Run On The Reservoir: Evidence on Administrative Competition for Groundwater in India

UCSD-World Bank Workshop on Climate Adaptation

Shweta Bhogale ¹ and Shamil Khedgikar ²

¹JPAL (MIT)/ UCSD

²Independent Researcher

March 8th, 2024

Introduction

Groundwater aquifers are predicted to run dry by the 2050s in parts of the United States, southern Europe, and India (de Graaf et al., 2019)

Depletion Levels

India's groundwater crisis threatens food security for hundreds of millions, study says

By Jessie Young, Swati Gupta and Drew Kann, CNI O Updated 10:01 PM ET. Wed February 24, 2021

Research Question

Administrative borders impose spillovers on common-pool resources

(Mobarak and Lipscomb (2016), Sigman (2002, 2005); Hatfield and Kosec (2013), Helland and Whitford (2003); Balboni, et al. (2020), Naylor et al. (2019), Burgess et al. (2012); Leonard and Parker (2021); Sears et al (2021), Ayres, Meng, and Plantiga (2019))

Long-standing work has differed on the role of government in managing common resources

(Importance of government regulation (Hardin, 1968), Support community-regulation (Ostrom, 1990), Adapt to scarcity (Demsetz, 1967))

How do governments respond to the Tragedy of the Commons?

Research Question

Administrative borders impose spillovers on common-pool resources

(Mobarak and Lipscomb (2016), Sigman (2002, 2005); Hatfield and Kosec (2013), Helland and Whitford (2003); Balboni, et al. (2020), Naylor et al. (2019), Burgess et al. (2012); Leonard and Parker (2021); Sears et al (2021), Ayres, Meng, and Plantiga (2019))

Long-standing work has differed on the role of government in managing common resources

(Importance of government regulation (Hardin, 1968), Support community-regulation (Ostrom, 1990), Adapt to scarcity (Demsetz, 1967))

How do governments respond to the Tragedy of the Commons?

- do decentralized local administrations ameliorate the problem? (Oates and Schwab 1988)
- do decentralized local administrations exacerbate the problem? (Oates 1999)

Research Question

Administrative borders impose spillovers on common-pool resources

(Mobarak and Lipscomb (2016), Sigman (2002, 2005); Hatfield and Kosec (2013), Helland and Whitford (2003); Balboni, et al. (2020), Naylor et al. (2019), Burgess et al. (2012); Leonard and Parker (2021); Sears et al (2021), Ayres, Meng, and Plantiga (2019))

Long-standing work has differed on the role of government in managing common resources

(Importance of government regulation (Hardin, 1968), Support community-regulation (Ostrom, 1990), Adapt to scarcity (Demsetz, 1967))

How do governments respond to the Tragedy of the Commons?

 do decentralized local administrations ameliorate the problem? (Oates and Schwab 1988)

• ×

- do decentralized local administrations exacerbate the problem? (Oates 1999)
 - \checkmark : when externalities and competition are high

Empirical Roadmap

When districts in India compete for groundwater:

1. ... How does it affect the groundwater resource?

- Agricultural decisions: Reliance on irrigation sources, Investments in water extraction, Agricultural decisions like cropping areas
- Long-term Resource Health: Well water levels

Empirical Roadmap

When districts in India compete for groundwater:

$1. \ ... \ How does it affect the groundwater resource?$

- Agricultural decisions: Reliance on irrigation sources, Investments in water extraction, Agricultural decisions like cropping areas
- Long-term Resource Health: Well water levels

2. ... What role do administrations play?

- District's Budgetary Allocations: Rural credit, Farm mechanization
- Adaptation at the Village-level: Collective action in a public-infrastructure program

Empirical Roadmap

When districts in India compete for groundwater:

$1. \ ... \ How does it affect the groundwater resource?$

- Agricultural decisions: Reliance on irrigation sources, Investments in water extraction, Agricultural decisions like cropping areas
- Long-term Resource Health: Well water levels

2. ... What role do administrations play?

- District's Budgetary Allocations: Rural credit, Farm mechanization
- Adaptation at the Village-level: Collective action in a public-infrastructure program
- \rightarrow Empirical Methodology: Difference-in-differences using variation in the competition for groundwater and physical characteristics of aquifers.
 - Geological features that facilitate externalities

Role of Districts in Agriculture

- 1. Green Revolution-era: Agricultural cropping and irrigation largely planned; subsidies implemented through districts
- 2. Agricultural credit channelled through districts by India's central bank
 - Including: crop-specific credit, credit for tubewells/borewells
- Districts undertake distribution of seed varieties, agricultural extension services, investments in infrastructure to support cropping and irrigation

Districts influence farmer's decisions on water-use through policy levers

Table of Contents

Set-Up

Definitions Empirical Methodology Framework

Results and Robustness

Discussion

Natural Resource Boundary

Sub-basins: A network of streams and aquifers that are separated by continuous ridgelines which restrict the flow of water.

