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Non-experimental impact evaluation methods

What we know so far

We want to isolate the causal effect ("impact") of our interventions on
outcomes of interest

« Key problem is the search for a counterfactual: what would have
happened to our participants in absence of the project?

« Challenges are:

1. Comparison over time: Other things are happening at the same time, e.g.,
price and weather shocks

2. Comparison across households: \We don't know why certain people
participate
« Objective is finding a suitable control group that acts as a
counterfactual
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Non-experimental impact evaluation methods
* Randomizing the assignment to "treatment” is the "gold standard"”

What we know so far
methodology (simple, accurate, cheap)
* Less data required

 Easy to explain
« What if we really cannot use randomization?
* There are other methods (difference-in-differences, matching, discontinuity)

* Rely on few assumptions
 e.g., large infrastructure projects that can't be randomized (roads, refugee

camps, ...)
* Other methods rely on key assumptions

« Mixing of methods is possible!
* RCTs and non-experimental methods are complementary, not substitutes!
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. DIFFERENCE-IN-DIFFERENCES
ll. REGRESSION DISCONTINUITY DESIGN
lll. COMBINING METHODS
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Case study 1: Uruguay PANES

Non-experimental impact evaluation methods
* Uruguay's 2005-2007 Plan de Atenciéon Nacional a la Emergencia Social
Temporary social protection program targeting poorest 20% of households

(PANES)
below poverty line
*  Motivated by 2001-2002 crisis in neighboring countries
* PANES combined monthly cash transfer, food card for families,
emergency employment, and trainings
 Amarante et al. (2011) use a mix of non-experimental methods to show

the program reduced low birthweight by 15%
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https://www.nber.org/papers/w17690

Non-experimental impact evaluation methods

Case study 1: Uruguay PANES

Figure |: Timing of PANES program activities and data collection

PANES application Household visit Administrative Income transfer Food card Program ends

i decisions on eligihihty .
April 2005 - April 2005 - May 2005 — i April 2006 — December 2007

st B s | e
PRE-PROGRAM PERIOD PROGRAM PERIOD
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Baseline survey Administrative program data
’ " May 2005 - December 2007 ——*
April 2005 —

Social security data
- April 2004 - December 2007 | il

Vital statistics data

Prenatal information system (SIP) data

January 2003 - December 2007
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Non-experimental impact evaluation methods

Compare beneficiaries before and after?

14
12 -
10 Is this the impact of
Poverty g the program?
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Before project After project
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Non-experimental impact evaluation methods
Compare beneficiaries before and after?

Is this the impact of
the program?
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Non-experimental impact evaluation methods
Compare beneficiaries and non-beneficiaries?
_Isthis the impact of
the program?

Beneficiaries
Non-beneficiaries
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After project
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Non-experimental impact evaluation methods
Compare beneficiaries and non-beneficiaries?
_Is this the impact of
]__ the program?

Beneficiaries
Non-beneficiaries
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Non-experimental impact evaluation methods

B Treatment

m Control

D-i-D: Combine the two differences?
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Non-experimental impact evaluation methods

D-i-D: Combine the two differences?
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Non-experimental impact evaluation methods

Difference-in-differences
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Non-experimental impact evaluation methods
o

Difference-in-differences

« Difference #1: compare over time, before and after the program

« Difference #2: compare treatment and control groups

e Lot
-2 «&——_ Treatment -
2$/ Control

Before
After 12 10
Difference 6 2 4
Before - D:jf::crence-m-
After ifferences
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Non-experimental impact evaluation methods

Key assumption: Parallel trends
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Non-experimental impact evaluation methods

Key assumption: Parallel trends

12

baseline after
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Non-experimental impact evaluation methods

Key assumption: Parallel trends

12

baseline after
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s: Low birthweight
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Non-experimental impact evaluation methods
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Program axposura at birth

Case study 1: Difference-in- dlfferences

 Eligible PANES applicants
« 2003 - 2005 (pre-PANES) low birthweight: 0.102
« 2005 -2007 (post-PANES) low birthweight: 0.091
 Ineligible PANES applicants
2003 - 2005 (pre-PANES) low birthweight: 0.093
2005 - 2007 (post-PANES) low birthweight: 0.091 ¢
(Treated after - Treated before) - (Control after - Control before)

Difference-in-differences estimate
-0.093) =-0.009

(0.091-0.102) - (0.091
10% decrease in low birthweight
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Non-experimental impact evaluation methods

How do we know?

« Compare history of control and treatment groups before baseline
« Sometimes administrative data is available, but often limited
« More likely to hold when groups are similar at baseline, and

treatment selection is based on criteria other than the outcome
indicator of interest

« Often not the case: Targeting is frequently determined by
outcomes we care the most about, e.g., poverty
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Non-experimental impact evaluation methods

|ldentifying a control group

Which of these two groups could serve as a counterfactual? Choose!
1. Households in the same country but without PANES?

