FREQUENCIES	134	3.4	66		7
FREQUENCIES	53	23	44		0
FREQUENCIES	21	12	26		0
160605 CIES		16			0
FREQUENCIES 160607	53	16	32		
FREQUENCIES	32	3	5		0
FREQUENCIES	10	9	15		0
FREQUENCIES	11	2	7		0
FREQUENCIES	55	16	44		5
620413					
FREQUENCIES	72	7	50		11
fregutncies	100	27	51		0
630211					
$\begin{aligned} & \text { FREQUENCIES } \\ & 63040 \text { ? } \end{aligned}$	10	6	4		0
FREQUENCIES	18	1	1		0
FREQUENCIES	14	1	5		0
FREQUENCIES	13	4	2		0
FREQUENCIES	15	6	17		1
FFEDUENCIES	9	2	8		$\bigcirc$
	15	2	3		c
720?14	75	12	12		1
$\begin{aligned} & \text { FREOUE } \\ & 740307 \end{aligned}$					
FREOUENCIES	95	16	7		1
frequealies	15	16	9		C

Table B17

WHAT HAVE YOU DONE TO IMPROVE YOUR HUUSING

	GUAL	EXPAND	ECTH	NEITH
$140102$	1	$\varepsilon$.	4	7
$140104$		\%		
FREQUENCIES	1	14	4	21
140108   FREQUENCIES	53	30	21	76
143202				6
FREQUENCIES	12	1	0	6
FREQUENCIES	11	0	2	7
140404			1	
FREQUENCIES	7	6	1	6
FREQUENCIES	10	9	24	37
$16011{ }^{\text {d }}$				0
FREQUENCIES	0	19	11	30
FREQUENCIES	7	27	0	6
169203				20
FREQUENCIES	17	2	1	20
160204 $F$ REQUEIES	42	32	41	36
160205				
FREQUENCIES	41	90	15	95
FREQUENCIES	35	39	5	41
160374 CIES	16	8	3	32
FREQUENCIES 165605	16	8	3	32
FREQUENCIES	19	12	5	65
$\begin{aligned} & 160607 \\ & \text { FREQUENCIES } \\ & \text { CZUU2 } \end{aligned}$	. 11	9	14	6
FREQUENCIES 62年	1	1	1	37
FREQUENCIES	1	0	0	19
FREQUENCIES	1	1	11	107
O20413 ${ }_{\text {FREQUENCIES }}$	13	7	2	118
630210				
FREQUENCIES	43	39	40	50
FREQUENCIES	0	1	12	7
630403				
FREQUENCIES	3	0	3	14
FREQUENCIES	3	3	7	7
$64 J 104$				
FREQUENCIES	1	2	7	9
FREQUENCIFS	2	6	3	29
64J215				14
FREQUENCIES	0	5	0	14
FREQUENCIES	0	7	9	4
72J314				
FREQUENCIES	21	12	14	53
FREQUENCIES	34	20	34	31
74 JRQ14	5	4	14	17



	ikr san		bendoto	sw	flo	Hish		गн
SAMPEENS 20   Stif erbors	8	$\bigcirc$	\$!	$\varepsilon$	S9	8	\%	\}
	0	$\therefore$	8	8	100	$\bigcirc$	8	${ }^{3}$
	$\bigcirc$	$\bigcirc$	${ }_{3} 8$	$\stackrel{1}{4}$	$6_{3}$	${ }_{\square}^{\circ}$	${ }_{1}$	:
	8	$\bigcirc$	9 9\%	$\bigcirc$	82	$\bigcirc$	1	$\bigcirc$
	8	17	58	8	${ }^{32}$	8	18	8
$\begin{aligned} & \text { Shificins } \\ & \text { STO EARORS } \end{aligned}$	\%	$\bigcirc$	8	8	${ }^{21}$	$i$	8	8
	$\bigcirc$	$\bigcirc$	$\stackrel{5}{2}$	$\bigcirc$	${ }_{5}^{96}$	1	$4{ }_{5}$	8
	8	8		8	138	8	15	f
	8	8	8	8	${ }_{172}^{17}$	8	98	8
	$\delta$	8	8	8	10 z	8	$\delta$	3
SAMPLE= 201   STEERSSORS	$\bigcirc$	8	!	8	$17 \%$	$\stackrel{\square}{1}$	$i$	8
	${ }_{0}$	0	0	0	$\stackrel{108}{2}$	8	8	8
	$\bigcirc$	8	20	0	$1 \%$	8	8	8
	0	4	4	8	,	8	14	8
	$\bigcirc$	0	5	0		8		
SAMPEES 101   STO MEREDS	8	$6 \frac{1}{5}$	iq	8	21	8	8	8
	8	${ }^{170}$	0	8	${ }_{1}^{3}$	$\bigcirc$	18	0
	0	6	3	$\bigcirc$	70	$\frac{2}{2}$	$\bigcirc$	$\bigcirc$
	8	8	3?	8	${ }_{6}$	\}	33	8
 	i	14	そ	8	${ }^{13}$	8	\%	8
SCRTLEE 140 STE ERRORS	$\bigcirc$	80	\% 6	:	17	8	:	8
SAMPLEE ${ }^{178}$ 5 STO ERRORS	8	8	$1 \frac{12}{2}$	\%	97	8	\%	\%
SAMPEEES 20 STO ERROAS	8	:	$\bigcirc$	:	$\stackrel{97}{1}$	8	$\bigcirc$	$2 \%$
	8	179	8	8	$1 / 1$	8	¢	8
	8	191	8	8	18	8	:	8
	:	$6{ }^{6}$	:	8	4	8	12	8
SAMPE  	17	${ }_{2}^{2}$	70	-	83	:	10	:
SAMPLEES 20   STD ERBORS	8	8	98	$\stackrel{8}{6}$	72	8	11	8
	8	\%	$\frac{2}{2}$	8	98	8	${ }^{30}$	8
SAMPAN 100	8	8	${ }^{21}$	8	66	8	$\xi$	8
$\text { ? } 5 \xi_{0} \xi_{1}$	i	:	22	¢	96	:	4	?
SAMPEENS 6 sto erroas	5\%	8	21	8	39	8	1	8


	10 pren	roinc	10 SOLD	ís pad	tr inc	ir sold	gatile	Poult
				17700	10417	13350	7125	73087
	18029	17ics	15686	8458	7848	6770	6946	17343
		99824. 14018	1915348	3575 2985	7575 2983	35909	8	67459 6315
ID ERBOR	42959	32928	$2 C 928$ 2783	10258 6046	7957 4999	7750 6589	26081	13979 2470
$\begin{aligned} & \text { SAMEENE } 19 \\ & \text { SIDEANSOQS } \end{aligned}$	19540	91717 10423	75071 9988	4878	473	8	35236 15679	42957 2142
	730625	6722 12639	58262 12949	20275 5042	18850 4719	11225 4002	23000 15245	50625 7523
	39585 8895	$35 C 33$ 8053	14750 6795	¢	0	$\stackrel{0}{8}$	1335	3
	45462 626	39655 5960	17235 3342	99407 21462	25867 20636	89600 19550	1250 684	3798 2494
	${ }^{4} 42024$	37671 7662	29401	408089	${ }_{18989} 218$	46888	30283 1166	22595 7045
STIEANS	49507 12611	41216.	35152 7706	479739 44884	456150	465656 46075	196000	15763
	2¢513	24503	29969	$\bigcirc$	8	8	8	67888 6778
SAYPLEE ? 01   $S$ TDERPORS	56672 5079	${ }^{46} 4875$	39035	3689 2034	3335 185	201472	7971 2614	7988 1691
SAMPLT $=241$   CHEARSORS   165212	492157	43190	$\begin{array}{r}29425 \\ \hline 985\end{array}$	$\stackrel{8}{\circ}$	8	5	12593	$\begin{array}{r}2183 \\ 285 \\ \hline 18\end{array}$
	35255 3 3	$\begin{array}{r}73935 \\ 3584 \\ \hline\end{array}$	23371 2827	8	¢	$\bigcirc$	0	2635 2878
	47335 6307	42018 5608	33711 4622	16121	15909	15909	8	3786 164
	20136 2770	21640 2654	9190 1332	${ }_{68}^{69}$	60 68	49	S400	7628 2029
	208838	1景512\%	13) 3 ?	9398\%	\%9188	17\% 363	38\% 6	3
	40585	57393	22325 4686	8	${ }_{6}^{6}$	$\bigcirc$	8	4225
	4074 $C 105$	${ }_{4}^{40002}$	$\begin{array}{r}19972 \\ \hline 644\end{array}$	ก	$\bigcirc$	$\bigcirc$	$\stackrel{\square}{c}$	?
	589063	46est 4 ¢ 4 ¢	16377 6350	0	$\bigcirc$	0		15255 2445
STVEARSORS	27878	$\begin{array}{r}25607 \\ \hline 828\end{array}$	19523 643	846	3918	348	875 586	17655 257
	27722 2796	26292 2683	15561 2200	2746	22885	1612 613	3216 1026	243736
$\begin{aligned} & \text { SAMLC } \quad 20 \\ & \text { STHEAREORS } \end{aligned}$	42312 4865	${ }^{369829}$	31750 8404	8	$\bigcirc$	$\bigcirc$	0	38075 9585
$\begin{aligned} & \text { SAMPLEE } \\ & \text { STEANE } \\ & \text { STSORRORS } \end{aligned}$	24000	20830 2992	29912	$\bigcirc$	0	8	8	${ }_{1585}^{625}$
SAMPLE = 20  	1敄9	171373	5999	8	8	8	1920	3
ShEANS	$\begin{array}{r}141050 \\ 31208 \\ \hline\end{array}$	113657 25993	112630 28839	33200 26418	30660 24011	28400 26261	61500 27685	10149 9846
	3215 4680	28361 4111	29588	77676	589 138	1758	$17998{ }^{79}$	48075
SAMPLEAN 20   STO ERPORS	213325 86215	211980 86208	${ }_{213}^{213235}$	170700 72888	170780 72889	170760 72689	0	438174
	E2225 23608	58925 288	25725 18164	52350 12634	\$81909	50750 12590	7000 0822	15509 5263
SAYPEEE CANE	1046977	86158 11693	47893	11125				
	14977	11693	7843	5593	4529	4859	2681	3675
		1885 235	13712 3225	\$903	83936	\$319	${ }^{13176} 96$	375038
$\begin{aligned} & S A P L P=\quad \text { CO } \\ & \text { STOEARSORS } \end{aligned}$	756805	30248 8618	$209908{ }^{9}$	675 468	\$196	287 287	3236 2811	19614




Table B23


Table B24


Relotionship beiween Subdistricts and Settlements
Each line below gives the subdistrict followed by settlement and number of households in that settlement (in pairs).

140102, $60-20$
140104,
$61-20.62-20$ Teluk Kuamtan
140106, 51-20,52-20,53-20,54-20,55-20,56-20,57-20, Belıas
58-20,59-20
140202, $\left[\begin{array}{l}2-19, \\ 1-20,\end{array}\right]$ Sel Ratch
140404, 63-20 PIR PROJECT-Tapung tandon


620102, 110-20, 111-20 Kumai
620203, 109-20 Hanjalipan
620401. 96-20, 97-20,98-20,99-20, 100-20, 101-20 Terusan Tengah
620413. (102-20,103-20,104-20, 105-20,106-20,107-20, 108-20) pankoh

630210, $\left(\begin{array}{l}12-20,113-19,114-20,115-19,116-20,117-20,118-20, \\ 119-20,121-20\end{array}\right.$
630211, Batu Lin?
630403, 123-20 Sunggai Muhur
630408, $122-20$ Saka Lagon
640104, $\frac{126-20}{124-20}$ Tamah Grogot
640109, $\frac{124-20,125-20}{}$ Babulu Darat
640215, $\quad 127-20$
647101. 20-20. Sepaku

720314, 21-20, 22-20, 23-20, 24-20, 25-20 Malonas
740307, $127-1,128-20,129-20,130-20,131-20,132-19,133-19$ Lahumbuti
740314, 134-20, 135-20 Lanumbuti (?)

## Section 3

Tabular Analysis

## Section 3.1

## Oyerall Results

Our initial concern will be with the components of income (from the Type 9 records); we will cross tabulate this by repelita, type of settlement, village layout, type of transmigrant etc.

In Table 1 we detail income sources for transmigrants by repelita. For convenience of reading we have suppressed the standard errors associated with each of these estimates In many cases, it is obvious from the standard errors that the range for the means is such that one cannot conclude that a particular submean is significantly greater than another. For completeness the full tables are repeated in the Appendix $B$.

First, notice that total monthly income by repelita is 60065 vs 57132; however, the difference is not statistically significant. In terms of the components of income, note that government subsidies for the repelita 3 households average 12000 rps against 0 for the repelita 2 households, as expected. Agricultural income is about the same by repelita with the exception of estate income which is 4954 rps compered to 519 for repelita 3. Other income and all other categories apart from "government origin" income are about the same (in a statistical sense).

Table 1
Income Sources by Repelita and Type of Settlement
Rep 2 Rep 3 Repelita 2
Repelita 3 dry estate tidal small large estate tidal dry dry

sample	557	1641	419	19	119	292	788	40	521
gart subs	0	12072	0	0	0	18660	9935	0	12538
	12587	12959	9341	11978	24114	17504	13625	8456	9747
food crops	4954	519	4303	31310	3041	1453	532	0	16
estate	2388	2437	2144	941	3479	2660	3079	308	1506
livestock	1291	1776	1688	631	0	305	1502	1450	3039
other agric	6067	5671	4186	11280	11857	3813	7746	1379	3902
non agric	28001	24526	29676	18536	23616	28865	26896	57181	16004
other	6132	3954	5389	2263	9367	5520	4716	4900	2020
transfers in	2003	1570	1944	3157	2028	1332	1929	713	1227
transfers out	20507	7951	5757	16131	7142	11650	6861	29327	5838
other in	6407								
other out	4900	2713	5409	4626	3152	4019	3419	5851	672
govt origin	645	6880	723	0	472	6287	9106	1666	4245

Table 2 gives the income breakdown by village layout, i.e., linear, nucleated or combination. Here, we notice a startling difference in the income achieved by households in the combination settlements. In the case of combination settlements the average monthly househald income is of the order of 80000 rps , whereas for both linear and nucleated it is 56000. A note of caution is in order as the standard error on the mean for combination settlements is 8282 rps and we probably cannot conclude the difference is statistically significant. Looking back for the reasons we see that food crop income in the combination settlements is 2.5 times that of other settlements (but with a relatively high variability). With the exception of government income for the combination settlements and estate income for the nucleated settlements, which are relatively low in both cases, there is not a great deal of difference between the income sources of the cases.

TABLE 2
mCOME CROSS CLASSIfied by type of village layout and income origin

GOUT	FOOD
SUBS	CROPS


LWNEAR							
MEANS	1928	12969	3161	2184	875	5974	26351
STO ERRORS	293	566	385	180	190	1058	1716
NUCLEATED							
SMP=1220							
MEANS	14885	11021	384	2450	1838	5485	24759
STD ERRORS	1321	336	104	129	228	588	814
SMP=122							
MEANS	. 00	30554	3581	3860	5267	7206	25265
STD ERRORS	. 00	6593	1142	434	1275	2749	2946
	TRANS $\mathbb{N}$	TRANS OUT	OTHER $\mathbb{N}$	OTHER OUT	$\begin{aligned} & \text { GOVT } \\ & \text { ORIG } \end{aligned}$	TOTAL	

LINEAR
SMP=856

MEANS	4358	1636	7750	3404	2383	56621
STD ERRORS	1085	187	1417	614	129	2325
MUCEATED						
SMP 1220						
MEANS	4894	1728	7994	3380	7488	56565
STD ERRORS	618	266	788	522	396	1198
COMBINATION						
SMP 122						
MEANS	1668	1513	1872	1182	3885	79777
STD ERRORS	633	419	739	558	444	8282

Cross classifying total monthly household income by type of settlement and repelita we observe the same apparently favourable results for combination settlements; particularly in repelita 3. The results, in Table 3, present an income level at 85226 (rep 3) and 69397 (rep 2), which are much higher then the other figures which are in the 54-59 thousand rupiah range. Again the standard error on the high figure is very large, suggesting a need for caution. However, it is already obvious we will need to look more closely at this set of outlying results.