Figure: Sub-basin Illustration

Aquifers within a sub-basin are more connected than across by virtue of the geography.

Measuring Competition

Districts share a *sub-basin* equitably $\implies \uparrow$ competition for groundwater

 Inverse Herfindahl-Hirschman or Fractionalization index (I-HHI)_s: 1 − ∑_{i∈s} s²_i, where s_i is the share of overlap of districts i on the sub-basin s

Natural Resource Type

Permeability of the water bearing layer determines the ease with which water flows underground

Figure: Permeable Aquifer system versus Non-Permeable Aquifer System

When districts share a sub-basin, **permeability intensifies externalities** $\implies \uparrow$ competition for groundwater

Empirics: Framework

Setting: Cross-sectional variation in how districts share a resource \rightarrow variation in permeability is key for identification.

• Less competition, no permeability \sim Social Planner

• More competition, permeability \implies Competitive Administrations

Empirics: Framework

Setting: Cross-sectional variation in how districts share a resource

- \rightarrow variation in permeability is key for identification.
- Less competition, no permeability \sim Social Planner
- More competition, no permeability \implies Not competitive
- Less competition, permeability \implies Not competitive
- More competition, permeability \implies Competitive Administrations

⇒ Difference-in-Differences: Competition X Permeability

Empirics: Difference-in-Difference

$$y_{dbst} = \alpha + \beta_1 Comp_b + \beta_2 Perm_{db} + \underbrace{\beta_3 Comp_b * Perm_{db}}_{+} + \underbrace{\beta_3 Comp_b * P$$

Administrative Competition

(1)

 $\mu_1 \mathbb{X}_d + \mu_2 \mathbb{X}_{dt} + \delta_{db} + \delta_{db} * \textit{Perm}_{db} + \gamma_{st} + \epsilon_{dbst}$

where, d = district, b = sub-basin, s = state, t = year

- Comps: Inverse Herfindahl-Hirschman index (I-HHI) or Fractionalization
- Perm_{db}: dummy variable if district ∩ sub-basin is permeable
- Comp_b * Perm_{db}: Coefficient (β₃) of interest
- X_d: 1961 log population, fraction rural, fraction literate, caste composition, fraction agricultural, log mean elevation, log distance to coast, predicted dam upstream, dummies for predominant soil type
- X_{dt}: monthly rainfall, monthly temperature
- δ_{db} : Sub-basin area quintile \times district area quintile FE; γ_{st} : State \times Year FE

Weights: share of overlap between district and sub-basin, Clustering: Two-way, by district and sub-basin

Competition for Groundwater

Figure: Heat map of Competition and Distribution of Permeability in Districts

Competition for Groundwater

Figure: Spatial Variation in Competition \times Permeability

Note: This is a heat map of the Frisch-Waugh-Lovell Residuals.

Table of Contents

Set-Up

Definitions Empirical Methodology Framework

Results and Robustness

Discussion

How does administrative competition affect resource use?

How does administrative competition affect resource use?

Outcomes Data Source: ICRISAT-TCI Panel

Results I

Competition for groundwater leads to the Tragedy of the Commons.

- 1. \uparrow extractive agricultural practices \rightarrow irrigation and cropping patterns
- 2. \downarrow long term health of the resource \rightarrow well water-levels, defunct wells

What role does the administration play in influencing farmer's decisions as well as community decisions?

Results II

Administrations largely exacerbate negative externalities

1. \uparrow budgetary allocations escalate extractive practices \rightarrow rural credit, farm infrastructure expenditures

2. \downarrow in adaptation investments towards restoring groundwater \rightarrow take-up of groundwater rehabilitation projects under NREGA

Robustness

- 1. Pre-green Revolution Outcomes and Demographics Balance
- 2. Environmental Descriptives Balance
- 3. Interaction coefficient is significant 7-11% of the times under the zero null where permeability is spuriously allocated Graph
 - Randomization inference adjusted t-stats
- 4. Results hold after dropping original Green Revolution Districts
- 5. Alternate specifications: District splits specification

Table of Contents

Set-Up

Definitions Empirical Methodology Framework

Results and Robustness

Discussion

Discussion

Government's fail to price out externalities through Pigouvian taxation or Coasian bargaining \implies worsening scarcity, inhibiting adaptation

