Access to Cash Transfers and Climate Resilience in Agriculture

Sheetal Sekhri Sabina Yasmin

March 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This study was funded by ICIMOD-SANDEE and the fieldwork was conducted by LEAD at Krea University. The authors are thankful for the support and guidance received from ICIMOD and LEAD in the successful completion of the study.

ICIMOD

- Smallholder farmers in developing countries rely heavily on subsistence agriculture and their livelihoods are particularly vulnerable to climate change
- South Asia highest vulnerability to climate-driven risk (IMF, World Bank Computations, 2021) Graph
- More than 750 million experienced damages from climate disasters, estimated damages more than \$ 150 billion
- Region likely to experience hotter weather, longer monsoon seasons, and increased droughts in next 2 decades (IPCC)

Motivation

Governments promoting climate resilience building for farmers

- 1. National Adaptation Plan of Action (NAPA) in Nepal
- 2. National Innovations on Climate Resilient Agriculture (NICRA) in India
- Climate-resilient agriculture practices (CRA) look at adaptive agricultural methods that can withstand the shocks of climate change and weather extremes
 - 1. **Soil-related practices**: Zero tillage/no till/direct seeding/direct drilling, Retain crop residues, Reduce follows, Crop rotation, Weeding, Harrowing, Mulching, Use of organic manure
 - 2. Water-related practices: Drip Irrigation, Laser land leveling, Rainwater Harvesting, Small scale reservoirs, programmed irrigation, Growing less water-intensive crops, Farm ponds/wells
 - crop-related practices: Intercropping/Mixed cropping, Use of stress-tolerant short cycle, early sowing, HYV, or hybrid seed and seed a

- Farmers do not necessarily have the know-how and potentially credit or liquidity constrained to adopt CRA practices as a bundle
- What is the role of credit and liquidity constraints?
- Study a conditional cash transfer scheme in India Pradhan Mantri Kisan Samman Nidhi (PMKSN 2019)
 - 1. Small and marginal landholders (up to 2 ha) eligible
 - 2. Rs 6000 / around 75 dollars paid per land-owning household (husband, wife, and minor children) in 3 installments
 - 3. Objective- aid procuring inputs and ensuring crop health

Identification- Spatial RD

Launched in 2019 in India

 Examine a region of India (with policy) that shares a border with Nepal (without policy)

 Compare outcomes of farmers near the border in Shravasti (India) and Banke (Nepal)

Similar geography, climatic risks, agricultural conditions

Rule out:

- 1. Differential knowledge
- 2. Climate Risks
- 3. Take-up of other policies
- 4. Take into account coping means (no different)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Identification- Spatial RD

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Context and Relevance for Identification

- Paddy main staple in both districts
- Mainly subsistence, both countries have MSP for paddy
- Agricultural extension service centers equidistant 24 km (India) and 27 Nepal kms from this area, take up similar
- Electricity subsidized in both areas, similar groundwater governance
- Majority farmers in the area not members of community or farmers organizations/institutions like FPO, FPG, PACS, SHG, etc.; or use any available mobile apps like geokrishi, Hamro krishi
- Rice seed markets and other inputs and output markets available in respective countries; markets for output similar distance

- Grided into 20 cells of 5 km by 200 meters for sampling
- ▶ 20-25 farmers per cell with 100 -200 meter distance in plots
- Extensive qualitative fieldwork (FGDs, stakeholder meetings, IDIs), Farmer surveys (year 2023), and various satellite data

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ 1003 farmers, 502 Nepal, 501 India, main crop paddy

Sampling Grid

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Border

Rice Field

Main Take-away

- Exposure to multi-pronged risks not just one
- High Utilization of the PMKSN in India, very low utilization of any other policies in either country from a very long list made during qualitative fieldwork
- Rice Yield significantly higher in India even after accounting for adaptation
- Water Practices significant drivers, though others adopted too- Bundled intervention
- Women have lower utilization rates of the policy, CRA water practices, and rice yields in India