TABLE 3
TOTAL InCOME CROSS CLASSIfiEd by TYPE OF YILLAGE AND REPELITA

	REP2	REP3
LINEAR		
MEANS	59802	53899
STD ERRORS	3496	3103
NUMBER	395	461
nucleated		
MEANS	57666	56444
STD ERRORS	2975	1289
NMMBER	120	1100
COMBHHATHN		
MEANS	69397	85226
STD ERRORS	2838	12499
NUMEER	42	80

This is taken one step further in Table 4, which considers the dynamics of income generation in the context of the question on the transmigrants personal comparsan of household income with two years previously. The responses are cross classified by repelita and type of settlement and what emerges is unclear. Whilst tidal farmers who settled under repelita 2 clearly consider themselves better off, opinion amongst their repelita 3 counterparts is evenly divided. The spread of opinions amongst other farming categories is also uniform.

TABLE 4
COMPARISON OF CURRENT IHCOME TO TYO YEARS AGO FOR TYPE OF SETTLEMENT FOR REPELITA 2 AHD REPELITA 3

		MORE	LESS	SAME	OTHER
	DRY LAND NUMBER	131	216	64	6
REPELITA 2	ESTATE   NUMBER	8	6	5	0
	TIDAL NUMBER	73	10	29	5
REPELITA 3	SMALL DRY NUMBER 93	133	62	3	
	LARGE DRY NUMBER	359	232	168	25
	ESTATE NUMBER 20	1	13	1	
	TIDAL NUMBER	182	189	110	40

When the same question is cross classified by type of village similar results emerge, $40 \%$ think they are better off, $40 \%$ feel they are worse off, and the remainder regard their income level as unchanged. The results are presented below in Table 5.

TABLE 5
COMPARISOH OF CURRENT INCOME TO TYO YEARS AGO FOR TYPE OF YILLAGE

	MORE	LESS	SAME	OTHER
LANEAR   NUMBER	360	307	165	20
MUCLEATED   NUMBER	432	456	265	58
COMBINATION   MUMBER	74	24	21	2

In Table 6 we examine household income by province of origin and we again note considerable variabilility in the results with the Javanese and Balinese (51-53) transmigrants apparently faring worst whilst the three groups faring best being those from Riau-Sumatra, Kalimintan and Sulawesi (72-75). However, note that this may not, in fact be a regional difference, but a reflection of the composition of those migrants in perticular the representation of military and spontaneous settlers. The mean household income for the Sulawesi group (total number only 24), was 82741 with a standard error of 14000 . The Javanese mean income was 55757 with a standard error of 1130 , reflecting the law of large numbers. The same occurs with the other high income groups, so it is probably the case that not too much can be placed on this result. A more useful exercise may well be to ettempt to
account for income differences by urban and rural Kabupaten in areas of origin, this will be attempted in subsequent regression analysis. The outlying Sulawesi group received no government subsidies but high government origin income and other inward monetary flows - suggesting that we may, in fact, have picked up a group of military settlers. Apart from these factors their performance was not much different from the large mass of Javanese. The first group, from Riau-Sumatra had very high "other income", at 43522 rps almost double the average for that category and relatively low food income, suggesting the possibility of an entrepreneurial-trader group.

TABLE 6
INCOME ORIGIN CROSS CLASSIFIED BY PROYINCE OF ORIGIM


In Table 7 we examine income by type of transmigrant and note the advantages of the military, spontaneous and local settlers over the sponsored migrants. There really is not a great deal of difference between the income achievements of the four categories with the sole exception of "other income" and "other in" categories for the military transmigrant. These amount to 92000
rps and 21000 rps out of their income of 117000 rps per month, both totals are significantly higher than those achieved by the other transmigrants in that particular category. Spontaneous migrants fare slightly better than sponsored migrants with incomes of 56000 versus 54000; but the difference is not significant. Finally, lacal migrants are significantly higher then either of these categories with an income level of 74000 . This would appear to be attributible to better income achievement in the food, other agriculture and non agriculture categories.

TABLE 7
INCOME BY TYPE OF TRANSMIGRANT
GOVT FOOD
SUBS

SPONSORED												
SAMPLE=1800												
MEANS 9175	13036	1705	2506	1629	4934	22370	4332	1487	7201	2649	5432	54441
STO ER 850	559	195	118	181	373	581	596	178	744	325	265	1089
SPONT ANEOUS												
SAMPLE $=152$												
MEANS 4112	10533	671	1722	607	7265	27113	7622	1510	5782	2418	2714	56741
STDER 1968	897	341	254	243	2368	2140	3160	531	1445	1107	338	4168
MILITITARY												
SAMPLE $=57$												
MEANS 7320	11782	2101	2342	100	3312	92056	8573	9162	21947	11087	6597	117706
STD ER 3670	1360	992	587	99	1365	5079	3593	2342	11706	3183	2150	7102
LOCAL												
SAMPLE $=186$												
MEANS 10748	13380	1720	2240	3241	13499	33270	2467	1417	8136	7600	5642	74045
STD ER 2558	1212	756	329	789	4948	7028	590	276	1780	2820	679	8493

Next, in Table 8 we examine income by year of arrival. An examination of mean total income reveals no trend which would be a significant result except that the sampling was done in a stratified way, by village, and the ups and downs by year and really no more than a comparison of villages and it is noticeable that the transmigrants in each village tend to have arrived in a given or the neighbouring year. Not too much can be drawn from this apparent lack of trend in the series. Some obvious results emerge (subsidies and government origin income decreasing with time. Food crop in come in the year of arrival being around half to a third the norm.

## TABLE 8

IHCOME SOURCES BY YEAR OF ARRIYAL

| GOYT FOOD ESTATE STOCK | OTHER | NON | OTHER | TRAN | TRAN | OTHER | OTHER | GOYT |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SUBS |  |  | AGRIC | AGRIC |  | $\mathbb{N}$ | OUT | $\mathbb{N}$ | OUT | ORIGIN |

1974
$S M P=18$

$\begin{aligned} & \text { MEANS } 0 \\ & 1975 \end{aligned}$	10874	11726	175	1111	12333	30978	49055	2725	5077	7256	0	103529
SMP $=86$												
$\begin{aligned} & \text { MEANS } 0 \\ & 1976 \end{aligned}$	12851	3804	1774	3294	5114	21475	910	859	1156	1735	114	48480
SMP $=187$												
$\begin{aligned} & \text { MEANS O } \\ & 1977 \end{aligned}$	7699	5748	2265	1967	2284	28395	5861	930	5874	3800	517	53809
SMP=38												
$\begin{aligned} & \text { MEANS O } \\ & 1978 \end{aligned}$	11882	15482	965	0	1859	22995	3335	1602	6513	2731	0	54917
SMP $=108$												
$\begin{aligned} & \text { MEANS O } \\ & 1979 \end{aligned}$	10504	6162	2222	68	8517	30151	7638	4069	9541	6186	0	61195
SMP $=113$												
MEANS 0	21212	254	3979	362	4489	32292	3622	2618	8889	8558	1963	65558


| 1980 | 362 | 4899 | 32292 | 3622 | 2618 | 8889 | 8558 | 1963 | 65558 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


SMP $=355$													
MEANS	0	19427	1147	2857	2036	5761	28516	2019	1076	6490	2435	3754	64435

1981
SMP=531

| MEANS | 2518 | 12604 | 118 | 2834 | 2842 | 8423 | 22253 | 2881 | 1637 | 6530 | 1998 | 5732 | 56030 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1982
SMP $=408$

| MEANS | 9671 | 10156 | 643 | 2151 | 526 | 5869 | 22610 | 5675 | 2169 | 10603 | 3444 | 6676 | 52126 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SMP $=283$
$\begin{array}{llllllllllllll}\text { MEANS } & 34486 & 12098 & 487 & 2094 & 1386 & 3549 & 26704 & 5913 & 1584 & 8245 & 2800 & 12891 & 63491\end{array}$
1984
SMP $=71$

| MEANS | 67149 | 5550 | 352 | 493 | 1059 | 2559 | 22954 | 3533 | 214 | 8635 | 4630 | 8069 | 44360 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

In Table 9 we consider the effect of education level of the household head on the household income level achieved. First, note the definition of income used here differs from that used previously; it was drawn from the Type 7 records and forms the component called "other income" in the tables above. We generally observe increases in income with higher levels of education, but it is not completely uniform. In Table 10 we cross classify education against the income definition used previously. Three observations were excluded; there were two college and one university graduate in the sample.

TABLE 9
OTHER INCOME BY EDUCATION LEYEL OF HOUSEHOLD HEAD

	WAGES	PENS	RENT \& SH CRP	OTHER AGRIC	OTHER	OTHER   NON AG	TOTAL NCOME
SAMPLE $=434$							
MEANS	10385	0	397	5437	1589	1719	19529
STD ERRORS	825	0	128	470	282	259	947
NOT COMPLETED							
PRIMARY							
SAMPLE=798							
MEANS	12335	298	473	6090	2128	1840	23167
STD ERRORS	678	150	102	373	248	177	832
PRIMARY SCHOOL							
SAMPLE=758							
MEANS	12818	3406	1918	5404	1753	1773	27074
STD ERRORS	845	619	1667	300	235	206	1971
JUNIOR HIGH SCHOOL							
SAMPLE=134							
MEANS	20024	9591	231	4472	2461	3020	39801
STD ERRORS	2912	2500	103	734	809	891	3726
HIGH SCHOOL							
SAMPLE=71							
MEANS	26134	3566	507	6093	3474	2413	42189
STO ERRORS	3998	2016	287	1042	2098	649	4751

The results below indicate a rising level of income with increasing education, but it does not eminate from farming activities. In fact, the increase stems from the "other income" category which is dissected above. Note, other income" incresses from 19000 to 42000 rps stepping from the "no education" to high school categories. The wage component of this income tells the story; all the other components of income below seem invariant to the level of education of the transmigrant.

## TABLE 10

income by education level

GOV SUBS	FOOD	ESTATE STOCK		OTHER   AGRIC	NON AGRIC	OTHER	TRAN   $\mathbb{N}$	TRAN OUT	OTHER   in	OTHER OUT	GOVT ORIG	TOTAL
NO EDUC												
SAMPLE=	434											
MEANS 9636	13024	2395	2166	1556	3703	19529	5039	860	5123	1840	4810	51357
NOT PRM												
SAMPLE=	798											
MEANS 6135	11718	1258	2199	2386	4813	23167	2938	1160	7434	3371	5335	52649
PRIM												
SAMPLE=	759											
MEANS 12237	14362	1648	2583	1273	6423	27061	4879	2254	7669	2988	5227	61191
JR HIGH												
SAMPLE=	134											
MEANS 5301	11337	703	2719	428	13711	39801	9665	4328	15948	7507	7531	8146.4
HIOH												
SAMPLE $=$	71											
MEANS 10344	11662	3095	4133	466	7389	42189	4784	1399	6735	5895	4626	76949

In Table 11 "other income" is examined by type of transmigrant. Apart from the significant advantage given by pensions of the military settlers, there is little to differentiate the four categories. The lacal settlers gain a substantial bonus from rent and share cropping, not, as one might onticipote, the militory.

## TABLE 11

OTHER INCOME BY TYPE OF TRANSMIGRANT

| WAGE PENS RENT OTHER OTHER OTHER TOTAL |  |
| :--- | :--- | :--- | :--- |
|  | AGRIC NON AG INC OTHER |


SPONS							
SAMPLE $=$	1800						
MEANS	12609	152	323	5602	1901	1780	22370
STD ERR	503	80	45	226	177	120	581

## SPONT

SAMPLE $=153$

MEANS	16166	723	281	5736	2186	1955	27049
STD ERR	1949	682	100	663	583	731	2127

MILIT
SAMPLE $=57$

MEANS	12210	69721	640	4845	1360	3279	92056
STD ERR	3644	4983	283	1462	465	1112	5079

LOCAL
SAMPLE $=186$

MEANS	14858	0	7577	5913	2503	2415	33270
STD ERR	1947	0	6786	652	535	541	7028

Considering other income by village layaut, we notice first the relative constancy of total other income. However, there are some differences in the components, wage income is highest on combinatian settlements, pensions and rent or share cropping income highest on linear settlements. In Table 13 the proposition that "experience counts" is examined. The totals suggest that being over 35 carries an income premium, yet this conclusion must immediately be played down due to the large standard errors. The subtotals also do not give strong pointers despite their signs of within group constancy, they too have large standard errors.

TABLE 12
OTHER INCOME BY VILLAGE LAYOUT

| WAGE PENS RENT | OTHER <br> AGRIC | OTHER OTHER TOTAL |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | NON AGC | OTHER |


LNEAR								
SAMPLE $=$	856							
MEANS	11901	3022	1989	6154	1466	1818	26351	
STD ERR	711	547	1478	323	236	163	1716	
RUCL								
SAMPLE $=$	1221							
MEANS	13364	1413	269	5516	2464	1724	24753	
STD ERR	633	325	59	278	229	167	813	
COMB								
SAMPLE $=$	122							
MEANS	17418	368	327	2913	307	3930	25265	
STD ERR	2787	367	326	584	177	908	2946	

TABLE 13
HCOME BY AGE OF HEAD OF HOUSEHOLD

GOYT	FOOD	ESTATE STOCK	OTH	NON	OTHER	TRAN	TRAN	OTH	OTH	GVT TOTAL
SUBS			AGRIC	AGRIC		NH	OUT	N	OUT	ORIG


0-20												
SAMPLE $=$	21											
MEANS 4107	10704	0	984	321	3730	25766	7686	583	4923	1078	3504	
STD ERR 4008	2635	0	518	256	2044	7780	4966	189	1763	665	950	
21-25								189	1763	665		
SAMPLE=	198											
MEANS 9420	12637	818	1969	1408	7366	22654	2805	1389	5498	3129	4534	52791
STD ERR 2365	998	356	231	381	2010	2040	1074	330	965	1111	447	3015
26-30												
SAMPLE $=$	397											
MEANS 10730	11567	1118	2330	1832	7307	22519	3447	1470	6335	2827	6421	55044
STD ERR 2021	614	334	191	384	2227	1277	769	206	800	572	644	2752
31-35												
SAMPLE $=$	394											
MEANS 8840	13361	1546	2018	1520	5265	26232	3133	1560	6556	4315	5107	56608
STD ERR 1477	1121	390	171	292	1044	3397	515	288	886	1309	592	3780
$35+$										1309	582	3780
SAMPLE $=$	1189											
MEANS 8508	13200	2015	2692	1703	5192	26543	5544	1857	8691	3125	5154	60179
STD ERR 1045	749	269	166	249	486	854	939	278	1231	476	308	1540

The results indicate remarkably little, a lot of variation in the data, some suggestions of differences between tidal and non tidal returns, some suggestion that the combination settlements achieve superior levels of income than non-combination settlements. This latter feature might be accounted for if the combination settlements were shown to have a higher proportion of military transmigrants. However, in Table 14 below we find that it is just due to the effect of one outlying settlement with a very high figure for food income.