- 1. **Spillovers from surface water**: Effects persist even in areas without historic/contemporary canal access
- 2. **High transaction costs**: No inter-district communication or negotiation based on qualitative survey of 20 officers across the country
- 3. Lack of monitoring from States, Politics: State governments cannot effectively monitor in the presence of contradictory policies that empower decentralized actors to extract water; Misaligned political incentives such that close elections ⇒ more extraction (Mahadevan and Shenoy, 2022; Sekhri and Nagavarapu, 2022; Tarquininio, 2022)
- Bureaucratic Turnover: Average term of "District Collector" is 1.5-2 years ⇒ Short time horizons

Table of Contents

Set-Up

Definitions Empirical Methodology Framework

Results and Robustness

Discussion

- 1. Human X Natural factors affect the depletion and movement of groundwater \rightarrow our variation combines both to find...
 - Administrations enable the competition for groundwater which adversely affects the efficiency of resource-use

- 1. Human X Natural factors affect the depletion and movement of groundwater \rightarrow our variation combines both to find...
 - Administrations enable the competition for groundwater which adversely affects the efficiency of resource-use
- 2. Resource conservation investments affected
 - Substantial funds channelled towards groundwater conservation: World Bank alone spends 12 Billion USD in India

Conclusion

- 1. Human X Natural factors affect the depletion and movement of groundwater \rightarrow our variation combines both to find...
 - Administrations enable the competition for groundwater which adversely affects the efficiency of resource-use
- 2. Resource conservation investments affected
 - Substantial funds channelled towards groundwater conservation: World Bank alone spends 12 Billion USD in India
- 3. The failure to adapt to scarcity could be for a number of reasons
 - Importance of policy interventions

Example

Thank you!

Introduction

Figure: Global groundwater depletion (Aeshbach-Hertig 2012)

Data: Maps

1. District Boundary Maps: Census data, 1961 onwards

- Map
- 2. Water-resource Boundary maps: Sub-Basins (World Resource Institute)
 - Competition for a resource = equitable overlap by multiple districts
- 3. Aquifer System Hydrogeology: Central Groundwater Board
 - Determines externalities from extraction across district boundaries

Sub-basins and Districts

Districts 1961

Empirics

$$y = \beta_1 Comp + \beta_2 Perm + \beta_3 Comp * Perm + \epsilon$$

$$\begin{split} E[\epsilon | Comp] &= 0, \quad E[Comp, Perm] \neq 0\\ \frac{\tilde{E}[Comp*Perm*y]}{\tilde{E}[Comp^2*Perm]} &= \beta_3 \end{split}$$

Now, let:

$$Perm = \pi Comp + \nu \implies y = \beta_1 Comp + \beta_2 \pi Comp + \beta_2 \nu$$
$$+\beta_3 \pi Comp^2 + \beta_3 Comp * \nu + \epsilon$$

Empirics

Conditional on Perm = 1, $\nu = 1 - \pi Comp$,

$$\begin{split} E[y|\text{Perm} = 1] &= \beta_1 \text{Comp} + \beta_2 \pi \text{Comp} + \beta_2 - \beta_2 \pi \text{Comp} \\ &+ \beta_3 \pi \text{Comp}^2 + \beta_3 \text{Comp} - \beta_3 \pi \text{Comp}^2 + \epsilon \end{split}$$

$$\beta_{3} = \frac{\tilde{E}[Comp * y | Perm = 1] * P(Perm = 1)}{\tilde{E}[Comp * Comp | Perm = 1] * P(Perm = 1)}$$

Sample

Randomization Inference: T-stats

	P-Values
Share of Area Cropped Irrigated by	
Tubewells	.004
Total Wells	0
Dugwells	.003
Canals	.012
Crop Choice	
Wheat	0
Sugarcane	.016
Cropping Area	
Wheat	.014
Sugarcane	0