Literature

Anticipatory transfers

- 1. Anticipatory Cash Transfers for floods Pople et al 2023; Gros 2019, 2020
- 2. Early warnings and Cash transfers for droughts World Food Programme Somalia 2022
- Transfer plus other bundling
 - 1. Cash transfers and vocational training Macours et al 2012
 - 2. cash transfers and productive grants Marcours et al 2022
 - 3. Regular cash transfers Premad and Stoeffler 2022
 - 4. Graduate programs (BRAC style) and cash transfers Hirvonen et al 2023
- Focused on Consumption Smoothing, Information versus Credit constraints, Time horizon, No Gender analysis

Percentage Experiencing the Shock					
Climatic Shock	Overall	India	Nepal		
Flood	91.03	89.82	92.23		
Drought	88.73	81.04	96.41		
Forest Fire	4.49	1.60	7.37		
Hailstorm	16.85	12.18	21.51		
Coldwave	17.45	14.77	20.12		
Windstorm	43.37	49.90	36.85		
Unseasonal Rain	60.12	63.07	57.17		
Landslide	0.40	0.40	0.40		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Impact on Agricultural Activities Climatic Shocks Last 5 Years

Percentage Experiencing Different Intensity					
Climatic Shock	Insignificant	Mild	Moderate	Major	Severe
Flood	0.4	1.2	6.8	43.5	39.4
Drought	0.1	3.5	10.4	50.9	24.1
Forest Fire	0.9	0.5	1.1	1.2	0.8
Hailstorm	2.2	4.3	6.9	3.1	0.4
Cold Wave	1.8	7.6	4.2	3.9	0.0
Windstorm	2.8	15.1	12.4	12.1	1.1
Unseasonal Rain	0.9	14.5	7.9	26.3	10.7
Landslide	0.0	0.1	0.1	0.1	0.1

Climatic Shocks in Last Year (in Percentage)

	Last Year			
Climatic Event	Did not Happen	Happened		
Flood	2.79	97.21		
Drought	4.39	88.24		
Forest Fire	13.36	51.05		
Hailstorm	6.48	32.10		
Cold Wave	1.69	17.55		
Windstorm	0.70	6.78		
Unseasonal Rain	0.00	0.50		

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Percentage Experiencing Different Intensity Last Year

Climatic Event	Insignificant	Mild	Moderate	Major	Severe
Flood	0.41	1.85	9.23	54.77	33.74
Drought	0.56	4.29	14.58	56.72	23.84
Forest Fire	4.10	24.80	24.41	35.35	11.33
Hailstorm	2.48	24.53	26.71	34.47	11.80
Cold Wave	1.14	27.84	22.73	37.50	10.80
Windstorm	1.47	1.47	1.47	92.65	2.94
Unseasonal Rain	0.00	0.00	0.00	100.00	0.00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Damages by Various Climatic Shocks in Last Year (in percentage)

Impact on Agriculture	(Last Year)	
-----------------------	-------------	--

		•	,			
Climatic Shock	Insignificant	Mild	Moderate	Major	Severe	
Flood	1.13	3.38	16.21	55.08	24.21	
Drought	0.45	5.99	17.18	56.72	19.66	
Forest Fire	5.66	29.69	24.02	30.47	10.16	
Hailstorm	2.17	35.09	27.33	26.71	8.70	
Cold Wave	3.98	36.93	25.57	28.41	5.11	
Windstorm	4.41	5.88	2.94	76.47	10.29	
Unseasonal Rain	20.00	20.00	0.00	40.00	20.00	

Shocks at the Border

・ロト・西・・田・・田・・日・

Policies in India and Nepal Takeup

Policy	India		N	epal
Name of	% Aware	% Enrolled	% Aware	% Enrolled
PMKSY	9.18	1.60	0.0	0.0
District-level Contingency	9.78	0.60	0.0	0.0
PMKSN	88.82	56.29	0.0	0.0
Grameen Beej	9.38	0.20	0.0	0.0
Emergency & Early Recovery	0.00	0.00	0.6	0.0
Kisan I and II	0.00	0.00	0.6	0.0
AFSP	0.00	0.00	0.4	0.2
NAPA	0.00	0.00	0.00	0.00
NICRA	0.00	0.00	0.00	0.00

PMKSY stands for Pradhan Mantri Krishi Sinchai Yojana. District-level Contingency Plan includes controls for damages by climatic shocks like flood, drought, hailstorm, and many others.