TABLE 14
INCOME OF COMBINATION FARMERS

| GOV FOOD | ESTATE STOCK | OTHER | NON | OTHER | TRAN | TRAN | OTHER | OTHER | GOVT TOTAL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SUBS |  |  | AGRIC | AGRIC |  | WN | OUT | NW | OUT ORIG |


140108												
- means 0	0	0	604	0	0	24000	0	0	0	6500	0	24604
: STD ERR 0	0	0	0	0	0	0	0	0	0	0	0	0
140202												
SAMPLE $=19$												
MEANS 0	41859	39	6516	0	3517	17444	0	4731	0	1342	2890	67536
STD ERR 0	2564	38	1231	0	1671	1393	0	1330	0	717	941	2186
140205												
SAMPLE=4												
MEANS 0	23003	698	3531	0	0	22750	0	50	8750	250	0	49933
STD ERR 0	3507	209	630	0	0	8938	0	43	3247	216	0	7302
630210												
SAMPLE $=59$												
MEANS 0	12674	129	3640	608	7372	26983	898	203	0	966	6320	58425
STD ERR 0	1758	69	619	185	2018	2973	620	177	0	957	70	4007
640215												
SAMPLE $=20$												
MEANS 0	- 96519	14230	4009	991	15750	31000	3875	1250	2075	2225	2195	167321
STD ERR 0	35799	6057	1147	585	15351	13377	2065	1218	1460	1686	2140	43678
647101												
SAMPLE=19												
MEANS 0	8534	7429	1973	30886	3280	22315	3842	3026	8000	515	121	75357
STD ERR 0	2548	1818	691	5038	1476	7921	2698	1603	4054	409	60	5097

## TABLE 14 (cont)

## OTHER WCOME OF COMBINATION FARMERS

	WAGES	PENS	RENT	OTH AG	NON AG	OTHER	TOTAL
:							
140108							
SAMPLE=1							
MEANS	24000	0	0	0	0	0	24000
STD ERR	0	0	0	0	0	0	0
140202							
SAMPLE $=19$							
MEANS	2842	0	0	13313	0	1289	17444
STD ERR	1325	0	0	780	0	707	1393
140205							
SAMPLE $=4$							
MEANS	11250	0	0	7750	3750	0	22750
STD ERR	9742	0	0	1441	3247	0	8938
$\cdots$	-						
630210							
SAMPLE $=59$							
MEANS	19118	762	0	1211	381	5508	26983
STD ERR	2595	756	0	791	266	1303	2973
640215							
SAMPLE $=20$							
MEANS	31000	0	0	0	0	0	31000
STD ERR	13377	0	0	0	0	0	13377
647101							
SAMPLE $=19$							
MEANS	13368	0	2105	00	0	6842	22315
STD ERR	5281	0	2049	00	0	3853	7921

The outlier is settlement 640215 with a food income slone of 96000 rps and a wage income of 31000 . Not surprisingly, the mean household income for that village is around 134000 rps , which together with the performance of a couple of other combination villages, drags the combined total up. A closer examination of the household records for that village revealed one household of 7 members with a tatal income of around $950,000 \mathrm{rps}, 758$ of which originated from food and about $20 \mathscr{F}$ from sharecropping. The household looked like a genuine outlier rather than a series of keypunch errors. In the next section we examine the returns to tidal and dry-land farming.

## Section 3.2

## Comparison of Sponsored Dryland and Sponsored Tidal Transmigrants

In this section we compare the performance of sponsared dryland and sponsored tidal farmers using the same table layouts as previously. To start with the dryland farmers in Repelita 3 appear (from tatals) to be faring better than their Repelita 2 equivalents. An examination of the components reveals this can be accounted for by government origin income tagether with food crops. Their returns from estate crops are less than those achieved by Repelita 2 farmers; other thar that we observe the usual high degree of variablity.

For tidal farmers we notice a dramatic, and significent degree of difference, compared to the dryland farmers and between the two repelitas. The income totals for tidal farmers in the two repelitas are 66000 and 33000 rps respectively. This breaks down by food ( 25000 to 9000 ), estate ( 3000 to 16), livestock ( 3000 to 1400), other (20000 to 11000), transfers in (9500 to 1600), and so on. There are some minor variations the other way. Anyway it would be sufficient to say that there was a dramatic deterioration in the income generating performance of the tidal farmers in Repelita 3. Subsequently we will pinpoint the villages involved and attempt to identify reasons, apriori, probably a futile task.

TABLE 15
IWCOME CROSS CLASSIFIED BY REPELITA AND INCOME ORIGIN (SPONSORED DRYLAND)

	$\begin{aligned} & \text { GOVT } \\ & \text { SUBS } \end{aligned}$	$\begin{aligned} & \text { FOOO } \\ & \text { CROPS } \end{aligned}$	ESTATE	STOCK	$\begin{aligned} & \text { OTHER } \\ & \text { AG } \end{aligned}$	$\begin{array}{r} \text { NON } \\ \text { AG } \end{array}$	OTHER
REPELITA 2							
SAMPLE $=358$							
MEANS	. 00	9482	4840	2303	1819	3646	26344
STD ERRORS	. 00	1151	754	284	480	807	1117
REPELITA3							
SAMPLE $=$	874						
MEANS	12331	15053	575	3039	1038	6156	25058
STD ERRORS	1459	989	175	185	264	593	973
	TRANS $\mathbb{N}$	TRANS OUT	OTHER $\mathbb{N}$	OTHER OUT	$\begin{aligned} & \text { GOYT } \\ & \text { ORIG } \end{aligned}$	TOTAL	
REPELITA 2							
SAMPLE=358							
MEANS	5359	2001	5368	5659	771	52567	
STD ERRORS	1489	690	1150	1302	142	2197	
REPELIT ${ }^{\text {3 }}$							
SAMPLE $=874$							
MEANS	4635	1427	7229	2371	8658	62761	
STD ERRORS	531	186	1316	375	506	1683	

## TABLE 16

## INCOME CROSS CLASSIFIED BY REPELITA AMD INCOME ORIGIM (SPONSORED TIDAL)

-	$\begin{aligned} & \text { GOYT } \\ & \text { SUBS } \end{aligned}$	F000 CROPS	ESTATE	STOCK	$\begin{aligned} & \text { OTHER } \\ & A G \end{aligned}$	$\begin{aligned} & \text { NON } \\ & \text { AG } \end{aligned}$	OTHER
REPELITA 2							
SAMPLE $=95$							
MEANS	. 00	25865	3220	3921	. 00	6222	20019
STD ERRORS	. 00	1488	583	721	. 00	1336	2436
REPELITA 3							
SAMPLE $=423$							
MEANS	13565	9457	16	1490	3247	3315	11402
STD ERRORS	1913	497	9	126	348	632	466

TRANS TRANS OTHER OTHER GOVT TOTAL
W OUT WN OUT ORIG

REPELITA 2

SAMPLE $=95$

MEANS	9557	2391	8577	2809	282	66698
STD ERRORS	8185	652	4294	1032	78	8390

REPELITA 3
SAMPLE=423

MEANS	1613	1025	5979	532	4382	33871
STD ERRORS	400	254	614	115	212	774

In Tables 17 and 18 we compare sponsored dryland and tidal farmers. The results are much as before. Tidal sponsored farmers derive about twice as much income from food crops as do dryland and estate farmers. Curiously, the income sponsored transmigrants derive from estate sources were 3400 rps for dryland farmers and only 300 for estate farmers. The "other income" category yields 25000 rps for both tidal and estate farmers but 20000 rps for tidal farmers. Finally, note that government origin income is highest for estate farmers at 9300 rps and lowest for tidal farmers at 200 . This, presumably will be related partly to the gestation period of estate farming and partly to the number of tidal settlements in the last part of Repelita 3.

## TABLE 17

## WCOME CROSS CLASSIFIED BY TYPE OF SETTLEMENT AND INCOME ORIGIN FOR REP 2 (SPONSORED DRYLAND)

	$\begin{aligned} & \text { GOVT } \\ & \text { SUBS } \end{aligned}$	$\begin{aligned} & \text { FOOD } \\ & \text { CROPS } \end{aligned}$	ESTATE	STOCK	OTHER   AG	$\begin{aligned} & \text { NON } \\ & \text { AG } \end{aligned}$	OTHER
DRY							
SAMPLE $=594$							
MEANS	7459	13190	3406	2478	1217	3408	25794
STD ERRORS	1666	1544	513	218	293	612	928
ESTATE							
SAMPLE $=638$							
MEANS	9946	13661	332	3148	1310	7306	25095
STD ERRORS	1296	453	111	220	360	730	1194
	TRANS					TOTAL	
	$\mathbb{N}$	OUT	N	OUT	ORIG		
DRY							
SAMPLE $=594$							
MEANS	4771	1592	7035	4409	3153	55804	
STD ERRORS	993	425	1851	834	276	2210	
ESTATE							
SAMPLE $=638$							
MEANS	4914	1596	6365	2319	9358	63517	
STD ERRORS	611	242	835	445	656	1619	

TABLE 18

## INCOME CROSS CLASSIFIED BY TYPE OF SETTLEMENT AND INCOME ORIGIN FOR REP 2 (SPONSORED TIDAL)

	GOVT SUBS	FOOD CROPS	ESTATE	stock	OTHER AG	$\begin{aligned} & \text { NON } \\ & A G \end{aligned}$	OTHER
THAAL							
SAMPLE $=95$							
MEANS	. 00	25865	3220	3921	. 00	6222	20019
STD ERRORS	. 00	1488	583	721	. 00	1336	2436
	TRANS	TRANS	OTHER	OTHER	GOYT	TOTAL	
	$\mathbb{N}$	OUT	$\mathbb{N}$	OUT	ORIG		
MEANS	9557	2391	8577	2809	282	66698	
STD ERRORS	8185	652	4294	1032	78	8390	

The issue of which type of settlement, linear, nucleated or combination, provides the best income returns. Incame is further decomposed by sponsored dryland and sponsared tidal transmigrants. As noted before, farmers in combination settlements do best with tatal income for dryland and tidal farmers at 80800 and 64000 repsectively. These figures compare with subtotals of 53600, 60900 for linear and nucleated dryland farmers and 44000 and 32000 for linear and nucleated tidal farmers. Again, the standard errors an these totals are quite large, making it difficult conclude that the difference is real rather than on illusion due to sampling variation. The camponents of income for the sponsored tidal and sponsored dryland formers bear much the same pattern as observed previously. Tidal farmers get the mast significant incomes, in absolute and relative terms, from foad crops, especially on the cambination settlements. However, the tidal farmers seem to have less access to income from wages, share cropping and the remaining camponents of "ather income".

TABLE 19

## HCOME CROSS CLASSIFIED BY TYPE OF VILLAGE LAYOUT AMD INCOME ORIGIM (SPONSORED DRYLAND)

	GOVT	F000	ESTATE STOCK		OTHER NON		OTHER
	SUBS	CROPS			AG	AG	
LINEAR							
SAMPLE $=413$							
MEANS	. 00	12640	3885	2859	400	3860	24815
STD ERRORS	. 00	1042	653	317	131	554	1118
NUCLEATED							
SAMPLE $=737$							
MEANS	14623	12021	275	2731	1024	6274	26118
STD ERRORS	1717	403	95	180	314	723	1031
COMBINATION							
SAMPLE $=82$							
MEANS	. 00	30137	5215	3497	7795	5699	22365
STO ERRORS	. 00	9658	1669	527	1833	1504	3705
	TRANS N	TRANS OUT	OTHER W	OTHER OUT	$\begin{aligned} & \text { GONT } \\ & \text { ORIG } \end{aligned}$	TOTAL	
LIMEAR							
SAMPLE $=413$							
MEANS	3873	1162	7345	4086	2443	53616	
STO ERRORS	986	159	2615	1063	222	2005	
NUCLEATED							
SAMPLE=737							
MEANS	5653	1933	6856	3121	8795	60930	
STO ERRORS	776	389	765	489	595	1461	
COMPBINATION							
SAMPLE $=82$							
MEANS	2481	719	1871	1345	4298	80771	
STD ERRORS	928	397	960	809	588	11635	

TABLE 20
income cross classified by type of village layout and income origin (SPONSORED TIDAL)

GOVT FOOD	ESTATE STOCK	OTHER NON AG	OTHER	
SUBS		CROPS		

LINEAR
SAMPLE $=264$

MEANS	5719	14755	1047	1925	1057	6565	13987
STD ERRORS	878	680	229	266	304	1064	986

NUCLEATED
SAMPLE $=236$

MEANS	17915	7805	143	1639	4638	819	11480
STO ERRORS	3267	735	46	203	507	277	700

COMBINATION
SAMPLE $=18$
$\begin{array}{llllllll}\text { MEANS } & .00 & 40015 & 138 & 5978 & .00 & 3712 & 17941\end{array}$
$\begin{array}{lllllllll}\text { STD ERRORS } & .00 & 2854 & 74 & 1172 & .00 & 1752 & 2384\end{array}$

TRANS TRANS OTHER OTHER GOVT TOTAL
IIV OUT IN OUT ORIG

LINEAR
SAMPLE=264

MEANS	4753	1792	8012	1345	2421	44722

$\begin{array}{lllllllll}\text { STDERRORS } & 2994 & 409 & 1740 & 363 & 163 & 3237\end{array}$
NUCLEATED
SAMPLE $=236$

MEANS	1421	439	5059	496	5146	32602
STD ERRORS	462	222	621	230	343	1065

COMBINATION
SAMPLE= 18

MEANS	.00	4661	1944	1083	1488	64614


| STDERRORS | 00 | 1421 | 1120 | 682 | 265 | 3077 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

In Tables 21 and 22 we examine the response of transmigrants to a question asking them to compare their income with that achieved two years previously. This is tabulated by sponsored dryland, sponsored tidal, and type of settlement. As before, tidal farmers in linear and combination settlemenets seem well satisfied, while their compatriots in combination settlements do not. Curiously, for dryland farmers, it is the nucleated and combination settlement farmers who appear to be doing best whilst the linear dryland farmers seem to be indicating their incame is declining.

TABLE 21
COMPARISON OF CURRENT INCOME TO TYO YEARS AGO FOR TYPE OF YILLAGE
(SPONSORED DRYLAND)

		MORE	LESS	SAME
LINEAR	127	207	73	1
NUMBER	300	257	146	10
NUCLEATED   NUMBER	51	15	7	0
COMBINATION   NUMBER				

TABLE 22
COMPARISON OF CURRENT INCOME TO TYO YEARS AGO FOR TYPE OF YILLAGE (SPONSORED TIDAL)

	MORE	LESS	SAME	OTHER
LINEAR   NUMBER	154	48	52	8
NUCLEATED				
NUMBER				
COMBINATION   NUMBER	44	118	50	23

### 3.3 Results by Subdistrict

With 31 sub-districts or villages it is not possible to detail all the cross tabulations as part of a report like this. Instead we consign the tables to Appendix B and discuss the results, with some summary tables, in the body of the text below. To commence we represent the villages with some additional information on class of settlement, typical date of arrival of settlers, how the settlers see their income compared to (i) two years ago and (ii) pre-transmigration, their source of incame in their area of origin and their opinion about their health now compared to pre-transmigration.

In Table 23 column 4 gives the earliest date of settlement of each village, typically settlement was completed within two to three years. The next two columns ask the transmigrants to compare their income to two years ago; it is clear the tend to point to improved income overall, with some notable exceptions. Columns 7 and 8 ask the same question in terms of income prior to transmigration and it is very clear that a significant majority of transmigrants consider themselves better off. The next three columns list the occupations of the settlers prior to migration. The other categary includes non-agricultural and "other" in the original questionaire and has been included here to pick up "non-farmer" transmigrants in an attempt to see if any villages have a disproportionate number of non-farmer settlers and if those villages are low income villages. Finally, the last column reports the transmigrants' statements n their health. The idea of this information was to ascertain if the migrants in tidal areas suffered more from health problems than those assigned to dryland areas. This does not appear to be the case.

One possibility, that villages with high household incomes were, in fact, villages with a higher then usual proportion of pensioned military transmigrants, is dismissed by the results in Table 24. When total household income for a village is high it would be nice to be able to say that this is either because food income is high or other (especially wage) income is high, but such o simple explanation is not borne out by the figures.