2. Households outside the country and without PANES?

3. Both?

4. Neither?

Why didn't those communities get the intervention?

e Selection criteria are sources of differences!

PPPPPPPPPPP

= R Ggﬁg PEI Impact Evaluation Workshop — Moving Economic Inclusion to Scale| Hosted by PEI and DIME

THE WORLDBANK  TRANSFORM DEVELO!



5
1

4
1

Non-experimental impact evaluation methods

Case study 2: Turkey ESSN

* In some cases, matching methods can help T
improve balance between control and
treatment groups in a diﬁe rence—in—diﬁe rences Fig. 1. Kernel density smoothing of propensity score across treatment and

control samples.

Kernel density
3
1
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L

1

Control

Treatment

d €Sl g n Panel B: Changes in the number of children aged 0-17 years

« Ozleretal.(2021)find an emergency cash transfer < basine by propensity score
program targeting refugees in Turkey increased
household consumption, but induced children to
shift from treated to control households - - -

* To improve credibility of difference-in-difference T \
estimates, they compare changes in outcomes \ \ \

_ \

among matched treated and control households \ | B—1 \

with similar characteristics

6 months 12 months 18 months
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https://www.sciencedirect.com/science/article/abs/pii/S030438782100105X

Non-experimental impact evaluation methods

Summary: Difference-in-differences

« Compare treatment and control groups before AND after the project
Interventions

* Pick control that is as similar as possible to the treatment group at
baseline
« Create a long list of sites that could receive the project
» Use historical data available to pick comparison sites

* If selection already happened, we need historical data to make the
parallel trends assumption credible
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Non-experimental impact evaluation methods

Regression discontinuity designs

* Regression discontinuity designs (RDD) are more similar to
randomization
« Identifying "almost random" assignment from selection process

* Need a clear and enforced eligibility rule
« Asimple, quantifiable score ("threshold")

* Assignment to treatment must be based on this rule
* e.g., target households with poverty score above a threshold
* e.g., target households with children below a certain age

« Basicidea: Compare individuals just above and just below threshold
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Non-experimental impact evaluation methods

RDD logic

« Assignment to treatment depends on continuous "score" or ranking
(e.g., child's age)
« Potential beneficiaries are ordered by score
* There is a cut-off point for "eligibility" -- clearly defined pre-determined criterion

» Cut-off determines assignment to treatment

* This usually results from administrative decisions

* e.g., resource contraints limit coverage
* e.g., very targeted intervention expected to be more suitable for some people

» Transparent rules rather than discretion used
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Non-experimental impact evaluation methods
« Two approaches to estimating the impacts of Uruguay PANES

Difference-in-differences: Compare eligible and ineligible beneficiaries, before
Regression discontinuity design: Compare just barely eligible and just barely

Case study 3: Uruguay PANES

and after the program

ineligible beneficiaries
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Non-experimental impact evaluation methods

Below threshold, most receive PANES

C: Treated

Income score

chchchchchchch
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Non-experimental impact evaluation methods

Many observations near threshold, no
evidence of manipulation

Panel A: Distribution of the standardized PANES predicted income score,
McCrary (2008) test
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Non-experimental impact evaluation methods

Differences in birthweight only emerge
after program

A: Low birthweight, program period B: Low birthweight, pre-program period

™3
—

A3

Income score

Income score
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Non-experimental impact evaluation methods

RDD drawbacks

 How generalizable are the results?

* They only tell us about the impact of economic inclusion programs on
birthweight for households at the threshold!

« Economicinclusion may have different impacts on birthweight for the poorest
households, or richer households!

« Hard to know in advance how many households will be close to the cut-
off
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Non-experimental impact evaluation methods

Using RDDs

* Major advantages
* Transparency
» Graphical, intuitive presentation

* Major shortcomings
* Requires many observations around cut-off
* Not guaranteed ex-ante

« Why?
« Can only estimate impacts using sample close to cut-oft
* Results therefore most applicable only to households close to cut-off
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Non-experimental impact evaluation methods

Summary: RDD

« Randomized control trials require minimal assumptions and provide
Intuitive estimates
* Not always feasible

* Non-experimental methods require assumptions that must be carefully
tested
* More data-intensive
* Not always testable
» Challenging to use when you want to "unbundle" impacts
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Non-experimental impact evaluation methods

How to fit things together

Get creative

Mix-and-match types of methods!

* In example of PANES: Finding similar results using regression discontinuity and
difference-in-differences improves credibility of results

* Sometimes, may be possible to implement multiple methods on one data set (e.g.,
administrative data), but for other outcomes may need to use just one method
- Difference-in-differences requires many observations of the same individuals over
time

« Regression discontinuity requires many observations of individuals near the
threshold

Address relevant questions with relevant techniques
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Thank you!
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