PMKSN stands for Pradhan Mantri Krishi Samman Nidhi.

Grameen Beej Yojana provides high quality seeds to farmers.

Emergency and Early Recovery denotes the support provided to flood-affected households of Western Terai in Nepal. Kisan I and II stands for Knowledge-Based Integrated Sustainable Agriculture in Nepal I and II.

AFSP denotes the Nepal Agriculture and Food Security Project.

National Adaptation Programme of Action (NAPA) helps to identify activities necessary to adapt to climate change. NICRA stands for National Innovations on Climate Resilient Agriculture.

Credit Policy (PMKSN) Adoption

Figure: Cash Transfer Policy Adoption

ヘロト 人間ト 人間ト 人間ト

æ

Practices

Figure: Soil, Water, and Crop Practices

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Agricultural Outcomes

Productivity of Rice

▲□▶▲□▶▲≡▶▲≡▶ = = *)♀(*)

	Rice Yield (Quintal/Acre)			
	(1)	(2)	(3)	
Variables:				
Treatment	7.597***	5.792***	4.632**	
	(2.455)	(1.697)	(2.024)	
Controls:				
Demographic and SES Controls	No	Yes	Yes	
Adaptation Controls	No	No	Yes	
Ν	242	390	297	
Kernel	Uniform	Uniform	Uniform	
Bandwidth Value	252.444	357.815	285.469	

Rice Yield - Parametric (400 meters BW)

	Rice Yield (Quintal/Acre)						
		Linear			Quadratic		
	(1)	(2)	(3)	(4)	(5)	(6)	
Treatment	7.710*** (1.711)	5.925*** (1.801)	4.957** (2.018)	7.953** (3.656)	5.554 (3.600)	5.390 (3.745)	
Adaptation Controls	No	No	Yes	No	No	Yes	
Demographic and SES Controls	No	Yes	Yes	No	Yes	Yes	
Observations R^2	438 0.26893	438 0.35083	438 0.36626	438 0.27179	438 0.35285	438 0.36878	

Notes: Each regression controls for the interaction of the running and the treatment variable. Demographic and SES controls include gender, age, farm size, farm experience, education, shock index, and asset index of the farmers. Adaptation includes migration, agricultural expenses, livelihood schemes, awareness of smart climate practices, and other loans. Significance ***: 0.01, **: 0.05, *: 0.1. Robust standard errors in parentheses.

Climate Resilience Practices- Water (Non-Parametric)

	Water Practices			
	(1)	(2)	(3)	
Treatment	0.473**	0.604**	0.794***	
	(0.236)	(0.248)	(0.25)	
Controls:				
Demographic and SES Controls	No	Yes	Yes	
Adaptation Controls	No	No	Yes	
Ν	195	190	168	
Kernel	Uniform	Uniform	Uniform	
Bandwidth Value	208.575	211.244	198.145	

Water Practice

Micro-Irrigation

Climate Resilience Practices- Soil (Non-Parametric)

	Soil Practices			
	(1)	(2)	(3)	
Treatment	0.383	0.827	0.499	
	(0.593)	(0.637)	(0.628)	
Controls:				
Demographic and SES Controls	No	Yes	Yes	
Adaptation Controls	No	No	Yes	
Ν	122	113	124	
Kernel	Uniform	Uniform	Uniform	
Bandwidth Value	150.611	146.314	156.847	

Climate Resilience Practices- Crop (Non-Parametric)

	Crop Practices			
	(1)	(2)	(3)	
Treatment	0.654*	0.703*	0.092	
	(0.38)	(0.395)	(0.365)	
Controls:				
Demographic and SES Controls	No	Yes	Yes	
Adaptation Controls	No	No	Yes	
Ν	229	203	183	
Kernel	Uniform	Uniform	Uniform	
Bandwidth Value	233.848	224.085	207.043	