Table 23
Question Responses by Village

Prov Sample Class Arriv	Inoome to Two   Years Ago   More Less	Income to   Transmigration   More Less Area of Origin	Source of hoome   in	Food   cf Origin
		Trees Other Bett Wrse		


Riau											
14010220	Dry	80	9	9	12	1	14	0	5	4	3
14010440	Dry	80	11	21	24	8	29	0	11	21	1
140108180	Dry	81	61	66	98	40	101	5	72	64	23
14020219	Tidal	79	9	1	14	2	14	2	3	1	4
14020520	Tidal	78	12	0	19	0	18	0	2	5	0
14040420	Dry	83	19	1	13	3	3	4	13	8	2
South Sumatra											
16010980	Dry	78	46	21	60	7	41	21	17	31	6
16011060	Dry	80	12	31	40	6	19	2	36	27	8
16017140	Dry	76	16	14	28	6	16	3	21	26	3
16020340	Dry	82	21	0	39	0	13	0	27	15	4
160204201	Dry	74	35	141	125	61	133	2	63	66	58
160205205	Dry	74	39	154	166	54	166	3	69	58	32
160212120	Tidal	81	63	19	116	1	92	2	26	83	7
16037459	Dry	82	4	45	30	8	26	4	29	11	6
160605101	Tidal	82	54	23	69	7	42	2	56	36	8
16060740	Tidal	80	29	0	35	5	31	4	5	21	0


Central Kalimintan											
62010240	Dry	83	32	0	32	3	15	0	25	6	4
62020320	Dry	83	12	3	7	1	3	0	16	3	0
620401120	Tidal	80	18	74	44	42	62	4	46	70	10
620413140	Tidal	81	31	60	78	12	71	1	66	37	9
630210178	Dry	80	85	40	132	17	74	1	101	70	18
63021120	Dry	82	8	1	17	2	8	0	12	8	1
63040320	Tidal	80	11	5	13	3	17	0	2	11	3
63040820	Tidal	80	5	8	15	0	12	0	8	11	1

East Kalimintan

64010420	Tidal	80	6	9	16	1	11	1	6	7	1
64010920	Dry	76	23	8	26	3	25	0	15	20	2
64021520	Dry	80	17	1	18	0	18	0	2	8	1
64710120	Dry	74	7	10	17	2	6	6	4	16	0

Central Sulawesi

720314100	Tidal	76	64	3	88	9	36	2	60	67	9
740307119	Dry	81	69	17	46	48	33	3	76	52	13
74031440	Dry	82	38	2	31	6	17	3	18	20	6

Table 24
Income Components by Village

Province	Income Components by Village					Gort	Wages	Pensions
	Number Sample	Class hncome	Total Crops	Food	Other Origin			
Riau								
	14010220	Dry	103426	16668	58886	9756	48310	0
	14010440	Dry	78011	16314	39040	9521	20775	0
	14020219	Tidsl	67536	41859	17444	2895	2842	0
	14020520	Tidal	54858	24329	22674	110	11100	0
	14040420	Dry	99842	11418	71563	3333	61903	0
South Sumatra								
	16010980	Dry	51771	7572	28056	385	7818	3571
	16011060	Dry	62700	10219	37137	8153	13078	6511
	16017140	Dry	86030	9480	31161	3241	10751	3717
	16020340	Dry	35714	14525	8506	1846	4237	0
	160204201	Dry	56104	13321	34122	2086	14100	3668
	160205205	Dry	44820	11376	26203	823	13376	1609
	160212120	Tidal	35578	13303	12764	2320	2270	825
	16037459	Dry	70219	9595	48015	4621	30483	5244
	160605101	Tidal	55258	12503	32078	3490	4903	4071
	. 16060740	Tidal	76888	18033	20527	182	13587	0
Central Kalimintan								
	62010240	Dry	51258	17235	18471	11905	6040	1110
	62020320	Dry	71348	8705	48542	5042	4775	0
	620401120	Tidal	36717	4974	13619	2212	5861	0
	620413140	Tidal	33133	9121	11316	7953	1428	1007
	630210178	Dry	57088	12710	36283	6160	12623	2756
	63021120	Dry	82851	9444	27961	6883	12700	3000
	63040320	Tidal	31307	7697	12632	5516	9775	0
	63040820	Tidal	45752	10094	25512	4663	22373	0
East Kalimintan								
	64010420	Tidal	111802	22542	48781	137	37250	0
	64010920	Dry	92254	33560	44253	5016	31412	3525
	64021520	Dry	167321	96527	40528	2277	31000	0
	64710120	Dry	75889	9034	33850	257	13700	0
Central Sulawesi								
	720314100	Tidal	60157	10412	32967	33	14935	2579
	740307119	Dry	87754	15364	25356	27288	14499	0
	74031440	Dry	69310	11490	20557	13647	8842	0

Further tobles are presented in Appendix B. The first section is devated to questions reloting to income. Toble B1 provides the income breakdown by village already given in Table 22, together with standard errors. Tables B2 -B4 give full details of three questions summarised in Table 21, i.e. relating to income two years ago, income prior to transmigration, and income source in orea of origin. In mast settlements the transmigrants income sources remain unchanged over a two year period; however, one (140404) has 19 respondents from whose income patter stands out as originating both currently and two years perviously from ather non-rurol origins. The income figure of that village is 99842 per household but $75 \%$ of that income originates from other non-agricultural sources. Table B5 indicates that around a third to a half the transmigrants list their accupations prior to migration as being in the other class. A few villages are dominated by this group of people, notably 140404, 620102, 620203 and 630211; the total household incomes for these villages are $99842,51258,71348$ and 72851 respectively. In other words, their incomes tend to be on the higher side but in only two of the four cases could it be said to originate predaminantly from non-agricultural origins. The next Toble is $\mathrm{B8}$ which lists those villoges still receiving subsistence support.

The subsequent tables in Appendix B look ot sacio-economic questions. Table B9 lists the response to the "family members away at primary school question; Toble B10 osks the same question with respect of junior high school. About $60 \%$ of families have children oway ot primary school, but that figure drops to $15-20 \%$ for junior high school. Tobles B11 and B12 contain the responses to questions on the provision of education services; it is very clear that, both in regard to primary and secondary education, the transmigrants questioned generally regord the education facilities os being superior to those existing in their oreas of arigin. Table B13 contains responses to the
"transportation" question. Here, the consensus eppears to be that transportation facilities are worse. As mentioned, there is no evidence that the health of transmigrants in tidal areas is worse than their counterparts on the dryland sites and when the response to the question on medical services (Table B15) is examined it is clear that the level of services is about the same as in the areas of origin.

The remaining questions relate to housing (Table B16), which is generally seen as better and land ownership and usage. From the results in Table B18 it is apparent that about $35 \%$ of migrants owned some land before moving and there is a considerable spread of responses between villages. Table B19 lists land use by village (average per householder). Table B20 provides annual figures for food production, sales and income, tree crop production sales and income and finally income derived from cattle and poultry. The last two tables also relate to land cultivation and contain the responses to the question comparing the amount of land cultivated compared with two years ago and the reason why less land is cultivated. The usual response is that the same amount of land is being cultivated and when less is cultivated it is because it "doesn't pay". The last two tables, B23 and B24, were added as on afterthought to the question, what if the villages are so remote they have no access to markets? The most popular commercial outlet for food crops is the marketplace, whilst estate crops (the sample is much smaller), tend to be disposed of to cooperatives or traders.

As can be seen we have been overwhelmed by a mass of data; tabular presentation is only of limited usefulness in analysing all the detail as it does not isolate underlying influences. Because of this we turn to regression analysis in section 4.

## Section 4

## Exploratory Regression Analysis

In this section we apply regression analysis in an ottempt to isolate the causal influences on the various components of income. In a strict sense we are not identifying causality, we are advocating no theoretical model of wage or income determination. We are, however, looking for association between factors likely to influence income in a partial derivative context; that is, with the effects of variation in other explanatory variables removed. Such an analysis is more valuable than the preceeding tabular exercise, looking at a one or two way classification for a particular variable or variables. The hidden influences, which might underlie an apparent relationship in a tabular or graphical presentation, are brought out using multiple regression.

In the first set of results, presented in Table 25, an attempt is made to account for the variation in the various components of income by a selected set of explanatory variables. In some cases the variobles are continuous; for example, age of head of household, number of adults in household, year of arrival, area of land opened (in 00 hectares), or areas of land under cultivation for particular purposes. The remaining variables are binary ( 0 or 1 ) dummies: for example, the variable Rep2 is a variable which takes on the value 1 if the household arrived in Repelita 2, but is zero otherwise. A second dummy variable for Repelita 3 ( which would be zero for a rep 2 household and one for a rep 3 case) cannot be included because together they are equivalentto on intercept term, which is olready included in the equation. Had the second dummy (for Repelita 3) been included in place of the first dummy its coefficient would have been the negotive of its pertner. The reason is that the binary variables together measure the shift in the dependent
variable, up and down, due to the components of a particular explanatory variable.

Other dummy variables are included for type of settlement (small dry, large dry, estate and tidal), type of village, actual subdistrict, sex of household head, education level of household head, classification of migrant, area of origin of migrant, means by which the settler is able to dispose of food and/or tree crops (market, trader, co-op or other). This collection of binary variables, 74 in all, exhausts the possible set of reasonable explanators in the dato set.

In Table 25 we list the dependent variable across the row, beneath the title. Thus we are trying to explain the variation in wages, other agricultural income, income from food, income from tree crops, and so on. In each case the set of explanatory variables is the same; however, we only report those coefficients which are significantly different from zero at the 58 (*) and $1 \%\left({ }^{* *}\right)$ levels. This is to avoid the temptation of placing too much weight on results which are statistically insignificant. The effect of including these insignificant variables in a regression equation is a general loss in the precision with which the effects of the remaining variables is measured but it should not bias the remaining estimates. After presenting the results we will indicate why this is an exploratory exercise and we will proceed with a further analysis.

To interpret the results in Table 25 note that the intercept term is extremely large; it is composed of the unobserved constant and all the neglected dummy variable effects. No interpretation can be placed on this term. Next is the effect of the age of the head of household, this is only significant in the case of wages and non-agricultural income. The coefficient
of -142 in the wage equation means a household head of 30 years of age on average receives 1420 rps less per month from wage income than does a 20 year old household head. Causation is not implicit in the result as the 30 year household head may be more established and may derive more income from other sources, without the need to seek wage remuneration. The results for the number of adults indicate that a household with 5 adults receives 16920 rps more, on average, in total income per household than a family with 2 adults. This would seem to suggest that the typical extra adults in a household are dependants rather than active production members. Year of arrival has a negative relationship with wage and other (which includes wages as a major component) income. The later a household's year of arrival, the less the average income that household draws from wages; this would appear to suggest that the opportunities for earning wage income increase with the age of a settlement, or possibly that the newer settlers are too busy getting established to be able engage in direct wage generating activities. The differences implied are quite startling, on average a household arriving in 1984 earns 23120 less rps per month from wage sources than one which arrived in 1974.

Table 25
Regression Coefficients for Various Income Categories as a function of the Specified Variables

	wages	other agriculture	food	tree crops	nonagriculture	other	total income
constant	214771**					274984**	
age head	-142**				$-137 *$		
number adults	1819**	435*	1058*		1133*	2004**	5640**
year arrival	-2312**					-3060**	
land opened	-24*						
irr sawah open					-108*		
tidal open			68**				
bunded open		14*	75**				
swamp open							
dry field			30*		$-30 *$		62*
fish pond	122*		123*				
tree crop		-16**	53**	35**		$-56 *$	
other food		-84*					
repelita 2			-10123**				
small dry		4544*					
large dry		5437*					
estate	17212*	5667*					
linear	-19429**	-4322**			10450*	$-25633 * *$	
nucleated	-8827*				12891**		
vill 140102	49249**					49432**	
vill 140104	11868*						
vill 140108	14635**				-11366*		
vill 140202		13995**	31108**				
vill 140205		9626*		-4445*			
vill 140404	46146**	7232*		-3695*		50474**	
vill 160109		13410**				21415*	
vill 160110	15700**	8521**				22594*	
vill 160171	24362**	11885**		16117**		28155*	
vill 160203		-3818*			-16142*		$-39884 * *$
vill 160204	9031*	10155**			-12193*	15647*	
vill 160205							-22970 *
vill 160212		10828**					
vill 160374	22522**				$-17452 * *$	24302**	
vill 160605		7898**					
vill 160607		10227**					
vill 620102					$-17864 * *$		-33886*
vill 620203		39783**	-17016*			51725*	


	wages Ca	Regressio Categories other agriculture	Table 25   Coefficie   a function food	cont.)   nts for Yar of the Sp tree crops	ious Income cified Uari nonagriculture	bles other	total income
vill 620401		6738*					
vill 620413							-43511*
vill 630210		-3739*					-26041*
vill 630211							
vill 630403			-19426*				.
vill 630408							
vill 640104	33365**				30623**	40910**	51614*
vill 640109	38695**		20816**			37335**	28670*
vill 640215	22115**	$-8005 * *$	74423**	5990**	18049*		77213**
vill 647101				-8220**			
vill 720314							
vill 740314					-10614*		
male							
no education							
not compl prim							
primary school							
jr high school			4				
high school							
spons migrant							
spont migrant							
military					-12090*	60222**	35155**
food/orig	-4841**	$-1231 * *$			-2924*	-8121**-	11488**
trees/orig					-6984*		-12859
stock/origin	$-13057 *$						-14131
fish/orig							-6192
non-ag/orig						-6643*	-7300
owned land/origin			1873*				8919**
from riau/sumatr							
from java							
from bali							
from kalimintan							
food sold market		1147*	4386**				
food sold trader	-3125*	1667**	8038**	-672*			
food sold co-op		2557*		-2232**			
tree sold market	-10739**		8606**	7275**			22575**
tree sold trader		4297**		18352**			20360*
tree sold 00-0p	$-14801 * *$			25670**			24158*
R-squared	. 256	. 311	. 261	. 668	. 098	. 198	. 222

The next set of varisbles relate to land usage, amount of land opened, bunded paddy used in production, irrigated sawah used in production, and so an. As one might anticipate, this has little effect on wage, non agriculture and other income, but is a significant determinant of food income. The units of measurement are in hundreds (actually . 00 ha ). Hence, on average, a difference of .1 hectare opened makes a difference of 6800 rps to household income from food, if the land is tidal. The difference is slightly more for bunded land and much more for fish ponds.

Immediately below these continuous variables is the first of the dummy variables - Repelita 2. The effect of arrival in the second or third repelita is generally insignificant for most income categories. The one exception to this is the food group, where the results suggest a significantly lower food-incame performance for this group of transmigrants. The effect of being in the second or third repelita is insignificant on total income, suggesting (perhaps) that the transmigrants compensate by turning their efforts to ather activities.

The effect of settlement type on income is generally negligible, with the exception of the other agriculture category. In this case the tidal category experiences an income reduction of around 15000 rps , whilst the other three categories show average levels of household income of around 5000 rps . One notable figure here is the relatively high wage earnings of estate settlers, when other effects ore removed.

The next set of dummies account for the village layout; linear, nucleated or combination. The results point to wage incame of combination farmers being higher than thase on linear or nucleated settlements, whilst non-agricultural income is less. There is no significant variation in tatal income due to type of
village and no significant variation in food income. The outlier noticed in the tabular presentation is subsumed as part of the overall random variation.

Following the village layout dummy variables are 31 dummies for the actual villages themselves. These can be interpreted as "with effects such as age, sex of head, year of arrival, and so on removed, what is the average effect on income of a particular transmigrant household being in a given subdistrict. Some villages show up particularly well, others with negative total income dummies rather poorly. A pattern emerges of subdistricts in Riau and Sumatra deriving notable contributions to income from wages, other agriculture and the other income category. With the exception of subdistrict 640215 , elready commented on, there is a fair amount of variation in income derived from food production, so that subdistrict is not a significant determinant of food income.

The next results are slightly surprising, the presence or absence of a male as head of household is of no consequence to the various levels of income achieved. Education is unimportant. The migrant categories do not differ from each other in terms of income earning capacity, with the obvious exception of the income obtained by the military settlers from the other income (including
 from non-agriculture than the other categories of migrants, after adjustment for other influences.

The final set of variables were introduced to assess the importance of trading arrangements on income generation. In the case of wages the significant terms are negative for market, trader and co-op disposal of food and tree crops. This suggests that in the absence of such outlets it is mare profitable for migrants to seek wage generating employment. The other returns are generally significant and positive; a household disposing of food via
markets tends to receive 4386 rps per month on average, if done through a trader this figure becomes 8038 rps , and so on. The tree crop income result is interesting in that it demonstrates that thase farmers who use the co-op as their outlet receive, on average 25670 rps compared to 18352 rps via traders and 7275 rps via markets. Likewise the effect of access to commercial disposal of produce is extremely important in terms of its contribution to total income, of those who dispose of their produce in this way.

Finally, the measure of goodness of fit is given in the last row of Table 25; whilst these results indicate that relatively low proportions of the variation in the sources of income have been explained a number of individually significant influences have been discoyered. Furthermore, in each case the $F$ test on the overall relationship, calculated as $\left[r^{2} /(n-k)\right] /\left[\left(1-r^{2}\right) / k\right] \sim F_{n-k, k}$ would lead to rejection of the null hypothesis - indicating that the equations do, in fact, explain a significant proportion of the variation in the dependent variables.

