INSTRUMENTAL VARIABLES Technical Track Session IV

Sergio Urzua University of Maryland

Instrumental Variables and IE

- Two main uses of IV in impact evaluation:
 - 1. Correct for difference between assignment of treatment and actual treatment
 - E.g. Randomized Assignment with non-compliers
 - E.g. Fuzzy Regression Discontinuity
 - 2. Look for exogenous variation (ex-post) to evaluate the impact of a program in absence of a prospective design.

Here:

 General Principles behind IV and an example with a focus on use (1)

An example to start off with...

- Say we wish to evaluate a voluntary job training program
 - Any unemployed person is eligible (Universal eligibility)
 - Some people choose to register (Participants)
 - Other people choose not to register (Non-participants)
- Some simple ways to evaluate the program:
 - Random sample containing treatment status (P), exogenous controls (X) and outcome (Y).
 - First alternative: To compare situation of participants and non-participants
 after the intervention. We already learned this estimator would be biased!

Voluntary job training program

Say we decide to compare outcomes for those who participate to the outcomes of those who do not participate:

A simple model to do this:

$$y = \alpha + \beta_1 P + \beta_2 x + \varepsilon$$

$$P = \begin{cases} 1 & \text{If person participates in training} \\ 0 & \text{If person does not participate in training} \end{cases}$$

X = Control variables (exogenous & observed)

- Why would this not be correct? 2 problems:
 - Decision to participate in training is endogenous (e.g. based on an "unmeasurable" characteristic).
 - Variables that we omit (e.g. unmeasured) but that are important

P and ε are correlated

What can we do to solve this problem?

We estimate:

$$y = \beta_0 + \beta_1 x + \beta_2 P + \varepsilon$$

- $lue{}$ So the problem is the correlation between $m{P}$ and $m{arepsilon}$
- Intuition of IV: How about we replace P with "something else" that is ...
 - o ... similar to P
 - ω but is not correlated with ε

Back to the job training program

- **■ P** = participation
- ε = that part of outcomes that is not explained by program participation or by observed characteristics
- Instrumental variable will be a variable Z that is:
 - (1) Closely related to participation P. [i.e. Corr (Z, P) > 0]
 - (2) but doesn't directly affect people's outcomes Y, except through its effect on participation. [i.e. Corr $(Z, \varepsilon) = 0$]
- Hard to come up with such a variable ex-post ...
 but if we anticipate this problem, we can plan for it

"Generating" an instrumental variable

Encouragement design:

- Say that a social worker visits persons to encourage them to participate.
- She only visits 50% of persons on her roster, and
- She randomly chooses whom she will visit

If she is effective, many people she visits will enroll. There will be a correlation between receiving a visit and enrolling.

- But visit does not have direct effect on outcomes (e.g. income) except from its effect through enrollment in the training program.
- → Randomized "encouragement" or "promotion" visits can be a useful instrumental variable.

Characteristics of an instrumental variable

Define a new variable Z

$$Z = \begin{cases} 1 & \text{If person was randomly chosen to receive the} \\ & \text{encouragement visit from the social worker} \\ 0 & \text{If person was randomly chosen not to receive the} \\ & \text{encouragement visit from the social worker} \end{cases}$$

- Corr (Z, P) > 0People who receive the encouragement visit are more likely to participate than those who don't
- Corr $(Z, \varepsilon) = 0$ No correlation between receiving a visit and benefit to the program apart from the effect of the visit on participation.
- Z therefore satisfies the conditions for being an instrumental variable

Two-stage least squares (2SLS)

Remember the original model with endogenous P:

$$y = \beta_0 + \beta_1 x + \beta_2 P + \varepsilon$$

Step 1

Regress the endogenous variable P on the instrumental variable(s) Z and other exogenous variables

$$P = \delta_0 + \delta_1 x + \delta_2 Z + \tau$$

- lacksquare Calculate the predicted value of P for each observation: \hat{P}
- Since Z and x are not correlated with ε , neither will be $\hat{\rho}$
- You will need one instrumental variable for each potentially endogenous regressor.

Two-stage least squares (2SLS)

Step 2

Regress y on the predicted variable P and the other exogenous variables

$$y = \beta_0 + \beta_1 x + \beta_2 \hat{P} + \varepsilon$$

- Note: The standard errors of the second stage OLS need to be corrected because $\stackrel{\frown}{P}$ is a "generated" regressor.
- In Practice: Use STATA ivreg command, which does the two steps at once and reports correct standard errors.
- Intuition: By using Z to predict P, we cleaned P of its correlation with η
- It can be shown that (under certain conditions) $\beta_{2,IV}$ yields a consistent estimator of γ_2 (large sample theory)

Example: Training & Earnings

Consider the model:

$$y = \beta_0 + \beta_2 P + \varepsilon$$

- Random Sample of 10,000 observations
- Data contains (y , P , Z)
- •6,328 individuals with D=1 & 3,618 with D=0.