Randomization Inference Distribution of Effects

District Crop Planning Example

C					Provision	(Rs. Laki	is)	
Sr.	Department	Name of Scheme	2012-	2013-	2014-	2015-	2016-	Total
110.			13	14	15	16	17	Total
		Dry land Farming Mission	29.86	477	127	260	315	1208.86
		Rainfed Agriculture Development Programme	22.71	95.4	359	600	720	1797.11
		Organic Farming	0	0	0	10	10	20
		Accelerated Fodder Development Programme	589	100	216	282	330	1517
		NFSM Cotton Development Programme	17.77	6.84	51	70	140	285.61
		NFSM Coarse Cereal Development Programme	40.6	17.28	274	72	108	511.88
		NFSM Oilseed Development Programme	0	227.8	0	40.5	63	331.3
		NFSM Pulse Development Programme	0	228	657.41	542	675	2102.41
		NFSM Sugarcane Development Programme	0	40	32	0	0	72
		NFSM APPP	0	354.09	0	0	0	354.09
		RKVY Sugarcane Development Programme	21.36	0	0	51	87	159.36
		RKVY Accelerated Fodder Development Programme	58.98	0	0	160	256	474.98
1	Agriculture	RKVY Cotton Development Programme	68.82	22	50.52	27	40.5	208.84
		National Oilseed development Programme	0	0	0	20	36	56
		PPP (Cotton, Maize, Soybean)	48.26	275.1	323	367.5	551.25	1565.11
		Agri Polyclinic	0	0	0	18	18	36
		Strengthening of Nursery	0	0	0	30	30	60
		CROPSAP	41.73	24.26	27.6	35	45	173.59
		Agriculture Exhibition	0	0	0	6	6	12
		Soil Health Card	0	0	0	22.5	45	67.5
		HRD Training	0	17.51	0	3	15	35.51
		Exposure Visit	0	0	0	14	14	28
		Farm Mechanization Sub Mission	0	0	0	90	90	180
		SCP and OTSP	0	0	0	400	500	900
		Total	939.09	1885.3	2117.5	3120.5	4094.8	12157.15

Irrigation Capacity and Technology

Data: Minor Irrigation Census Rounds 5 (2014). Outcomes are adjusted as per Chen and Roth (2023).

Areas Irrigated by Source

		Share of Area Cropped								
	Surface	e Water	Groun	dwater	Tube	ewells				
	(1)	(2)	(3)	(4)	(5)	(6)				
Comp. X Perm.	-0.10**	-0.09**	0.12***	0.10***	0.05**	0.06**				
	(0.04)	(0.04)	(0.03)	(0.03)	(0.03)	(0.02)				
Permeable	0.10***	0.09***	-0.06**	-0.07**	-0.02	-0.01				
	(0.02)	(0.03)	(0.03)	(0.03)	(0.02)	(0.02)				
Competition	0.07*	0.05	-0.01	-0.02	-0.00	-0.01				
	(0.04)	(0.03)	(0.03)	(0.02)	(0.02)	(0.02)				
Sample Mean	.08	.08	.21	.21	.16	.16				
Permeability at 25 th %ile Comp.	.07***	.06**	03	04*	0	.01				
	(.02)	(.03)	(.02)	(.02)	(.01)	(.01)				
Δ Comp over the IQR	04**	03**	.05***	.04***	.02**	.02**				
	(.01)	(.01)	(.01)	(.01)	(.01)	(.01)				
Controls Obs	28889	Y 28889	28893	Y 28893	28897	Y 28897				

Areas Irrigated by Source, District Splits

		Share of Area Cropped							
	Surface	Surface Water		dwater	Tube	ewells			
	(1)	(2)	(3)	(4)	(5)	(6)			
Comp. X Perm.	-0.10*** (0.04)	-0.16*** (0.06)	0.09*** (0.03)	0.15*** (0.05)	0.11*** (0.04)	0.18*** (0.06)			
Permeable	0.01** (0.01)		-0.01** (0.01)		-0.02** (0.01)				
Competition	0.02 (0.03)	0.03 (0.03)	0.01 (0.03)	0.00 (0.03)	0.01 (0.04)	-0.00 (0.03)			
Sample Mean	.07	.07	.13	.13	.08	.08			
Permeability at 25 th %ile Comp.	.03** (.01)	.03*** (.01)	03*** (.01)	02*** (.01)	04*** (.01)	03*** (.01)			
Δ Comp over the IQR	03*** (.01)	06*** (.02)	.03*** (.01)	.05*** (.02)	.04*** (.01)	.07*** (.02)			
Basin X District FE Obs	57401	Y 57401	57401	Y 57401	57401	Y 57401			

Areas Irrigated by Source, by Canal Access

		Share of Ar	rea Cropped	
	Sur	face Water	Gr	oundwater
	1966	Command Area	1966	Command Area
	Access	Access	Access	Access
	(1)	(2)	(3)	(4)
Comp. X Perm. (β_3)	-0.12***	-0.11**	0.11***	0.10**
	(0.04)	(0.05)	(0.04)	(0.04)
Permeable (β_2)	0.10***	0.12***	-0.09***	-0.11***
	(0.03)	(0.04)	(0.03)	(0.04)
Competition (β_1)	0.05*	0.06	-0.03	-0.00
	(0.03)	(0.04)	(0.02)	(0.03)
Canal Access	0.10***	0.04*	-0.04*	-0.01
	(0.03)	(0.02)	(0.03)	(0.02)
Canal Access X Comp.	-0.02	-0.01	0.02	-0.02
	(0.03)	(0.03)	(0.03)	(0.03)
Canal Access X Perm.	-0.02	-0.04	0.03	0.03
	(0.03)	(0.03)	(0.03)	(0.03)
Canal Access X Comp. X Perm.	0.06	0.03	-0.02	0.01
	(0.04)	(0.04)	(0.05)	(0.04)
Sample Mean	.08	.08	.21	.21
Controls	Y	Y	Y	Y
Obs	28889	28889	28893	28893