One problem present in the treatment of the income equations used in Table 25 is that in many cases the fraction of the dependent variable observations which is non zero is relatively small. The appropriate estimator in this case is a Tobit model rather than least squares. The bias arises because the dependent variable follows the zero axis for some way before assuming positive values. The least squares model, fits the entire data set and the line will straddle both the zero observations and the positive income terms. What is needed is a regression model which predicts if the household will avail itself of a particular income source and, given that it does, how much the conditional response of income to the explanatory variables is. One way to produce an asymptatically unbiased estimator of the slope coefficients was rediscovered by Greene [1981] and is based on an earlier paper by Pearson and Lee
[1907]. Greene proves, under rather over-stringent conditions for our purposes, that all one need do is estimate the least squares regression using only the subsample of observations for which the dependent variable is non-zero. The resulting least squares slope coefficients are then scaled by the reciprocal of the non-limit sampling fraction to produce the asymptotically unbiased estimates. No standard error adjustments were given in that paper and the problem appears to be that the standard errors on the coefficients can be quite large if the proportion of non-zero dependent variables is low. In Tables 26 and 27 below, we have re-estimated the equations based on the subsample of observations for which the dependent variable is positive. The sample fraction can be calculated from the final row in each table. Thus, for wages in Table 26 We find that 1012 of the 2199 households obtain income from wages which means the slope coefficients must be multiplied by $2199 / 1012$ to be asymptotically unbiased. One problem, which occurs in the context of dummy variable regression, is that selection of a subsample can mean selection of all of one type of a given dummy variable. In other words what had been a dummy variable becomes a column of ones and one or more columns of zeros, leading to singularity of the moment matrix. We avert this by examination of the results and deletion of sets of regressors to which this happens. For one income source with a very small non-limit sampling fraction, rent and sharecropping income, this was a particular headache, and the equation was eventually completely eliminated.

Table 26
Regression Coefficients for Yarious Income Categories as aunction of Specified Variables

	wages	other agric	other non-agric	other income
constant	286225**	-39845	79071	-84199**
age head	-43	-34	-38	28
number adults	790	805**	350	25
year arrival	-3530**	568*	-779	977**
land opened	-33	-9	-13	8
irr sawah open	-90	-57**	33	24
tidal open	-30	-5	-6	5
bunded open	-57	3	42	8
swamp open	105	-47	12	-117
dry field	45*	8	42	-2
fish pond	136	14	8	12
tree crop	-7	8	19	-1
other food	-151	-195	-867**	-57
repelita 2	-9308	4196**	-5560	862
small dry	-2946	2882*	-33847**	20270**
large dry	7994	4150**	-26796*	15251*
estate	24677	-1326	-55148**	32923**
linear	-5968		9129	-12759*
nucleated	746		10334	-10611*
vill 140102	39450**		7783	11307
vill 140104	18305*		2641	19623**
vill 140108	19817**		11239*	12573**
vill 140202	13861			8036
vill 140205	21518		-25265	18956
vill 140404	30955*		32745	
vill 160109	10076		8445	-3638
vill 160110	3399		12769.	1963
vill 160171	18208		-11749	2220
vill 160203	-14854*		6998	4915
vill 160204	5920		4944	-708
vill 160205	5996		13900**	1743
vill 160212	17266		-25690	15412*
vill 160374	11117		13798**	1773
vill 160605	6425		-23727	17892*
vill 160607	22031		-24658	
vill 620102	-4364		1096	-3747
vill 620203	11693		12199	-1482
vill 620401	13162		-23366	12450
vill 620413	5562		-22871	10364
vill 630210	3558		20590**	727
vill 630211	20615			7138
vill 630403	9716			17986*
vill 630408	16737		-16216	15675

Table 26(cont)
Regression Coefficients for Various Income Categories as a Function of Specified Yariables

	wages	other agriculture	other non-agric	other income
vill 640104	65407**			118418**
vill 640109	54368**		7491	-3645
vill 640215	87911**			
vill 647101	1762			29842**
vill 720314	14204		37611**	19892**
vill 740314	6662		-3097	-609
mak	-988	756	-735	1173
no education	12444		-653	-208
not compl prim	13173		-985	43
primary school	15277		-1401	-320
jr high school	25172		2104	3810
high school	21572		2733	505
spons migrant	4221	-319	7265	-1420
spont migrant	9713	-187	6078	-2204
military	30361**	-527	8469	468
food/orig	-5872**	-2031**	1745	10
trees/orig	-1036	-2129	10851**	1622
stock/origin	-32390**	-6111	3179	155
fish/orig	-2924	-544	1408	-861
non-ag/orig	-809	-386	3121	-164
owned land/orig	2914*	1558**	483	-452
from riau/sumtr	5166		5298	1771
from jaya	-1072		-4122	2660
frombali	8039		-7243	5791
from kalimintan	20861**		4509	664
fod sold market	1217	845	3663*	-139
fd sold trader	-551	4785**	-991	460
fo sold co-op	-8146	3921	-2513	2089
tr sold market	-1596	-562	1777	729
tr sold trader	7514	17638**	-3580	-8267
tr sold co-op	11	519	30284**	2389
R-squared	. 382	. 153	. 359	. 538
Sample	1012	1246	509	790

Table 27

Regression Coefficients for Yarious Income Categories on Selected Regressor Variables

	food	treecrops	stock	other agriculture	other income	total income
constant	-10368	15976	24982	54688	263548**	95979
age head	-25	-73	16	-72	-85	-166
number adults	1064*	1658*	331	461	1749*	5640**
year arrival	53	-187	-208	-459	-2950**	-430
land opened	-3	-27	4	-19	-27	-50
Irr sawah open	46	26	-8	-40	-47	-136
tidal open	69**	31	-16*	-28	0	57
bunded open	71**	15	-8	20	-11	66
swamp open	-17	-72	45*	1123**	20	270
dry field	28*	31	0	-19	20	62
fish pond	124*	-224	-194	-702**	79	283
tree crop	55**	197**	-2	76**	-40	51
other food	-106	69	18	-326	-113	-303
repelita 2	-11606**	-30806	-454	22239**	-6211	-9552
small dry	-535	-15917	-4761	-12453*	-7811	-946
large dry	1970	-11266	-2450	-7344	-4571	4206
estate	3640	-26660	-4692	30641*	-4567	9486
linear	4208	2503	-605	248	-11530	-8013
nucleated	-2340	-2198	243	1472	6624	-345
vill 140102	-5032	3448	5565*		50232**	21662
vill 140104	6727	18536	2875		14669	-738
vill 140108	-2050	22210*	2752		13475	-20461
vill 140202	34774**	21358	1156		771	-1653
vill 140205	15727	27631	144		1257	-21610
vill 140404	-2128		5072		64579**	21038
vill 160109	-722	68556**	4819		23118*	-14605
vill 160110	-9256	31695	9386**		24686*	-12230
vill 160171	-784	69804**	3122		24058	2370
vill 160203	7650		4172**		-13773	-39885**
vill 160204	6216	39463**	4036*		14780	-13468
vill 160205	4654		2477		8612	-22970
vill 160212	-6901		508		7968**	-27493
vill 160374	-748	18925	752		24196	-13814
vill 160605	-6642	-7911	8		19359	-15773
vill 160607	-2326	27419	-3934		6533	-449
vill 620102	8557		5496		-6640	-33886*
vill 620203	-15683*				51183**	-4202
vill 620401	-7826		-1095		-13105	36231
vill 620413	-7595	1909	-1106		-12747	-43511*
vill 630210	13	8012	2304		13394	-26042*
vill 630211	171		1174		10333	-2941
vill 630403	-17565		394		6722	-37553
vill 630408	-9190		-1355		-899	-32479
vill 640104	16375	22918	11694**		62275**	51614*
vill 640109	23023**	40837**	9361**		50144**	28671

Table 27(cont)

## Regression Coefficients for Various Income Categories on Selected Regressor Yariables

	food	treecrops	stock	other agriculture	other income	total income
vill 640215	85188**	39461**	7011**		85486**	77214**
vill 647101	13821	45866**	2075		13284	-1087
vill 720314	12017*	42472**	3079		10523	-8816
vill 740314	2867	11715	1642		898	4234
male	703	-5444	440	-6056	-2186	1230
no education	10226	4655	-6777		3964	6842
not compl prim	8222	313	-6808		4704	4691
primary school	8587	705	-6350		6978	8653
ir high school	7573	7487	-5358		14645	23632
high school	9130	8426	-3460		15318	22676
spons migrant	-1536	-5943	688	-6919	-6089	-12887
spont migrant	-2141	-6158	389	-8691	-2070	-9189
military	-1856	-2526	674	-24176	52249**	35156**
food/orig	25	3099	6	3140	-8208**	-11488**
trees/orig	-7	1529	1341	157	-2507	-12859
stock/origin	7772	2038	4228**	16403	-16558	-14191
fish/orig	573	5326	693	12183**	-7785	-6192
non-ag/orig	783	-1056	2478**	-598	-5650	-7300
owned land/orig	1954*	876	497	-547	3261	8919**
from riau/sumtr	-3570	-11334	179	18938**	11928	6258
from java	572	7617	-104	15849	1715	7608
from bali	1830	8663	2098	13337	6666	9800
from kalimintan	-1587	4003	925	5019	5555	17445
fd sold market	3703**	2670	717	2578	1975	5488
fd sold trader	6808**	-3616	-624	-1369	1220	3959
fo sold co-op	3374	-13399**	151		663	-8181
tr sold market	9766**	2255	1128	9484	-5557	22575**
tr sold trader	5344	-41	20	6119	5278	20361*
tr sold co-op	-1469	796	1406	10042	-945	24159*
R-sqd	. 267	. 806	. 177	. 700	. 222	. 222
Sample	2095	250	1100	237	1955	2199

As mentioned, to interpret the coefficients it is necessary to multiply the slope coefficients by the reciprocals of the sampling fractions. For wages, We note that year of arrival is again significant, and the interpretation is the same as before. Many of the previously significant variables, in the statistical sense, are no longer so. However, subdistricts 64104-64215 again show up as being different from the rest in relation to wage incame. The military transmigrants now appear as a group with o significantly higher wage income than other groups; whilst migrants who were invalved in food and stock production in their areas of origin do not tend to seek wage income in the new oreas.

Skipping to the variables explaining food income, in Toble 27, we note that 2095 of the 2199 households derive some revenue from food. Given the non-limit sampling fraction is so low it may be anticipated the results will be much the same as for Table 25, and this is indeed the case except that some previously insignificant variables now appear significant.

Proceeding to treecrops it is advisable to first note that the sompling fraction is small. Only 250 of the households derived income from treecropping. Of those households that do derive income from treecropping we note that the explanation provided by the regressor variables is very high; 80\% of the variation in the dependent variable has been explained. However, when one looks to the reasons we can explain this veriotion, it is rother disoppointing. The most significant set of explanotory variables ore the subdistricts (vill) themselves. All this means is that this group of househalds have a different pattern in relation to treecrop income than other hauseholds.

Proceeding quickly through the remaining columns in Table 27 note that the derivation of stack income in the transmigrant areas relates positively to that same activity being the primary source of income in the transmigrants area of origin. "Other agriculture" involves few transmigrants and there is little of significence in the results. The results for "non-egriculture" involved large and implausible coefficients, presumably due to a dummy variable problem as the non-limit sampling fraction was low. Hence the column was deleted. The remaining two columns of Table 27 are for "other income" and "total income" and the results in the former case are essentially the same as in Table 25 (with 1955 non-limit observations) while in the latter case they are exactly the same.

To summarise, regression analysis provides some pointers as to the factors influencing income determination; however, as with the tabular enalysis of the previous section the results tend to be inconclusive and should be interpreted with caution.

## Section 5

## Comparison of Consumption Patterns

The transmigration survey tape includes a section drawn from a susenas style questionnaire. Consumption of 19 food items, in the last week, is recorded in quantity and expenditure terms. For non-food items the information is recorded on a monthly basis, for expenditure only. Collecting disparate commodities under a single label poses aggregation problems whether one is considering food or non-food items: the quantities in the food group are not particularly meaningful given the different items they represent and the different quality levels possible within those same items. Nevertheless, getting back to the quantity level enables us to make some comparisons of consumption between transmigrant households and other households in transmigrant areas or households in rural Jaya. Income comparisons would not be particularly useful in the absence of knowledge of the prices paid for commodities in the areas under comparison. One proposition to be examined below is whether price levels are generally higher in transmigrant areas.

The commodity classification used in the survey is listed on page 10 of the User Guide to the 1984 Transmigration Survey. There are 19 food and 19 non-food items. As mentioned, the food group are on a weekly basis and include quantities as well as expenditures. To form total monthly expenditure per household the weekly food figures are multiplied by 30/7. The results below have been converted to a per capita basis. Unfortunately, it was not possible to weight this "per capitaisation" by child-adult factors 8 as the only information on the extracts of the susenas tapes used related to total number of individuals in each household.

Three Susenas tapes were made available to the author. They were released very soon after the material was corrected and as a result still contain some discrepancies. When obvious inconsistencies were noticed the entire household record was removed from the sample. The result was that the samples for the respective groups were: dryland transmigrants - 1555, tidal transmigrants - 640, susenas (transmigrant areas) - 2755, susenas (rural Java 1) - 6490, susenas (rural Java 2) - 1593. We experienced a few minor problems in matching the 38 commodities used in the transmigration survey, in the absence of document translations. As will be noticed below, the consumption patterns for some items differ markedly between the transmigrant and non-transmigrant areas, and the worry is that this could in one or two cases by due to inappropriate aggregation.

Table 28 presents the quantities and expenditures on each item in the food and non-food categories. Obviously, qty refers to quantity whilst exp refers to expenditures. Standard errors are recorded in parenthesis and it will be noted they are almost invariably small relative to their group means.

The quantity of rice consumed per head is lower on dryland than tidal settlements but is slightly higher than in other areas, with the exception of Rural Java (2), which covers the provinces of ... and. The quantity of fresh (and dry) corn consumed per copita is much higher for dryland transmigrant families than any other in the samples. In the ground corn category it will be noticed that the quantity consumed is higher on dryland then tidal settlements, very low amongst non-transmigrants in transmigration areas but extremely high in the Java-2 areas. For cassava, sweet potatoes and "other starch" we notice very much higher consumption
levels amongst the transmigrants when compared with the remaining groups considered here.

Table 28
Weekly Food Consumption:
Quantities and Expenditures per Capita (standard errors in parenthesis)
transmig transmig non- rural rural dryland tidal transmig Java 1 Java 2

rice qty	235	255.3	220.7	221.2	145.0
	$(4.0)$	$(7.7)$	$(1.7)$	$(1.3)$	$(2.1)$
rice exp	739.2	785.7	817.4	697.4	432.8
	$(13.0)$	$(24.3)$	$(6.9)$	$(4.3)$	$(6.6)$
fresh corn qty	30.0	8.8	7.1	6.5	1.3
	$(2.6)$	$(2.2)$	$(0.6)$	$(0.4)$	$(0.3)$
fresh corn exp	30.3	11.8	9.6	5.9	1.5
	$(2.7)$	$(3.9)$	$(0.9)$	$(0.4)$	$(0.4)$


dry corn qty	6.4	3.18	0.8	0.85	4.8
	$(1.1)$	$(1.0)$	$(0.2)$	$(0.1)$	$(0.9)$
dry corn $\exp$	7.9	4.0	1.23	0.96	5.1
	$(1.1)$	$(1.1)$	$(0.3)$	$(0.1)$	$(1.0)$


ground corn aty	21.9	14.0	4.8	29.3	92.3
	$(2.0)$	$(1.7)$	$(0.5)$	$(1.0)$	$(3.2)$
ground corn exp	28.3	16.2	7.2	33.3	114.5
	$(2.8)$	$(2.1)$	$(0.8)$	$(1.1)$	$(4.0)$


cassave qty	109.4	61.8	54.4	32.6	29.0
	$(6.0)$	$(4.0)$	$(1.7)$	$(0.8)$	$(1.7)$
cossava exp	35.3	24.5	38.2	17.2	16.2
	$(2.2)$	$(2.0)$	$(1.4)$	$(0.4)$	$(0.9)$


