Fifteen years of progress in the collection of prices data in the Netherlands

Name: Jan Walschots
Title: Statistical researcher
Agency: Statistics Netherlands
Email address: jwas@cbs.nl
Overview of new methods since 2003

- Scanner data
- Webscrapers
- Robot assisted data collection
- Registrations

Some caveats in the use of the new methods
Why modernisation of price collection?

- Reduction of administrative burden
- Cost effective
- Improved quality of CPI
- More detail in publication
- Dynamics of consumer markets
- Internet purchases
Before 2000

- Mainly price collection in shops
- Price collection by telephonic interviews
- Questionnaires

2000-2010

- Introduction of scanner data June 2002
- Introduction of price collection on internet
- Reduction of price collection in shops

From 2010

- More scanner data
- More internet data
- Registers and administrative data
- Strong reduction of price collection in shops
Data first received end 1990s
Results first published for two supermarket chains June 2002
Data per GTIN (Global Trade Item Number) (or UPC or EAN)
Total turnover and number of products sold per GTIN
Data on weekly basis for three full weeks of the month
Price defined as turnover/quantity; three weeks combined

Issues
Mimic traditional methods or make use of all available data on transactions
Definition of the product
High attrition rate of GTINs
The relaunch problem
Returned products (negative transactions)
Process for supermarkets:

- **Version 0**: Make use of actual turnover data and make chained Fisher index
 - Problem was high downward drift of the index and this method was never implemented

- **Version 1**: Laspeyres-type index;
 - Basket of ±10000 GTINs per retailer
 - Weights based on year t-1 sales
 - Important disappearing GTINs were replaced using Quality Adjustment where needed
 - Problem was high workload for replacements
Version 2: GTINs classified at the level of a very detailed retailer specific classification

Filters determine whether a GTIN is included or excluded on a monthly basis:
- Outliers (price increase by ≥300%)
- Market share ≥ 0.8 * average market share per GTIN
- Dumpfilter: significant price decrease and low sales

Then use unweighted chained Jevons index

Problems:
- Version 2 needs tailor made filter settings and detailed classifications per retailer or shop-type
- Price developments at the time of relaunches may be missed
Other scanner data

- Package holidays
- Do-it-yourself stores
- Drugstores
- Department store
- Mobile phones

- Daily transaction data on fuels (petrol and diesel)
Desire to have one generic system for processing all scanner data

Basic idea of the new method that is currently developed:
- Combine GTINs on the basis of GTIN metadata to more or less homogeneous and continuous groups; for these groups unit values are calculated,
- Calculate per group “value per unit” correction factors V_i to make aggregation of values and units sold over GTIN groups feasible,
- Calculate quality adjusted unit value index,

New and disappearing GTINs can be dealt with almost immediately
- Article groups lead to continuity over time,
- V_i is an implicit adjustment factor that leads to comparability across the groups and allows unit value approach, calculating indices for prices, quantities and values simultaneously.
- This QU-method was introduced last January for mobile phones and will be implemented in May for the first department store.
Data collection with webscrapers started in 2012:

- Robots collect daily all products and prices from webshops
- Including product description and classification characteristics
- We started with major webshops for clothing

- Data were analysed for some years;
- Classification and methodology were developed

Now:

- 15 websites are scraped daily
- 3 websites are used for computation of CPI
- Automated collection, monitoring, postprocessing, transport and storage
- Daily/weekly monitoring

Future:

- 20 – 30 websites in 2018?
Netiquette
- Robots identify as “CBSBot, Statistics Netherlands”
- Robots operate during night / morning
- Robots minimize load: wait for a second between requests

Communication
- Statistics Netherlands informs web site owners in case of considerable data retrieval

Database law / intellectual property rights
- Statistics Netherlands operates under the Dutch statistics law and does not use the data for any other means than specified in that legislation.
Specialists who collect prices manually from the internet now use the robot tool. The robot tool mimics data collection from the internet by CBS staff. It automatically checks whether the webpage where the price is mentioned has changed.

There are two possible outcomes:
- **Nothing changed**, prices can be saved in database
- **Some changes**, need attention of statistician

Two clicks to hold old price or store a new one.

More prices collected in less time (80% productivity improvement)
Better quality and less rework (reduced chance of making errors)
Work is more interesting
No need for organisational changes

This methodology is suitable in cases where few prices are collected from many websites, for example: driving lessons, cinema tickets, pizza delivery services.
Cooperate with other players that have transaction data available.

Example:
- Development of house price index
- First published in 2008
- Combine data from various sources:
 - Data from Land register on transactions
 - Data from appraisal values for tax purposes
 - Metadata on houses
- Also: register on Energy prices from regulatory authority
Price observers were eyes and ears for price statisticians in the shops

Product offers on the internet do not necessarily imply transactions

Problem of returned products, particularly in web-shops

Relaunch problem and product definition

Differences between internet prices and shop prices

Demarcation of national and foreign webshops

Lesson learned: Do not aim for the ultimate best method overnight. Also moderate progress is a gain.
Thank you for your attention