Crop Suitability (FAO)

		Log(Suitability Index)							
	Wheat	Sugarcane	Rice	Millets	Maize	Pulses			
	(1)	(2)	(3)	(4)	(5)	(6)			
Comp. X Perm. (β_3)	0.01	0.01	-0.01	0.02*	0.04**	0.01			
	(0.02)	(0.03)	(0.01)	(0.01)	(0.02)	(0.01)			
Permeable (β_2)	-0.01	0.02	0.00	-0.01	-0.01	0.00			
	(0.01)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)			
Competition (β_1)	0.01	0.03	0.01	-0.00	-0.01	0.01			
	(0.02)	(0.02)	(0.01)	(0.01)	(0.02)	(0.01)			
Sample Mean	.25	.4	.2	.22	.3	.14			
Mean Competition	.49	.49	.49	.49	.49	.49			
Controls	Y	Y	Y	Y	Y	Y			
Obs	1994	1994	1994	1994	1994	1994			
						E			

Cropping Areas

		Share of	Area Cropp	ed	Log A	Log Area with Calibrated EMV			
	Wet-s	Wet-season		Dry-season		eat	Suga	rcane	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Comp. X Perm.	-0.04	-0.08*	0.21***	0.16***	1.90**	0.43	2.44**	1.37**	
	(0.08)	(0.04)	(0.06)	(0.05)	(0.76)	(0.37)	(0.95)	(0.55)	
Permeable	-0.04	0.05	-0.11**	-0.18***	-1.94***	-0.22	-1.67*	-0.81	
	(0.06)	(0.05)	(0.05)	(0.05)	(0.69)	(0.44)	(0.85)	(0.73)	
Competition	0.07	0.05	-0.09*	-0.08**	-0.62	-0.57**	-0.48	-0.06	
	(0.06)	(0.03)	(0.05)	(0.04)	(0.53)	(0.28)	(0.70)	(0.40)	
Sample Mean	.41	.41	.41	.41	58.25	6.53	9.31	3.96	
Permeability at 25 th %ile Comp.	05	.03	05	13***	-1.38***	09	95	41	
	(.04)	(.05)	(.04)	(.05)	(.5)	(.4)	(.62)	(.69)	
Δ Comp over the IQR	01	03*	.08***	.06***	.71**	.16	.92**	.52**	
	(.03)	(.02)	(.02)	(.02)	(.28)	(.14)	(.36)	(.21)	
Controls Obs	33924	Y 33924	33924	Y 33924	33924	Y 33924	33924	Y 33924	

Well Health

	Dry-season		Summe	r season	Probability		ity Share of Life	
	(February)		(M	ay)	Defunct		ct Defunct	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Comp. X Perm.	-0.10**	-0.07*	-0.04	-0.02	0.17*	0.17*	0.21*	0.21*
	(0.04)	(0.04)	(0.04)	(0.03)	(0.09)	(0.09)	(0.12)	(0.12)
Permeable	0.08*	0.05	0.04	0.00	-0.13*	-0.13*	-0.21**	-0.21**
	(0.04)	(0.03)	(0.03)	(0.03)	(0.07)	(0.07)	(0.10)	(0.10)
Competition	0.04	0.02	0.01	-0.00	-0.07	-0.07	-0.06	-0.06
	(0.04)	(0.03)	(0.03)	(0.02)	(0.09)	(0.09)	(0.11)	(0.11)
Sample Mean	.26	.26	.19	.19	.27	.27	.36	.36
Permeability at 25 th %ile Comp.	.05	.02	.02	0	07	07	14**	14**
	(.03)	(.02)	(.02)	(.02)	(.05)	(.05)	(.07)	(.07)
Δ Comp over the IQR	03**	02*	02	01	.05*	.05*	.06*	.06*
	(.02)	(.01)	(.01)	(.01)	(.03)	(.03)	(.03)	(.03)
Controls Obs	263847	Y 263847	263847	Y 263847	15495	Y 15495	15495	Y 15495