	Rice Yield (Quintal/Acre)						
		Linear		Quadratic			
	(1)	(2)	(3)	(4)	(5)	(6)	
Treatment	10.655***	7.016***	6.505***	10.888***	7.574***	6.847***	
	(1.508)	(1.683)	(1.720)	(2.003)	(2.059)	(2.096)	
Treatment \times Gender	-2.697**	-1.298	-1.142	-2.611**	-1.194	-1.032	
	(1.091)	(1.058)	(1.040)	(1.099)	(1.061)	(1.047)	
Adaptation Controls	No	No	Yes	No	No	Yes	
Demographic and SES Controls	No	Yes	Yes	No	Yes	Yes	
Observations	957	957	957	957	957	957	
R ²	0.22713	0.31665	0.33674	0.22990	0.32016	0.34049	

Notes: Each regression controls for the interaction of the running treatment variables. Demographic and SES controls include gender, age, farm size, farm experience, education, shock index, and asset index of the farmers. Adaptation includes migration, agricultural expenses, livelihood schemes, awareness of smart climate practices, and other loans. Significance ***: 0.01, **: 0.05, *: 0.1. Robust standard errors in parentheses.

	PMKSN Adoption						
		Linear			Quadratic		
	(1)	(2)	(3)	(4)	(5)	(6)	
Treatment	0.833***	0.747***	0.819***	0.906***	0.824***	0.879***	
	(0.086)	(0.090)	(0.095)	(0.093)	(0.097)	(0.102)	
Treatment \times Gender	-0.219***	-0.174**	-0.174**	-0.213***	-0.166**	-0.167**	
	(0.068)	(0.070)	(0.070)	(0.068)	(0.069)	(0.070)	
Adaptation Controls	No	No	Yes	No	No	Yes	
Demographic and SES Controls	No	Yes	Yes	No	Yes	Yes	
Observations	1,003	964	964	1,003	964	964	
R ²	0.40466	0.42118	0.42782	0.40860	0.42648	0.43185	

Notes: Each regression controls for the interaction of the running treatment variables. Demographic and SES controls include gender, age, farm size, farm experience, education, shock index, and asset index of the farmers. Adaptation includes migration, agricultural expenses, livelihood schemes, awareness of smart climate practices, and other loans. Significance ***: 0.01, **: 0.05, *: 0.1. Robust standard errors in parentheses.

Water Practices by Gender- Full Sample

	Adoption of Water Practices						
		Linear		Quadratic			
	(1)	(2)	(3)	(4)	(5)	(6)	
Treatment	0.382***	0.385***	0.435***	0.533***	0.537***	0.558***	
	(0.133)	(0.142)	(0.153)	(0.151)	(0.161)	(0.169)	
Treatment \times Gender	-0.297***	-0.252**	-0.245**	-0.286***	-0.240**	-0.233**	
	(0.109)	(0.110)	(0.109)	(0.108)	(0.110)	(0.109)	
Adaptation Controls	No	No	Yes	No	No	Yes	
Demographic and SES Controls	No	Yes	Yes	No	Yes	Yes	
Observations	1,003	964	964	1,003	964	964	
R ²	0.03656	0.05418	0.08598	0.04746	0.06494	0.09475	

Notes: Each regression controls for the interaction of the running treatment variables. Demographic and SES controls include gender, age, farm size, farm experience, education, shock index, and asset index of the farmers. Adaptation includes migration, agricultural expenses, livelihood schemes, awareness of smart climate practices, and other loans. Significance ***: 0.01, **: 0.05, *: 0.1. Robust standard errors in parentheses.