Example: Training & Earnings

Consider the model:

$$y = \beta_0 + \beta_2 P + \varepsilon$$

First Strategy (Participants vs. Non-participants)

- E(Y1|D=1) = -0.227
- E(Y0|D=0) = 0.996
- •Thus, $\delta = E(Y1|D=1) E(Y0|D=0) = -1.223***$
- •You might conclude then that the effect of the program is negative. Selection bias?

Example: Training & Earnings

Consider the model:

$$y = \beta_0 + \beta_2 P + \varepsilon$$

Let introduce the instrument Z:

•
$$Corr(Z,D)=0.37***$$

$$-Pr(D=1|Z=1)=0.82$$

$$-Pr(D=1|Z=0)=0.45$$

$$\frac{Cov(y,Z)}{Cov(P,Z)} = \frac{E(Y \mid Z = 1) - E(Y \mid Z = 0)}{E(P \mid Z = 1) - E(P \mid Z = 0)} = 0.210$$

Example: Was it real?

Consider the model:
$$y = \beta_0 + \beta_2 P + \varepsilon$$

• I generated the data:

$$Y1(u)=0.1 + 0.2 + \varepsilon 1(u)$$

$$YO(u) = 0.1 + \mathcal{E}O(u)$$

$$P = 1$$
 if $Z(u) - YO(u) > 0$, =0 otherwise

$$Y(u) = Y1(u) * P(u) + Y0(u) * (1-P(u))$$

THUS, I KNOW THE TRUE AVERAGE TREATMENT EFFECT

Example: Was it real?

Consider the model:

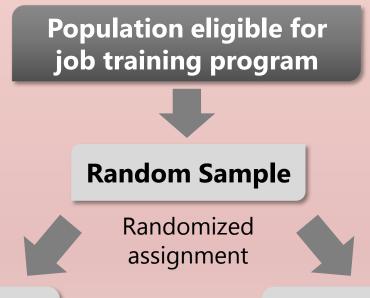
$$y = \beta_0 + \beta_2 P + \varepsilon$$

In our fake data, we observe (D,Z,Y1,Y0,Y)

```
•Treatment Effect= E(Y1|D=1)-E(Y0|D=1)=0.2
•Selection Bias = E(Y0|D=1)-E(Y0|D=0)=-1.423
•\delta = E(Y1|D=1)-E(Y0|D=0)=0.2+(-1.423)=-1.2
```

- IV got it right (IV=0.21)
- •This is not rocket science!

Non econometric intuition: Illustration from voluntary job training program



Standard Information only

Monthly income 1 year later = 700

25% take-up

Standard Information + Encouragement visit

Monthly income 1 year later = 850

75% take-up

Question: what is the impact of the job training program on the monthly income of participants?

Standard Information Package only

Monthly income 1 year later = 700

25% take-up

Standard + Additional Information Package

Monthly income 1 year later = 850

75% take-up

Question: what is the impact of the job training program?

Stage 1: Take-up difference between "well informed" and "not well informed":

Stage 2a: Income difference between the "well informed" and "not well informed" group:

Stage 2b: Impact of participation: Income difference scaled by take-up difference:

Reminder and a word of caution...

- corr $(Z,\varepsilon)=0$
 - If $corr(Z, \varepsilon) \neq 0$, "Bad instrument"
 - "Finding" a "naturally" good instrument is hard!
 - But you can build one yourself with a randomized encouragement design
- corr (Z,P) ≠0
 - If $corr(Z, P) \approx 0$ "Weak instruments": the correlation between Z and P needs to be sufficiently strong.
 - If not, the bias stays large even for large sample sizes.

Reminder and a word of caution: Heterogeneity

- It is possible to show that, in the context of heterogeneous effects, the IV approach might NOT provide meaningful results.
- However, we can still "evaluate" using structural models.
- Example: Evaluating the impact of financial intermediation

References

- Heckman, J., E. Vytlacil, S. Urzua (2006). "Understanding instrumental Variables in Models with Essential Heterogeneity", Review of Economics and Statistics, v88, n3.
- Heckman, J., S. Urzua(2010) "Comparing IV With Structural Models: What Simple IV Can and Cannot. *Journal of Econometrics*, Vol. 156(1), 2010
- Angrist, J. D. and A. Krueger (2001). "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments", *Journal of Economic Perspectives*, 15(4).
- Angrist, J. D., G. W. Imbens and D. B. Rubin (1996). "Identification of Causal Effects Using Instrumental Variables", *Journal of the American Statistical Association*, Vol. 91, 434.
- Angrist, J., Bettinger, E., Bloom, E., King, E. and M. Kremer (2002). "Vouchers for Private Schooling in Colombia: Evidence from a Randomized Natural Experiment", *American Economic Review, 92, 5*.
- Imbens, G. W. and J. D. Angrist, (1994). "Identification and Estimation of Local Average Treatment Effects." Econometrica, 62(2).
- Newman, J., M. Pradhan, L. B. Rawlings, G. Ridder, R. Coa, J. L. Evia, (2002). "An Impact Evaluation of Education, Health, and Water Supply Investments by the Bolivian Social Investment Fund.", World Bank Economic Review, vol. 16(2).