Citizen-led Public Infrastructure Investments

	Tak	e-up	S	Share of Total Projects				
	No Take-up (1)	Projects (2)	Ground- water (3)	Surface Water (4)	Ind Assets (5)	Rural Infra (6)		
Comp. X Perm.	0.13***	-1.30***	-0.02**	-0.00	0.01	0.03		
	(0.05)	(0.33)	(0.01)	(0.01)	(0.03)	(0.04)		
Permeable	-0.08*	1.08***	0.04***	-0.02	-0.00	-0.06		
	(0.05)	(0.38)	(0.01)	(0.01)	(0.03)	(0.04)		
Competition	-0.08**	0.51**	0.01**	0.00	-0.01	0.03		
	(0.03)	(0.23)	(0.01)	(0.01)	(0.02)	(0.02)		
Sample Mean	.08	2095.85	.01	.01	.07	.41		
Permeability at 25 th %ile Comp.	04	.61**	.03***	02	0	05		
	(.04)	(.31)	(.01)	(.01)	(.03)	(.03)		
Δ Comp over the IQR	.04***	41***	01**	0	0	.01		
	(.01)	(.1)	(0)	(0)	(.01)	(.01)		
Controls	Y	Y	Y	Y	Y	Y		
Obs	14928	14928	13778	13778	13778	13778		

District Expenditure

	C	Credit: Per	Area Sow	n		RKVY I	Expenditure	
	Total (Win)		Ag (W	gri. (in)	Total	Water	Diversif -ication	Farm Mechan.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Comp. X Perm.	0.45** (0.19)	0.36 (0.27)	0.32** (0.14)	0.28 (0.17)	0.20 (0.42)	0.63** (0.30)	-0.20 (0.18)	0.67** (0.34)
Permeable	-0.24* (0.13)	-0.12 (0.20)	-0.09 (0.10)	-0.17 (0.17)	0.26 (0.42)	-0.28 (0.30)	0.17 (0.15)	-0.15 (0.33)
Competition	0.09 (0.17)	0.21 (0.20)	0.12 (0.13)	0.15 (0.14)	-0.36 (0.38)	-0.50* (0.27)	0.10 (0.16)	-0.70** (0.30)
Sample Mean	18.45	18.45	2.94	2.94	3.41	.64	.33	1.59
Permeability at 25 th %ile Comp.	1 (.1)	02 (.17)	.01 (.07)	09 (.14)	.35 (.46)	01 (.34)	.08 (.15)	.14 (.34)
Δ Comp over the IQR	.17** (.07)	.13 (.1)	.12** (.05)	.1 (.06)	.05 (.09)	.14** (.07)	04 (.04)	.15** (.08)
Controls Area FE X Perm.	Y	Y Y	Y	Y Y	Y Y	Y Y	Y Y	Y Y
Obs	25871	25871	25871	25871	5638	5638	5638	5638

		Rain			Temperature		Obs.
	Comp. X Perm. (eta_3)	$\begin{array}{c} \operatorname{Perm.}\\ \operatorname{Dummy}\\ (\beta_2) \end{array}$	Comp. (β_1)	Comp. X Perm. (β_3)	$\begin{array}{c} \operatorname{Perm.}\\ \operatorname{Dummy}\\ \left(\beta_2\right) \end{array}$	Comp. (β ₁)	N
	(1)	(2)	(3)	(4)	(5)		
January	-4.88* (2.90)	3.37 (2.24)	6.29*** (2.41)	-0.09 (2.90)	0.00 (2.24)	-0.72* (2.41)	33924
February	3.03 (3.80)	0.55 (2.60)	1.05 (1.69)	-0.18 (3.80)	0.03 (2.60)	-0.44 (1.69)	33924
March	4.80 (5.71)	-6.32* (3.64)	3.55 (3.10)	-0.43 (5.71)	0.23 (3.64)	-0.13 (3.10)	3392
April	0.11 (6.15)	-2.30 (4.46)	-0.52 (3.30)	-0.60 (6.15)	0.42 (4.46)	0.37 (3.30)	3392
May	4.77 (11.08)	-2.79 (7.97)	-7.05 (4.60)	-0.92 (11.08)	0.74 (7.97)	0.97 (4.60)	3392
June	-26.86 (34.42)	24.96 (31.32)	4.71 (16.79)	-0.48 (34.42)	0.68 (31.32)	0.76 (16.79)	3392
July	-59.02 (57.35)	51.52 (55.91)	34.32 (32.33)	0.27 (57.35)	0.15 (55.91)	0.10 (32.33)	3392
August	-37.16 (44.98)	24.26 (42.55)	28.52 (29.78)	0.35 (44.98)	0.03 (42.55)	0.06 (29.78)	3392
September	-11.10 (20.72)	2.48 (18.71)	4.02 (10.56)	0.02 (20.72)	0.30 (18.71)	0.20 (10.56)	3392
October	7.80 (12.13)	17.37 (17.22)	-11.29 (9.26)	-0.25 (12.13)	0.50* (17.22)	-0.02 (9.26)	3392
November	-2.57 (10.28)	33.70 (22.21)	-5.48 (6.70)	-0.25 (10.28)	0.39 (22.21)	-0.34 (6.70)	3392
December	-3.35 (3.48)	14.27* (7.47)	-0.57 (2.14)	-0.16 (3.48)	0.20 (7.47)	-0.64* (2.14)	3392