ground cassave qty	53.5	39.4	6.6	8.0	4.4
	$(3.4)$	$(4.9)$	$(0.7)$	$(0.5)$	$(0.7)$
ground cassava exp	26.7	36.0	6.5	6.9	2.5
	$(1.8)$	$(3.7)$	$(0.7)$	$(0.4)$	$(0.4)$


	```Table 28(cont.) Weekly Food Consumption Quantities and Expenditures per Capita (standard errors in parenthesis)```				
sweet potato qty	$\begin{aligned} & 10.6 \\ & (1.4) \end{aligned}$	$\begin{aligned} & 10.3 \\ & (1.8) \end{aligned}$	$\begin{aligned} & 0.7 \\ & (0.1) \end{aligned}$	$\begin{aligned} & 1.5 \\ & (0.1) \end{aligned}$	$\begin{aligned} & 4.2 \\ & (0.5) \end{aligned}$
sweet potato exp	$\begin{aligned} & 8.4 \\ & (1.1) \end{aligned}$	$\begin{aligned} & 5.6 \\ & (1.0) \end{aligned}$	$\begin{aligned} & 3.2 \\ & (0.4) \end{aligned}$	$\begin{aligned} & 4.0 \\ & (0.3) \end{aligned}$	$\begin{aligned} & 5.6 \\ & (0.6) \end{aligned}$
other starch qty	$\begin{aligned} & 34.0 \\ & (2.9) \end{aligned}$	$\begin{aligned} & 40.6 \\ & (3.8) \end{aligned}$	$\begin{aligned} & 27.1 \\ & (1.4) \end{aligned}$	$\begin{aligned} & 3.5 \\ & (0.2) \end{aligned}$	$\begin{aligned} & 2.9 \\ & (0.4) \end{aligned}$
other starch exp	$\begin{aligned} & 22.0 \\ & (1.9) \end{aligned}$	$\begin{aligned} & 24.6 \\ & (2.2) \end{aligned}$	$\begin{aligned} & 36.1 \\ & (1.8) \end{aligned}$	$\begin{aligned} & 3.1 \\ & (0.2) \end{aligned}$	$\begin{aligned} & 2.2 \\ & (0.3) \end{aligned}$
fish qty	$\begin{aligned} & 153.9 \\ & (5.0) \end{aligned}$	$\begin{aligned} & 134.4 \\ & (6.6) \end{aligned}$	$\begin{aligned} & 80.1 \\ & (1.8) \end{aligned}$	$\begin{aligned} & 54.3 \\ & (0.8) \end{aligned}$	$\begin{aligned} & 39.8 \\ & (1.2) \end{aligned}$
fish exp	$\begin{aligned} & 158.6 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 156.9 \\ & (9.4) \end{aligned}$	$\begin{aligned} & 373.1 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 143.7 \\ & (2.5) \end{aligned}$	$\begin{aligned} & 129.3 \\ & (3.3) \end{aligned}$
meat qty	$\begin{aligned} & 13.3 \\ & (1.8) \end{aligned}$	$\begin{aligned} & 4.3 \\ & (1.4) \end{aligned}$	$\begin{aligned} & 6.3 \\ & (0.4) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (0.1) \end{aligned}$	$\begin{aligned} & 1.7 \\ & (0.1) \end{aligned}$
meat exp	$\begin{aligned} & 34.4 \\ & (1.8) \end{aligned}$	$\begin{aligned} & 9.3 \\ & (2.5) \end{aligned}$	$\begin{aligned} & 83.0 \\ & (4.4) \end{aligned}$	$\begin{aligned} & 53.7 \\ & (2.1) \end{aligned}$	$\begin{aligned} & 36.7 \\ & (3.0) \end{aligned}$
eggs quty	$\begin{aligned} & 73.7 \\ & (3.5) \end{aligned}$	$\begin{aligned} & 46.7 \\ & (4.4) \end{aligned}$	$\begin{aligned} & 58.2 \\ & (1.9) \end{aligned}$	$\begin{aligned} & 55.5 \\ & (1.2) \end{aligned}$	$\begin{aligned} & 59.2 \\ & (2.6) \end{aligned}$
eggs exp	$\begin{aligned} & 60.2 \\ & (4.1) \end{aligned}$	$\begin{aligned} & 42.4 \\ & (3.8) \end{aligned}$	$\begin{aligned} & 58.6 \\ & (1.9) \end{aligned}$	$\begin{aligned} & 42.9 \\ & (1.0) \end{aligned}$	$\begin{aligned} & 38.1 \\ & (1.8) \end{aligned}$
milk qty	$\begin{aligned} & 27.7 \\ & (2.6) \end{aligned}$	$\begin{aligned} & 8.8 \\ & (1.7) \end{aligned}$	$\begin{aligned} & 2.5 \\ & (0.2) \end{aligned}$	$\begin{aligned} & 1.0 \\ & (0.1) \end{aligned}$	$\begin{aligned} & 0.7 \\ & (0.1) \end{aligned}$
milk exp	$\begin{aligned} & 26.6 \\ & (4.5) \end{aligned}$	$\begin{aligned} & 18.1 \\ & (3.0) \end{aligned}$	$\begin{aligned} & 28.8 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 11.6 \\ & (0.7) \end{aligned}$	$\begin{aligned} & 11.4 \\ & (1.7) \end{aligned}$

Table 28(cont.)
Weekly Food Consumption: Quantities and Expenditures per Capita (standard errors in parenthesis) $\begin{array}{llll}\text { transmig transmig non- } & \text { rural } & \text { rural } \\ \text { dryland } & \text { tidal } & \text { transmig } & \text { Java } 1\end{array}$ Java 2

vegetables qty	195.3	170.0	37.4	40.8	36.1
vegetables exp	(6.2)	(6.4)	(0.7)	(0.5)	(0.8)
	203.7	178.4	250.0	194.3	157.2
	(4.7)	(8.2)	(4.0)	(1.8)	(2.5)
beans qty	132.6	80.9	6.1	12.0	12.0
	(5.0)	(5.4)	(0.2)	(0.2)	(0.3)
beans exp	99.5	56.5	43.5	97.8	107.8
	(3.2)	(4.0)	(1.7)	(1.4)	(2.7)
fruit qty	148.4	105.4	44.7	26.0	14.1
	(5.6)	(5.7)	(1.1)	(0.5)	(0.6)
fruit exp	98.0	80.1	143.1	87.8	52.2
	(3.4)	(5.1)	(4.1)	(2.1)	(3.4)
	195.3	174.8	26.4	14.8	14.3
other qty	(6.1)	(6.6)	(1.1)	(0.4)	(0.8)
	405.5	356.9	518.8	322.7	341.6
other exp	(9.1)	(13.5)	(6.3)	(2.7)	(5.0)
	48.3	35.0	22.1	16.7	13.2
	(3.2)	(4.2)	(0.8)	(0.5)	(0.8)
proc food qty	38.3	30.0	165.6	218.3	213.1
	(3.0)	(3.9)	(11.9)	(5.3)	(10.8)
proc food exp					
	177.9	151.9	143.9	66.9	89.9
	(6.1)	(6.4)	(8.9)	(1.0)	(2.5)
tobac \& alcohol qty	196.6	199.3	291.4	167.6	180.1
tobsc \& alcohol exp	(8.4)	(7.5)	(2.8)	(5.7)	
(6.0)					

Table 29

Monthly Per Capita Expenditures on Non-Food Items (standard errors in parenthesis) transmig transmig non- rural rural dryland tidal transmig Java 1 Java 2

energy/ fuel	$\begin{aligned} & 696.0 \\ & (19.5) \end{aligned}$	$\begin{aligned} & 738.1 \\ & (23.8) \end{aligned}$	$\begin{aligned} & 1002.2 \\ & (21.4) \end{aligned}$	$\begin{aligned} & 1464.0 \\ & (13.6) \end{aligned}$	$\begin{aligned} & 1516.1 \\ & (26.3) \end{aligned}$
housing	$\begin{aligned} & 354.8 \\ & (32.5) \end{aligned}$	$\begin{aligned} & 238.9 \\ & (36.4) \end{aligned}$	$\begin{aligned} & 1327.5 \\ & (37.8) \end{aligned}$	$\begin{aligned} & 908.8 \\ & (13.4) \end{aligned}$	$\begin{aligned} & 745.8 \\ & (34.7) \end{aligned}$
$\begin{aligned} & \text { personal } \\ & \text { effects } \end{aligned}$	$\begin{aligned} & 317.7 \\ & (9.1) \end{aligned}$	$\begin{aligned} & 242.1 \\ & (10.4) \end{aligned}$	$\begin{aligned} & 267.1 \\ & (11.6) \end{aligned}$	$\begin{aligned} & 163.8 \\ & (6.6) \end{aligned}$	$\begin{aligned} & 208.5 \\ & (18.2) \end{aligned}$
cosmetics	$\begin{aligned} & 143.2 \\ & (5.6) \end{aligned}$	$\begin{aligned} & 104.0 \\ & (5.9) \end{aligned}$	$\begin{aligned} & 337.8 \\ & (17.3) \end{aligned}$	$\begin{aligned} & 190.4 \\ & (6.8) \end{aligned}$	$\begin{array}{r} 222.6 \\ -\quad(20.0) \end{array}$
medical	$\begin{aligned} & 189.2 \\ & (12.8) \end{aligned}$	$\begin{aligned} & 120.3 \\ & (16.3) \end{aligned}$	$\begin{aligned} & 376.9 \\ & (18.8) \end{aligned}$	$\begin{aligned} & 398.5 \\ & (40.1) \end{aligned}$	$\begin{aligned} & 339.1 \\ & (24.9) \end{aligned}$
schooling	$\begin{aligned} & 198.1 \\ & (12.2) \end{aligned}$	$\begin{aligned} & 140.7 \\ & (13.0) \end{aligned}$	$\begin{aligned} & 225.4 \\ & (12.5) \end{aligned}$	$\begin{aligned} & 244.1 \\ & (11.2) \end{aligned}$	$\begin{aligned} & 216.7 \\ & (19.3) \end{aligned}$
$\begin{aligned} & \text { local } \\ & \text { tronsport } \end{aligned}$	$\begin{aligned} & 158.2 \\ & (12.3) \end{aligned}$	$\begin{aligned} & 124.1 \\ & (18.4) \end{aligned}$	$\begin{aligned} & 48.1 \\ & (9.3) \end{aligned}$	$\begin{aligned} & 67.8 \\ & (6.6) \end{aligned}$	$\begin{aligned} & 85.0 \\ & (13.1) \end{aligned}$
other transport	$\begin{aligned} & 270.9 \\ & (66.1) \end{aligned}$	$\begin{gathered} 198.2 \\ (73.7) \end{gathered}$	$\begin{aligned} & 208.7 \\ & (26.2) \end{aligned}$	$\begin{aligned} & 207.5 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 180.4 \\ & (16.7) \end{aligned}$
recreation	$\begin{aligned} & 62.4 \\ & (16.0) \end{aligned}$	$\begin{aligned} & 54.8 \\ & (31.5) \end{aligned}$	$\begin{aligned} & 16.2 \\ & (3.1) \end{aligned}$	$\begin{aligned} & 23.8 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 35.6 \\ & (6.9) \end{aligned}$
material (cloth)	$\begin{aligned} & 248.6 \\ & (23.6) \end{aligned}$	$\begin{aligned} & 177.7 \\ & (31.5) \end{aligned}$	$\begin{aligned} & 288.2 \\ & (17.6) \end{aligned}$	$\begin{aligned} & 628.1 \\ & (24.9) \end{aligned}$	$\begin{aligned} & 914.0 \\ & (77.2) \end{aligned}$
readymade clathes	$\begin{aligned} & 558.0 \\ & (46.6) \end{aligned}$	$\begin{aligned} & 452.5 \\ & (49.1) \end{aligned}$	$\begin{aligned} & 1705.8 \\ & (65.3) \end{aligned}$	$\begin{aligned} & 2181.9 \\ & (450.3) \end{aligned}$	$\begin{aligned} & 1613.4 \\ & (78.0) \end{aligned}$
hats, shoes socks	$\begin{aligned} & 402.7 \\ & (42.9) \end{aligned}$	$\begin{aligned} & 302.5 \\ & (41.9) \end{aligned}$	$\begin{aligned} & 1002.5 \\ & (59.2) \end{aligned}$	$\begin{aligned} & 1483.0 \\ & (243.0) \end{aligned}$	$\begin{aligned} & 1388.4 \\ & (80.7) \end{aligned}$

Table 29(cont)
Monthly Per Capita Expenditures on Non-Food Items
(standard errors in parenthesis)
transmig transmig non- rural rural
dryland tidal transmig Jove 1 Java 2

furniture	101.8	16.3	187.7	136.7	132.5
	(16.5)	(5.9)	(17.5)	(12.9)	(22.2)

$\begin{array}{ccllll}\text { matress \& } & 184.7 & 69.8 & 285.3 & 157.9 & 125.8 \\ \text { bedding } & (20.9) & (11.8) & (18.2) & (10.8) & (14.7)\end{array}$

Kitchen	370.3	238.2	370.1	248.2	245.2
utensils	(40.6)	(35.8)	(18.2)	(10.9)	(29.5)

household	129.4	64.9	168.0	142.8	184.9
items	(15.1)	(9.5)	(11.2)	(7.2)	(14.9)

durable goods	310.7 (45.9)	186.4 (57.8)	400.7 (42.2)	626.5 (62.0)	604.5 (70.6)
taxes \&					
insurance	26.8	40.3	104.5	122.8	207.0
	(4.9)	(10.2)	(9.4)	(6.9)	(23.7)
ceremonial	571.9	349.5	419.0	299.3	339.5
costs	(61.4)	(65.3)	(43.2)	(26.9)	(30.4)

note: totals are preliminary figures