Robustness

Conduct RD validity tests

- 1. Large number of demographic, SES, geographic balanced Graphs
- 2. Running variable smooth Mcrary Test
- 3. Placebo- no effect if the boundary 200 meters into India Placebo Graph
- Sensitivity Tests- robust to bandwidths, kernels, control functions

Tests

 Alternate mechanisms - other policies, adaptation differentials, migration, remittances, supply constraints for inputs, input subsidies Tests

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Cash Transfers can facilitate the adoption of Climate resilience building agricultural practices
- Women might need to be targeted as they do not avail of policy-delivered cash transfers as much
- To this end, more research can help us learn how to target cash transfers better for women

Validity Checks

Demographic and SES Variables

Farmer's Age

F arming Experience (in Years)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Demographic and SES Variables

Migration

Education

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Demographic and SES Variables

Agricultural Assets

Gender Female

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Geography Variable Balance

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Adaptation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remittances

McCrary's Test

Figure: Running Variable Discontinuity Check

Back:Robustness

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Placebo Test

Figure: Rice Yield if Border is moved into India by 200 meters

Back:Robustness

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Rice Yield- Robustness Kernel Triangular

	Rice Yield (Quintal/Acre)					
	(1)	(2)	(3)			
Treatment	7.875**	5.769**	5.645**			
	(3.383)	(2.634)	(2.566)			
Controls:						
Demographic and SES Controls	No	Yes	Yes			
Adaptation Controls	No	No	Yes			
N	222	284	292			
Kernel	Triangular	Triangular	Triangular			
Bandwidth Value	241.258	276.924	281.13			

	Rice Yield (Quintal/Acre)						
		Linear		Quadratic			
	(1)	(2)	(3)	(4)	(5)	(6)	
Treatment	7.684*** (0.866)	5.537*** (1.003)	5.200*** (1.084)	8.087*** (1.369)	6.227*** (1.406)	5.677*** (1.480)	
Adaptation Controls	No	No	Yes	No	No	Yes	
Demographic and SES Controls	No	Yes	Yes	No	Yes	Yes	
Observations R^2	957 0.22098	957 0.31580	957 0.33608	957 0.22413	957 0.31943	957 0.33995	

Back:Robustness

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Rice Yield- Alternate Specification Parametric (Full Sample)

	Rice Yield (Quintal/Acre)						
		Linear		Quadratic			
	(1)	(2)	(3)	(4)	(5)	(6)	
Treatment	7.727***	5.533***	5.194***	7.747***	5.636***	5.268***	
	(0.856)	(1.010)	(1.084)	(0.869)	(0.993)	(1.081)	
Adaptation Controls	No	No	Yes	No	No	Yes	
Demographic and SES Controls	No	Yes	Yes	No	Yes	Yes	
Observations	957	957	957	957	957	957	
R ²	0.22070	0.31579	0.33605	0.22071	0.31631	0.33677	

Back:Robustness

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Rice Yield- Alternate Specification Parametric (Bandwidth 400 meters)

	Rice Yield (Quintal/Acre)						
	Linear			Quadratic			
	(1)	(2)	(3)	(4)	(5)	(6)	
Treatment	7.604***	5.867***	4.878**	7.662***	5.894***	4.923**	
	(1.740)	(1.803)	(2.022)	(1.725)	(1.805)	(2.025)	
Adaptation Controls	No	No	Yes	No	No	Yes	
Demographic and SES Controls	No	Yes	Yes	No	Yes	Yes	
Observations	438	438	438	438	438	438	
R ²	0.26561	0.34994	0.36513	0.26762	0.35032	0.36563	

Back:Robustness

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Rice Yield- Conley Errors Parametric (400mts BW)

	Rice Yield (Quintal/Acre)						
	Linear						
	(1)	(2)	(3)	(4)	(5)	(6)	
Treatment	7.710***	5.925***	4.957***	7.953***	5.554***	5.390**	
	(1.338)	(1.317)	(1.774)	(2.283)	(1.884)	(2.103)	
Adaptation Controls	No	No	Yes	No	No	Yes	
Demographic and SES Controls	No	Yes	Yes	No	Yes	Yes	
Observations	438	438	438	438	438	438	
R ²	0.27	0.35	0.36	0.27	0.35	0.37	

Conley (0.23km) standard-errors in parentheses

Back:Robustness

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Climate-driven Risk Indicator regional median, 25th and 75th percentiles

Source: IMF Climate Change Dashboard, Feyen et al. (2020), and World Bank calculations using a sample of 187 countries in 2020.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Back:Motivation