Environmental Variables

Demographic Variables

	$\begin{array}{c} \text{Competition X} \\ \text{Permeability} \\ (\beta_3) \end{array}$	$\begin{array}{c} {\sf Permeability} \\ {\sf Dummy} \\ (\beta_2) \end{array}$	$\begin{array}{c} Competition \\ Main \ Effect \\ (\beta_1) \end{array}$	Sample Mean	N
	(1)	(2)	(3)	(4)	(5)
Panel C: Demographics 1961					
Dist. Area (1961) Population Pop. Density Fraction Rural Fraction Literate Fraction Sched. Caste Fraction Sched. Tribe Fraction Sched. Tribe	$\begin{array}{r} -4.51^{*} \\ 0.30 \\ 12.11 \\ -0.03 \\ 0.03 \\ -0.00 \\ 0.02 \\ -0.00 \end{array}$	$\begin{array}{c} 13.08^{***} \\ -0.48 \\ -68.36^{**} \\ -0.09 \\ 0.06^{*} \\ 0.05^{**} \\ -0.28^{***} \\ 0.01 \end{array}$	-5.86*** -0.12 8.65 0.00 -0.01 0.01 -0.02 0.01	9.54 1428.83 183.04 .84 .21 .15 .09 .07	1391 1391 1391 1391 1391 1391 1391 1391
Panel D: Analysis Sample					
Canal Access (1966) Command Area Access (2015) Dist. Area	-0.05 -0.08 -0.13	-0.01 0.04 -0.60	0.09 0.00 -1.32**	.83 .65 6.07	2170 2170 2170
				Bad	:k

Agricultural Variables

	$\begin{array}{c} \text{Competition X} \\ \text{Permeability} \\ (\beta_3) \end{array}$	$\begin{array}{c} {\sf Permeability} \\ {\sf Dummy} \\ (\beta_2) \end{array}$	$\begin{array}{c} Competition \\ Main \ Effect \\ (\beta_1) \end{array}$	Sample Mean	N
	(1)	(2)	(3)	(4)	(5)
Panel A: Predomin	nant Soil Type				
Red Deep Black Medium Black Red Black Mix Laterite River Alluvial Coastal Alluvial Log pH	-0.14 0.20 0.26** -0.22** -0.07 0.21 -0.03 -0.03	-1.06*** 0.03 -0.17 -0.75*** -0.04 0.03 0.09 0.09	$\begin{array}{c} 0.05 \\ -0.02 \\ -0.09 \\ 0.21** \\ 0.04 \\ -0.08 \\ 0.01 \\ 0.08 \end{array}$.15 .11 .15 .07 .08 .44 .07 6.88	1391 1391 1391 1391 1391 1391 1391 1391
Panel B: Agricultu	iral Outcomes, 195	6-1965			
Share Sown Share Irrigated Share Wheat Share Sugarcane Share Bajra	0.17** 0.03 -0.01 -0.00 -0.02 -0.23	-0.13 0.07 0.05 -0.01* 0.12 -1.39*	-0.13*** 0.02 0.01 0.00 -0.03 0.50*	1.36 .18 .11 .02 .06 2417.4	13910 13910 13910 13910 13910 13910 13910

Area Irrigated by Source, Over Time

Cropping Areas, Over Time

Green Revolution Era

"The adoption of the H.V.P. was facilitated by the "Intensive Agricultural District Programme" (I.A.D.P.), which was built into the existing community development organisation." (Chakravarti 1973)

"The Framework Action Plan, therefore, noted that the Seventh Plan's irrigation targets were not being met and provided for detailed funds at the project/district level to achieve potential." (Alagh 1990)

Source: (DES, MoA, 2016)

Agricultural Credit

"...**credit plans decided at district level** by NABARD. NABARD by virtue of its Financial, Developmental and Supervisory role is touching almost every aspect of rural economy,..."