```
total non-
    food
```

total food
(monthly)
total
expenditure

somple	1555	640	2755	6490	1593

Next, turning to fish, it will again be noticed that the quantities consumed per capita are much higher in the transmigrant areas (dry and tital); expenditures however, are at similar or lower levels than for non-transmigrant households. For meat it will be noticed that the quentities consumed tend to be higher (much higher in the case of dryland farmers), whilst the expenditures are much lower. Egg consumption is roughly the same accross all groups with the dryland transmigrants again recording the greatest per capita consumption figures. The same is true of milk (and vegetable) quantities, but is not so marked in the comparison of milk expenditures. For beans, enormous differences will be noticed. Dryland transmigrants consume over 20 times the quantity of beans of their non-transmigrant compatriots in transmigrant areas and 10 times the quantity of Javanese rural households. Again, expenditure levels are relatively similar. The same could be said of fruit, processed foods and the "other category. The impression is of higher consumption levels and lower unit values (prices). The final food item is tobacco and alcohol. We again note higher consumption levels, this time in all transmigrant areas, than in rural Java. Per capita expenditure levels; however, are about the same.

Next, turn to monthly expenditures on non-food items. The transmigrants pay far less for housing, energy and fuel than do households in the three ather groups. Expenditure on the medical and schooling categories is lower for transmigrant households then the other three groups. Expenditure on lacal transport is considerably higher, expenditure on "other transport" about the same. There are some marked differences in the clothin category. The rural Javanese spend far more on material, readymade clothes and the "hats, shoes and sacks" categary than do the transmigrants. In addition, the nontransmigrants in the transmigration areas also outspend the transmigrants in those categories. For durable items like furniture, mattresses and bedding,
kitchen utensils and household items the expenditure levels are about the same. The lowest spending group in each case being the tidal transmigrants. Finally, in the case of durable goods, the expenditure of the transmigrants is quite restrained relative to the three non-transmigrant categories.

The last two categories relate to services; "taxes and insurance" and "ceremonial costs". In the former case the transmigrants expenses are considerably lower than non-transmigrant households; in the latter they are about the same for the tidal farmers, but the dryland transmigrants outspend the next closest group by 130 rps per capita per month.

Total per capita expenditure on non-food is considerably lower for the transmigrant households, but the most significant part of this saving is derived from housing and energy (say a saving of 1500 rps per month). Lower expenditures on the clothing group contribute a further 2200 rps per capita per month. There may be sacial reasons for this particular expenditure difference.

The upshot is that one cannot base a welfare comparison of transmigrant versus non-transmigrant households on simple expenditure levels. By that criterion it would appear that non-transmigrant households in the transmigrant areas are better off than any other group, with rural Javanese households next and the transmigrants a poor third. Whilst it may be true that the nontransmigrant/transmigrant area households are better off than any other group the relative price effects which show up in food consumption and the higher expenditures of the Javanese on housing and energy point to a reversal of the above ordering. As the survey questions on welfare compared to area of origin indicate, the transmigrants appear better off than their counterparts in rural Java.

6. Preliminary Conclusions

The first part of the analysis was a simple collection of tables, or a two way classification of variables which might be related to income determination. One minor embellishment over usual reports of this kind was that standard errors were calculated and included. The result of this inclusion was that most trends in the tables were, in fact, an illusion. At first glance this seems disappointing; however, the presence of predominantly negative results indicates how complicated are the factors in determining which transmigrants will be successful in an income generation sense.

Many of the results in Section 3 are important in their own right. Duration of time since transmigration appeared unimportant (Table 8); however, this could be a counfounding of a number of other effects. For example, a better selection of sites in later years. Education, appeared important, if the standard errors are ignored; yet, a closer examination of the results reveals that it is wage, not farm income, which is driving this result.

Tidal farmers are pretty conclusively shown as being worse off than any other group - something which was known already. Settlement type, per se, makes very little difference. It also appears to make very little difference which type of transmigrant is being considered, once the persions of the military settlers are removed. One exception to this is the local transmigrants, who do oppear to fare better, and this could be attributed to greater participation in sharecropping and other activities. There is a slight upward trend by age of head of household, but this is
probably a reflection of the number of adults in the household increasing with the age of its head.

A collection of detailed responses to the questionaire, by subdistrict, are presented in Section 3.3. It is difficult for the non-specialist to appraise these, and they are left to the reader. In passing one can note that the response to the health question by the tidal farmers is much the same as that of the dryland farmers. Further detailed results are given in Appendix B and the reader is referred to pages 41 and 42 for a discussion.

Because of the problems of separating all possible influences on income, regression analysis was tried in Section 4. The complications casued by the Tobit nature of the problem for income subcategories, meaning that one needs to forecase whether a household will avail itself of an income source and then how much it will earn, led to the use of least squares and then adjusted least squares estimation. Neither was particularly successful and more work needs to be done to explain subcategory income. As all households earn some income these problems do not relate to the total category. The results in Tables 25 and 27 indicate that very few of the explanatory variables are statistically significant. Number of adults is important (age of head is not). The amount of land oned is not significant; however, the presence of a fish pond is. Some subdistricts show significant positive influences, some negative; more detailed knowledge could make sense of this. Education shows up as an unimportant factor in determining total income. However, being a military transmigrant results in a statistically significant income boost of 35155 rps. On the other hand, if the household head was a farmer in his area of origin, all other influences removed, he (or she) will tend to have a lower income (and that result is statistically significant). Finally, four factors
which significantly and positively affect total household income: land ownership in area of origin and marketing arrangements for cash income from tree crops. Despite the multitude of explanatory variables used, the regression equation only accounts for 22% of the variation in total income. In itself that is quite enlightening and could be interpreted as, (i) an indication of a need for further work or, (ii) an indication of the essential randomness of the data.

Section 4 considers the well-being of the transmigrants by looking at consumption rather than income data. This was an obvious strategy in the absence of price information enabling inter-spatial comparisons. Unfortunately, the absence of detailed household information on the extracts of the Susenas tapes made ayailable to the author made comparison of equivalent households impossible. The results below are just a comparison of household consumption in the transmigrant areas with those in rural Java. It would be possible to select a subdistrict in rural Java for further comparisons, but the results on food consumption, in particular, strongly suggest the transmigrants are much better off than their compatriots in rural Java. The quantity comparisons indicate per capita consumption levels so much higher that one is left with doubts about the quality and cleanlieness of the data. The results are given in Tables 28 and 29 and discussed in the adjacent pages.

This represents a preliminary report, there is clearly a need for a great deal of further work, in collaboration with an Indonesian specialist, if one is to be able to extract a more positive story on the income determination side.

USER GUIDE TO 1984 TRANSMIGRATION DATA

FILENAME: TRANSDAT

LOCATION: Bocked up on TSR tape 600142
FORMAT: Free formot variable length integer records (locked)

RECORD DESCRIPTION:

There are 13 record types identified by the first digits. Types 1, 12 and 13 relate to the original type 01 records in the raw transmigration data tapes.

Record Type 1 Location and Basic Information

```
Item 1 record type
    2 Repelita (2 or 3)
    3. type of settlement (for Rep 21=dry land, 2=estate, 3=tidal)
        but ( for Rep 3, 1=small dry, 2=large dry, 3=estate, 4=tidal)
    4 Province-district-subdistrict; }6\mathrm{ digit record
    5 sample number
    6 family number.
    7 number of fomily members
```


Record Type 12
 Family member information

Item 1 record type (12)
2 number of family member
3 relation to head (1=head, 2=wife, husband, $3=$ child, 4=nephew,niece, 5=grandchild, 6=grandparent, 7=relative, $6=8 e r v a n t, 9=0$ ther)
$4 \operatorname{sex}$ (1=male, 2=female)
5 age
6 education $1=$ no 8 chool, $2=$ not compl. primary, $3=$ primary, 4=not compl high 8chool, 5=high school, 6=college, $7=$ university)

Household Activities

Item 1	record type (13)
2	year of arrival
3	province of origin
4	Kobupaten of origin
5	type of transmigrant (1=sponsored, 2= spontaneous, $3=$ military, 4= local)
6	income source food crops labourer
7	self empl
8	total
9	estate labourer
10	self employed
11	total
12	livestock labourer
- 13	self employed
14	total
15	other agric labourer
16	self employed
17	total
18	indust/crafts labourer
19	self employed
20	total
21	trade-hotels labourer
22	self employed
23	total
24	other(const-transport)
	labourer
25	self employed
26	total
27	received income
28	main source of income (3 digits)
29	comparison of current income to income two years ago ($1=$ more, 2=less, $3=$ same, 4=0ther)

Record Type 2

Item 1

Land Information
wetland (hectare - 3digits
0.00)
dryland
total
wetland
dryland
total
wetland
dryland
total
wetland dryland
total
wetland
dryland
total
wetland
dryland
total
wetland
dryland
total
wetlond
dryland
total
wetland dryland
total
wetland
dryland
total

4

Record Type 3 Land Use

Item 1	Record type (3)
2	Irrig sowah (0,00 ho)
3	tidal
4	bunded
5	other (eg swamp)
6	dry fields
7	fish ponds
8	smallhold tree crops
9	other
10	sub-total

Non-agricultural land
11 business yord
12 unused sawor
13 dryfields
14 other
15 . subtotal
16 total
17 more or less land cultivated than two years ago ($1=$ more, 2=less, 3=same, 4=other)
16 If less, why? (1=doesn't pay, 2=no time, 3=not enough labour, 4=other)

Record Type 4

Yields, Expenses and Income from Food Crops
Item 1 record type(4)
2 type of crop
3 harvested areo
4 production
5
6 7 8 9 10
11
12
13
14
15
16
manure
labour payment
taxes
other expenses
payment in kind
value
kilos
value
27
subtotal
income
28
29
30
kilos
value
place sold ($1=$ market, $2=$ tengkulak, $3=c 0-0 p, 4=0$ ther)

Record Type 5

Yield, Expenses and Income from Estate Crops

- Item 1	record type(5)		
2	type of crop		
3	harvested areo		
4	production		kilos
5			value
6	seed	prod sendiri	kilos
7			value
8		pembelion	kilos
9			value
10		pembagian	kilos
11			value
12	fertilizer	pembelian	kilos
13	. .		value
14		pembagion	kilos
15			value
16	pesticide	pembelian	kilos
17	.		value
18		pembagion	kilos
19			value
20	manure		volue
21	labour payment		value
22	taxes		value
23	other expenses		value
24	payment in kind		kilos
25			volue
26	subtotal		
27	income		
28	amount sold		kilos
29			value
30	place sold (1)=mer	arket, 2=teng	lok, 3=c

Income from Other Activities

```
Item 1 record type(6)
    2 source(11=cottle,12=poultry, 13=oth livestock, 14=other,
        milk eggs, 19=sub-total, 20=fish, 30=forestry labour,
        41=industry/handcrafts,42=trade, 43=0ther construction)
        production(value)
    4 soles(value)
    5 consumed or given away
    sub total
    cost of production
    8 income
```

Record Type 7 Other Income last Manth
Item 1 record type
2 wages received by hh members
3 pensions
4 rent \& share cropping
5 other agricultural income
6 other non-agricultural income
7 other income
8 total
9 money received
10 inheritance
11 gifts
12 total in
13 money sent
14 gifts given
15 total out

Record Type 8

Other Financial Items last Month

Item 1	record type (8)
2	Incoming

3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
sole of valuables
sale of non-portable assets
sole of possessions
savings withdrawls
insurance
repayment of loans
pawning
lottery
other
total incoming
Outgoing
purchase of valuables
purchase of non-portable goods
ossurance premitums
sovings
paying off loans
recovery from powning
lottery payments
other outgoings
total outgoings

Record Type 9

Assistance from Government

Item 1 record type (9)

2 agricultural input 3
4
5
6
7
6 agricultural implements
9
10
11
12
13
14
15
16
17
18
19
20
21
22
cottle
other assistance
Receiving subsistence support ($Y=1, N=2$)
If yes, since when (4 digits)
Value of subsistenc payments
Value of total assistance in last year Income
incoming transfer payments outgoing transfer payments other funds coming in
other funds going out
government support
total income
cost value cost value cost
value
value
cost
value
volue
food crops
estate crops
livestock
other ag.
non-ag
other inc

Record Type 11 Family Welfare

12

possessions (cont.)

27
28
29
30
31
32
33
34
35
36
37
38

40
41
42
43
44
45
46
47
48
49
rodio, recorder
T.V.
cort
bicycle
motor bike
boat
gold(gram)
cattle(number)
did you own land before moving ($1=Y, 2=N$)
how much land do you still own in your area of origin (00,00ha)
still own land in area of origin ($1=Y, 2=N$)
if 80 , how much (4 digits)
when in area of origin did you own a house (Y/N)
if yes, area (sq metres)
do you still have a house in areo of origin (Y/N)
before
ofter
before
ofter
before
ofter
before
after
before
ofter
before
ofter
before
ofter
before
ofter

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& cort suis \& food crops \& istate chof \& ivestuck \& other agric \& , \& other \\
\hline \& \& 16006.96 \& \({ }^{13659} 369\) \& \& \& 7827:068 \& 588885959 \\
\hline Cicte ac \& \(\cdots\), 39 \& 163.46 .75 \& 3000.:37 \& 5756.92 \& 5087:27 \& 37578.77 \& 39040.03 3740.18 \\
\hline \& 32136.26 \& \& 1389:9\% \& \& 988:80 \& 139363:38 \& 398935:98 \\
\hline 5si \({ }^{\text {che }}\) \& 3c120:66 \& 565.36 \& 387 \& 223.18 \& \& \& \\
\hline \[
19
\] \& -7.37 \& 18890.54
2564.18 \& 50.80 \& 6536:26 \& 27.37 \& \$5667:97 \& \({ }_{14636936}\) \\
\hline \({ }_{\text {RS }}{ }^{0}\) \& \({ }^{36} 909\) \& 2432980 : \({ }^{\text {\% }}\) \& 19793: 59 \& 8118\%:75 \& 2:83 \& 96074: 58 \& 2 26959595 \\
\hline \& 51:90 \& \& 3:00 \& 3800:cis \& 29001:097 \& \({ }_{\text {25 }}^{522} 52.40\) \& 71563.00 \({ }^{2688}\) \\
\hline \& 25\%:81 \& \& 79990:64 \& 989:06 \& 425:87 \& \& 2¢7569:98 \\
\hline Sticter \& 299:30 \& 12219:92\% \& 158190.30 \& 465\% 3 \% 32 \& 12923:2\% \& \({ }_{2}^{25580} 162463\) \& 37177.25 \\
\hline \& 170:98 \& 96850:76 \& 38012:88 \& 2987:25 \& \& 2\} \(6698: 88\) \& \(31181730{ }^{3}\) \\
\hline \& ¢:30 \& 14525 910.078 \& 3.00 \& \({ }^{6227} 906.64\) \& \({ }^{196} 3.88\) \& 38291.50
\(1619: 05\)
2959 \& \({ }^{8598} 750.25\) \\
\hline ER \& \({ }_{6}^{6}: 6.6\) \& \& 2f5\%:75 \& \(2687808 \%\) \& 126:88 \({ }^{81}\) \& \({ }^{2} 17953.35\) \& 36122.31
\(2016: 96\)
24093 \\
\hline \& 6575.50 \& \& \({ }^{2}: 288\) \& 31787:98 \& 372:45 \& \({ }^{116463: 597}\) \& \({ }^{262038.57}\) \\
\hline SAMP STH \& 6249:6\% \& \& 1:87 \& \({ }^{25} 5119\) \& 1 \(335: 8 \%\) \& 42885:38 \& \\
\hline sanples sp \& \({ }^{36311} 6627.2{ }^{2}\) \& 95296:92 \& 2568.36 \& 5 58.95 \& 80:51 \& 173893:31 \& \({ }^{48015} 412.25\) \\
\hline \& 8158:36 \& \({ }^{12503} 123768\) \& \(\frac{88}{582}\) \& 1268:00 \& \(\begin{array}{r}2505 \\ 785 \\ \hline 8.85\end{array}\) \& 15st3:00 \& 32078:32 \\
\hline \& 17s:0¢ \& 1 c \& 631848.708 \& 40984.95 \& 31:43 \& 21890:48 \& 295627:25 \\
\hline \& \& 17825 \& ':4\% \& \%055:10 \& 6650802 \& 9260:88 \& \({ }^{18671729} 8\) \\
\hline \& 780 \& 8799:68 \& 2:9? \& 75:88 \& ¢ 2173 : 98 \& 26067:48 \& 48542.59
66650 \\
\hline \& 191.68 \& \({ }^{4986.787}\) \& 1:97 \& 1671:71 \& \& \& \({ }^{13019} 20978\) \\
\hline \begin{tabular}{l}
SATPLE \(=140\) \\
thtiks
\end{tabular} \& 3¢9999:3\% \& :1127.36 \& 590:78 \& 22255 : 36 \& 1299:96 \& 1369\%:86 \& \(\left.{ }^{1} 13166: 8\right\}\) \\
\hline SSM sitemer ins \& 60:83 2.26 \& \& 206.20 \& 3212.96
610 \& \({ }^{383} 78.808\) \& \({ }^{28846} 1765\) \& \\
\hline \& 77:508 \& 1426.36 \({ }^{3}\) \& \& 3659.55 \& \({ }^{29953} 358\) \& 13333:88 \& 27869.25 \\
\hline \[
20
\] \& \({ }^{105}\) \& 7807785
677 \& \({ }^{2} \cdot 8.05\) \& 24.88: 180 \& \({ }^{88}\) 8:75 \& \& 1292.75 \\
\hline stidekions \& 200:88 \& 19\%96:15 \& \({ }^{1}: 89\) \& \& 3影:88 \& 22 \(2968: 98\) \& \\
\hline SAMPE \& 23:25 \& \({ }_{4}^{22547} 6\) \& \$80.7.96 \& \({ }^{1068989595}\) \& 8000:00 \& 8615350.75 \& 488888.785 \\
\hline SAMPEES 6 STh therops \& 92?:3\% \& 36888: 9 ¢ \& \& 95311:95 \& 189:36 \& \({ }^{11380} 28.85\) \& \\
\hline \& 80.50 \& 965597:00 \& \({ }^{16231595}\) \& 21541:35 \& 1695:9? \({ }^{\text {62 }}\) \& 78787.90 \& 40528.75 \\
\hline \& 13:99 \& 20036:85 \& 79565:38 \& 2099\%3 3 \% \& 41786 \& 11959:38 \& 33688:98 \\
\hline sIf froors \& 2e:p:\% \% \& 19.412 .97

1067
1967 \& $8880: 11^{5}$ \& \& \& ${ }^{16754} 2958.81$ \& 32967.588
2306.32

\hline Sirpter ${ }^{\text {Ste }}$ \& 59.3\% \& \& ¢05\% ${ }^{\text {\% \% }}$ \& ${ }^{510} 783.68$ \& \& ${ }^{275451.508}$ \& 293859:88

\hline \& 69:38 \& \& 38: 39 \& 2¢ 28.79 \& 308: 36 \& ${ }^{2} 5959.9$ \& 2¢5¢57: 93

\hline
\end{tabular}

Iable BI continued

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline weot coss \& teais t : \& thans out \& ano incone \& other out \& covt oric \& total \\
\hline atice \& 14.505 .58 \& \(1420 \cdot 6\) \& 17972.05 \& \& 行 \& 17 \\
\hline \& 50:5:52 \& 169.5 \& 3972.92 \& 2004.36 \& 1022.06 \& \\
\hline 6 \& 80470:30 \& 37125:28 \& 2068.75 \& 20979:37 \& \({ }_{4}^{9} 9213.78\) \& 78011:25 338 \\
\hline \& 2065 205 \& 2568:275 \& \({ }^{16390} 278009\) \& 2859:79 \& \({ }^{11880} 96.87^{7}\) \& 5¢658:89 \\
\hline \& 30.05 \& S313:16 \& 113:37 \& 7770: 718 \& 28995.58 \& 67530.53
2186.14 \\
\hline \[
\begin{gathered}
\text { ors } \\
\text { on }
\end{gathered}
\] \& 5929:80 \& \(\begin{array}{r}19855.00 \\ \hline 958.98\end{array}\) \& 15925:59 \& 199753:90 \& \({ }^{110} 0.71\) \& \\
\hline \& 13968:89 \& 1933:39 \& \& 3123: 59 \& 3333:88 \& 99853.88 \\
\hline \& \({ }^{1511515: 37}\) \& \({ }^{4} 8398.78\) \& 28022:86:40 \& \({ }^{11} 3695: 63\) \& 385:97 \& 517711:20 \\
\hline \[
\begin{aligned}
\& \text { Sosple } \\
\& \text { Sit } \\
\& \text { STO }
\end{aligned}
\] \& 13709\%7\% \& 8331:28 \& \(20000: 885\) \& \({ }^{2} 718808886\) \& 8159:42 \& 62700 5488.53 \\
\hline \& 126 3858.88 \& \& 260850:77 \& 225968:30 \& 3256:90 \& \({ }^{86030} 535018\) \\
\hline \& ¢0610:97 \& \({ }^{23} 2220: 50\) \& 5675980 \& \& \({ }^{1869: 37}\) \& 3516:85 36 \\
\hline SAYPLEE 209 Ste ins \& 7901:93 \& 34659737 \& 71818:39 \& 6696:76 \& 20886.83 \& 5¢106.08 \\
\hline \& 67999.59 \& 5090:48 \& 89092: 69 \& 38990:30 \& \begin{tabular}{l}
823.45 \\
126.37 \\
\hline 188.
\end{tabular} \& \({ }^{462} 90.07\) \\
\hline \& 10878.26

2959 \& 13904:07 \& 12092.92
806.92 \& 17978:26 \& 2325017 \& 35976\% 175.65

\hline \& ${ }^{1641784: 80}$ \& 70196.883 \& 21068.61 \& 88515:88 \& 46212.73 \& 92189:85

\hline \& 8320:31 \& 1670:30 \& 28838.238 \& ${ }^{89999.53}$ \& 34997:03 \& \$55885:98

\hline \& ${ }^{138893} 69: 93$ \& 2¢ 26 :9\% \& 95963:88 \& 27\%22:4\% \& 185:59 \& 768588:82

\hline \& \& 1570:93 \& 26637:30 \& \$85.39 \& 11995 \& 5125880.05

\hline $$
20
$$ \& 596.:90 \& ²:88 \& 4550:88 \& 5:88 \& 042:88 \& 71382.68888

\hline \& 15623 5is \& 1950.37
3892 \& ${ }^{10216: 789}$ \& 23990: 542 \& ${ }^{2} 27275.313$ \& 36717:11

\hline \& 1989\%:80 \& 3571:989 \& 12378:8929 \& 3629.03 \& 79538 \& ${ }_{3}^{9}$

\hline \& 1¢¢¢: ${ }^{\text {¢ }}$ \& 2¢61:36 \& \{it $3: 17$ \& 24ie: 2\% $^{\text {a }}$ \& ${ }^{6} 199$:3? \& 2985:088

\hline \& 35750:80 \& 2680.00
343
40 \& ${ }^{12438} 773830$ \& ${ }_{2}^{53085} 28.85$ \& 6883.65
29722 \& 59851:30

\hline 20 \& 3890:90 \& 400:80 \& $811: 37$ \& $811: 37$ \& ${ }^{5515} 8.75$ \& 313979.75

\hline $$
\begin{gathered}
20 \\
\text { ORS }
\end{gathered}
$$ \& 21616:60 \& 2819, 817 \& \& 5607:590 \& ${ }^{4} 863.485$ \& 457532:48

\hline \& 98:50 \& 52.75 \& 2376181:07 \& \$1590:75 \& 137.25
56.85 \& ${ }^{111602033535}$

\hline \& \{56\}:17 \& \{ 986$\}$: 59 \& ${ }^{5648} 8.36$ \& \& ${ }^{5} 918.59$ \& 93356: 3 \%

\hline \& ¢2¢ $2 ¢ 5.50$ \& 23>70.40 \& 3565:35 \& \{271:32 ${ }^{2}$ \& 22778 \& $161321: 40$
$43678: 80$

\hline \& 15888:35 \& 2720¢:68 \& 10778: 298 \& ¢88:90 \& 295:85 \& 7568\%9:3

\hline | SAPREXES 100 |
| :--- |
| | \& 17173:39 \& \& ${ }^{125} 3545: 67$ \& \& 33:57 \& - ${ }^{1 / 5198}$

\hline \& 1343:17 \& 1798:12 \& \& 2¢03:9\% \& ${ }^{2} 788^{89} 9$ \& 87796: 94.0

\hline \& ¢¢¢58: 50 \& 2196:00 \& 16312.32 \& 177839:\% \& 1:467:97 \& -9310:60

\hline
\end{tabular}

Table B2

	AG	tree	Stock	FISH	NON AG	other
FREQUENCIES	15	0	0	1	0	4
FREQUENCIES	23	0	0	7	0	10
freguencies	156	2	2	0	4	15
FREQUENCIES	19	0	0	0	0	0
FREQUENCIES	18	1	1	0	0	0
FREEQUENCIES	0			0	0	19
FREGUENCIES	78	1	0	0	0	1
FRERUENCIES	56	1	0	0	0	3
frequencies	23	16	0	0	0	1
FREQUENCIES	39	\bigcirc	1	0	0	0
FREQUENCIES	184	1	0	0	2	14
		0				
FREQUENCIES	201	0	0	0	0	20
FREQUENCIES	118	2	0	0	0	0
FREQUENCIES	51	2	0	0	0	6
frequencies	97	1	2	0	0	0
FREQUENCIES	35	0	0	0	1	4
	38	0	0	0	1	1
623203						
FREOUENCIES	19	0	0	1	0	0
FREQUENCIES	107	0	1	11	1	0
fREQUENCIES	137	0	0	0	0	3
FREQUENCIES	135	3	0	2	6	30
030211						
FREQUENCIES	19	0	0	0	0	1
FREQUENCIES	20	0	0	0	0	0
FREQUENCIES	18	0	0	0	1	1
FREOUENCIES	13	1	0	1	0	5
FREQUENCIES	28	0	0	0	2	10
GREQUENCIES	19	0	0	0	0	1
th7101						
FRE ZUFNCIES	9	7	0	1	1	1
FREOUENCIES	73	4	1	3	3	10
FREOUFNCITS	80	1	3	5	16	14
FRȨUENCIFS	24	1	0	¢	1	4

Table B5

Table B8

RESPONSE TO ARE YOU STILL RECEIVING SUBSISTENCE SUPPORT - BY VILLAGE

Table B9

Table B10

	better	WORSE	AS GOOD	AS EAD
14310? fREQUENCIES	7	8	5	0
140104 FREQUENCIES	5	29	6	0
140108				
${ }_{14}{ }^{\text {FREQUESESCIES }}$	51	84	35	10
FRERUENCIES	0	17	2	0
frequencies	1	19	0	0
140404			0	0
FREQUENCIES	1	19	O	
FREQUENCIES	30	36	14	0
FREQUENCIES	8	51	1	0
160171 CRCIES	25	10	5	0
16020 NCIES	4	35	1	0
160204 NCIES		153	4	10
FREQUENCIES	34	153		
FREQUENCIES	14	220	5	2
160212 CREIES	25	86	9	0
160374	2	24	25	8
165605 CIES				
FREQUENCIES	8	90	2	1
160607 FREQUENCIES	10	7	23	0
620102 CIES	0	39	1	0
C20203	4	14	2	0
623401 N				3
FREGUENCIES	23	80	14	3
FREQUENCIES	¢	76	48	8
FREQUENCIES	28	119	22	9
6RO211 FREQUENCIES	2	18	0	0
CRO403	1	19	0	0
630408 \%		19	\checkmark	c
FREQUENCIFS	1	19		
FREQUENCIES	11	c	と	0
FREQUENCIES	10	17	7	0
CREQUENCIES	4	4	11	1
	10	\checkmark	2	\bigcirc
72-314	21	79	0	0
FRERUENCIES	21		13	3
FRERUENCIES	15	عと	15	3
frequencifs	1	30	C	?

$14 J 102$	ЗETTER	WORSE	AS GOOD	AS	GAD
FREQUENCIES 145104	4	3	13		0
FREQUENCIES	21	1	18		0
FREQUENCIES	64	23	92		1
140202					
$\begin{aligned} & \text { FREQUENCIES } \\ & -140205 \end{aligned}$	1	4	14		0
FREQUENCIES	5	0	15		0
FREQUENCIES	8	2	10		0
FREQUENCIES	31	6	43		0
165110	31	6	43		0
FREQUENCIES	27	8	25		0
16.J171 FREQUENCIES	26	3	10		0
16020 N	26	3	10		0
FREQUENCIES	15	4	21		0
163204 FREQUENCIES	66	58	76		1
160205		5	76		1
FREQUENCIES	58	32	149		2
FREQUENCIES	83	7	30		0
160374					
FREQUFNCIES	11	6	42		0
FREQUENCIES	36.	8	57		0
160607					
FREQUENCIES	21	0	19		0
FREQUENCIES	6	4	30		0
FREQUENCIES	3	0	17		0
62.301					
FREQUENCIES	70	10	40		0
FREQUENCIES	37	9	90		4
FREQUENCIES	70	1ε	90		0
FREQUENCIES	δ	1	11		0
$63 J 403$					
FREQUENCIES	11	3	c		0
630408	11	1	8		
643904 CIES	11	1	ε		0
FREQUFNCIES	7	1	10		1
FREQUENCIES	20	2	17		1
C4J215					
FRCRUENCIES	ε	1	11		0
FREQUENCIES	16	0	4		C
72Jマ14					
FREGUENCIES	67	9	24		0
FREOUENCIES	52	1 1	54		C
74)?14					
FREQJENCIES	20	6	14		0

Table B17

WHAT HAVE YOU	done to	IMPROVE EXPAND	EOTH	NEITH
143102	1	ε	4	7
140104	1	14	4	21
FREGUENCIES 140108				
FREQUENCIES	53	30	21	76
FREQUENCIES	12	1	0	6
140205 ${ }^{\text {FREGENCIES }}$	11	0	2	7
140404 NCIES	7	6	1	6
165109				
FREQUENCIES	10	9	24	37
frequencies	0	19	11	30
fREQUENCIES	7	27	0	6
FREQUENCIES	17	2	1	20
160204 CREIES	42	32	41	36
160205			15	95
FREQUENCIES	41	90		
FREQUENCIES	35	39	5	41
	16	8	3	32
160605 CIES	19	12	5	65
. 160607.				
FREQUENCIES 620102	. 11	9	14	6
FREGUENCIES	1	1	1	37
FREQUENCIES	1	0	0	19
FREQUENCIES	1	1	11	107
020413				118
FREQUENCIES	13	7	2	118
fREQUENCIES	43	39	40	50
FREQUENCIES	0	1	12	7
FREQUENCIES	3	0	3	14
fREQUENCIES	3	3	7	7
FREQUENCIES	1	2	7	9
-40109				
FREQUENCIFS	2	6	3	29
FREQUENCIES	0	5	0	14
FREQUENCIES	0	7	9	4
725314			14	53
FREOUENCIES	21	15		53
FREQUE:NCIES	34	20	34	31
frequencies	5	4	14	17

	yes	No
FREQUENCIES	15	5
143104 CIES		
FREQUENCIES	16	24
FREQUENCIES	88	92
FREQUENCIES	17	2
frequencies	10	10
FREQUENCIES	14	6
$16010{ }^{\circ}$		
FREQUENCIES	29	51
FREQUENCIES	23	37
FREQUENCIES	18	22
160203 I		
FREQUENCIES 165204	1	39
FREQUENCIES	108	93
frequencies	85	156
$16021 ?$		
FREQUENCIES	26	94
frequencies	20	39
FREQUENCIES	54	47
16 des		
FREQUENCIES	18	22
FREQUENCIES	15	25
FREGUENCIES	5	15
FREQUENCIES	55	65
FREQUENCIES	38	102
freaurincies	76	102
FRESUENCIES	9	11
C? 3403		
FREQUFNCIES	13	7
FRERUENCIFS	10	10
FREGUENCIES	11	9

	IRR SAW	TIDAL	Bunde	Swarp	ORY fLO	CISN PD	treg	jtmer
1431C2 20								
MEANS	8	8	59	¢	55	8	$\frac{4}{2}$	9
143104								
SAMPLEE 40	0	0	0	0	100	0	0	3
1 SJPOGRERS 0								
SAMPLEE 18C MEÃS STD FRRORS	0	0 0	30	4	62	${ }_{0}^{C}$	1	0
SAMPLEE MEANS STDERRORS	0	0	${ }^{9} 9$	8	82	8	18	8
$\text { SAMPLEES } 20$ STOERRORS	8	17	59	8	88	8	18	8
149606 chens								
MEANS STD ERRORS	0	8	0	8	21	1	8	8
16 10ntors								
SAYPLEE EO	8	8	5	8	94	1	46	8
SAYPLE = 6C MEANS SIP ERRORS	0	0	?	0	138	8	15	0
MEANS STD ERRORS	8	8	8	8	172	8	88	8
$\begin{array}{ccccccl}\text { STOERRORS } & 0 & 0 & 0 & 0 & 12 & 0\end{array}$								
	8	8	8	8	10%	8	8	8
163206								
SAMPLF= 201	8	8	1	8	17%	\%	,	8
					5	1	1	
SAMPLE= 241 MEAMS	0	0	8	8	108	8	8	8
STD ERRORS	0	0	0					
$\begin{array}{ll} 163272 & 120 \\ \text { SAMPLEE } \end{array}$ MEANS	8	89	20	8	19	8	8	8
STİ374RRORS								
SAMPLE 59	0	¢	0	0	98	8	16	?
STo ERRORS ${ }^{\text {S }}$								
SAMPLEE 1C1	8	68	20	8	21	8	8	8
SAMPLFES 40	0	170	0	8	3	0 0	18	0
STSOERRORS ${ }_{\text {STO }}$	0	6	0					
$\begin{aligned} & 623102 \\ & \text { SAYPLE } \quad 40 \\ & \text { MEAHS } \end{aligned}$	0	ε	9	8	70	2	8	8
SAMPLEE $=20$	8	0	28	8	64	3	33	8
$\begin{aligned} & \text { STD ERPCRS } \\ & 02 J 601 \end{aligned}$								
$\text { SAYFLE }=120$	$?$	143	6	8	13	8	8	8
	2	5	2	8	\%	0	$\text { c } 23413$	
		80	c4	0	17	8	0	8
SAMPLE = 178 MCANS	8	8	12	δ	97	8	${ }_{6}^{6}$	$\}$
SAMPLEE 20	0	0	0	0	97	8	8	26
SAMPLE = 2C MEANS	8	17%	8	8	16	8	1	8
C3 540 ER								
SAMPLE 20 MEANS	8	191	8	8	18	8	0	8
SAMPLE 20 MEANS	8	62	9	8	45	8	12	8
SAMPLE 40 MEANS	17	2	70	0	83	0	10	0
OLJOEERRORS	6							
SAMPLEE 20								
STOEANS	8	8	98	8	17	8	11	8
6471090								
MEANS	8	8	2	8	98	8	30	8
$735\}_{1}$ SAMPLEE 100								
SAMPLE 100 MEANS STO ERROOS	8	8	21	8	66	8	\}	8
743307 \%								
SAMPLEEES 119	6	0		6		0	4	
7\{Jfitarors	1	0	3	2	4	0	1	0
SAMPLE 40 MEANS STO ERRORS	59	${ }_{0}$	21	8	39	8	1	8

Table B24

Reiationship between Subdistricts and Settlements
Each line below gives the subdistrict followed by settlement and number of househoids in that settlement (in poirs).

720314, 21-20, 22-20, 23-20, 24-20, 25-20 Malonas
740307, $127-1,128-20,129-20,130-20,131-20,132-19,133-19$ Lahumbuti
740314, 134-20, 135-20 Lanumbuti (?)