"... The cornerstone of agriculture credit is the Scale of Finance (SoF) **being fixed for every crop at the district level** which forms the basis for determining the eligible credit for each crop and farmer."

- National Bank for Rural Development Report

Kansas: Groundwater Districts

B. The basic requirement to form a local GMD is the existence of an aquifer system of sufficient size to support a district which is experiencing groundwater problems of a quantity or quality nature. If an area of the state demonstrates such a viable hydrologic community of interest, a local GMD can be formed upon local initiative only - the process is begun by local petition.

Model: Tragedy of the Commons

2 districts (i,j), 1 resource with permeability in groundwater flow \implies externalities from relative extraction

2 time periods: agricultural cycle and summer \rightarrow concave returns to water in both times periods $[R(w), \pi(W)]$

 \rightarrow convex costs for own extraction [C(w)]

Claim 1: Resource extraction is higher under a decentralized regime as opposed to a social planner

Say
$$w_{i+i}^{SP}$$
 is extraction under a social planner's regime.

Say w_{i+j}^{Dec} is extraction under a decentralized regime where both districts have asymmetric access to the resource.

Model: Tragedy of the Commons

Claim 2: Is resource extraction higher when the resource-sharing is more competitive, but goes down as competition reduces.

Holding number of districts constant (at 2), comparative stats of w_i, w_j with α

Case 1: Social Planner

Period 1 Stock: S^1 , share α for *i* and $(1 - \alpha)$ for *j* Period 2 Stock: $S_i^2 = \alpha S^1 - w_i - k((1 - \alpha)w_j - \alpha w_i)$ In equilibrium,

$$w_{i,j}^{SP} : \max_{w_i, w_j} \left[R(w_i) + R(w_j) - C(w_i) - C(w_j) + \delta \pi \left[\alpha S^1 - w_i - k((1 - \alpha)w_j - \alpha w_i) \right] + \delta \pi \left[\alpha S^1 - w_j - k(\alpha w_i - (1 - \alpha)w_j) \right] \right]$$

$$\implies w_i^{SP} : \left[\frac{\partial R(w_i)}{\partial w_i} - \delta(1 - \alpha k) \frac{\partial \pi}{\partial w_i} (S_i^2) - \delta(1 - \alpha) k \frac{\partial \pi}{\partial w_i} (S_j^2) \right] = \frac{\partial C(w_i)}{\partial w_i}$$

and,
$$w_j^{SP}$$
: $\left[\frac{\partial \mathcal{R}(w_j)}{\partial w_j} - \delta(1 - (1 - \alpha)k)\frac{\partial \pi}{\partial w_j}(S_j^2) - \delta \alpha k \frac{\partial \pi}{\partial w_j}(S_i^2)\right] = \frac{\partial \mathcal{C}(w_j)}{\partial w_j}$ (2)

Note here,
$$MR_{\{i,j\}}^{SP} = MC_{\{i,j\}}^{SP}$$
.

Case 2: Decentralized Regime

In equilibrium, each district optimizes over their own returns and costs:

$$w_{i}^{Dec} : \max_{w_{i}|w_{j}} \left[R(w_{i}) - C(w_{i}) + \delta\pi \left[\alpha S^{1} - w_{i}(1 - \alpha k) - k(1 - alpha)w_{j} \right] \right]$$

$$\implies w_{i}^{Dec} : \frac{\partial R(w_{i})}{\partial w_{i}} - \delta(1 - \alpha k) \frac{\partial \pi}{\partial w_{i}} (S_{i}^{2}) = \frac{\partial C(w_{i})}{\partial w_{i}}$$
and, $w_{j}^{Dec} : \frac{\partial R(w_{j})}{\partial w_{j}} - \delta(1 - (1 - \alpha)k) \frac{\partial \pi}{\partial w_{j}} (S_{j}^{2}) = \frac{\partial C(w_{j})}{\partial w_{j}}$
(3)
$$MR_{\{i,j\}}^{Dec} = MC_{\{i,j\}}^{Dec}.$$

Compare Case 1 to Case 2

 $MR^{Dec} > MR^{SP}$, as $\delta > 0$, $k \in (0, 1]$, and $\frac{\partial \pi}{\partial w_j}(S_i^2) > 0$ implying there are uninternalized externalities.

The marginal cost function is unchanged $MC^{Dec} = MC^{SP}$.

Given, concave R(.) and $\pi(.)$ function and increasing C(.) function, holding cost constant, if w is such that MR = MC, then,

$$w_{i+j}^{Dec} > w_{i+j}^{SP}$$