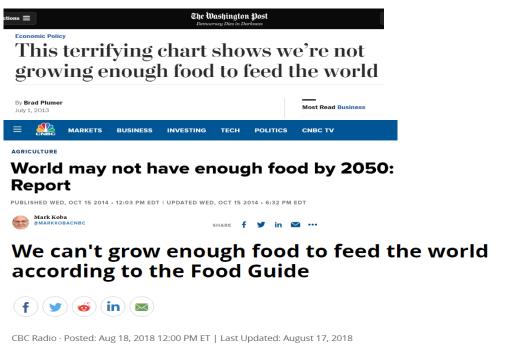
Yield Growth Patterns for Food Commodities: Insights and Challenges*

John Baffes **

World Bank

Xiaoli Etienne

University of Idaho


Agriculture Policies Community of Practice (APCoP) Webinar, World Bank January 30, 2025

Outline

- > The context
- Objective 1: Construct global, aggregate food production and yield indices
- Objective 2: Estimate the long term yield growth rate
- Objective 3: Test whether global yield growth has decelerated
- Conclusions and future research

Will there be enough food production to feed the world?

- Global population to approach 10 billion by 2050, up from 8.2 billion in 2024
- Higher income; diversion to biofuels; undernourishment
- By some accounts, global crop production must double by 2050 (from ~ 2015 levels) to meet global food requirements

Yield Trends Are Insufficient to Double Global Crop Production by 2050

Deepak K. Ray*, Nathaniel D. Mueller, Paul C. West, Jonathan A. Foley

Institute on the Environment (IonE), University of Minnesota, Saint Paul, Minnesota, United States of America

Food requirements can only be met through yield growth

- Given land constraints, future food requirements can be met from productivity (mostly yield) increases.
- Yield growth, however, may be slowing due to:
 - Climate change
 - > Declining soil fertility due to erosion, salinization, nutrient depletion
 - > Declining supplies of groundwater, in turn, limiting irrigation
 - Excessive pesticide and fertilizer application
 - Declining pollinators
 - Inadequate research funding

Summary of the iterature

- Most literature concludes that crop yield growth experienced declines or, at best, stagnation
 - Cassman (1999); Alston et al. (2009); Finger (2010); Lin and Huybers (2012); Ray et al. (2012) Ray et al. (2013); Michel and Makowski (2013); Iizumi et al. (2014); Wei et al. (2015); Li et al. (2016); Van Ittersum et al. (2016); Madhukar et al. (2020).
- The literature also reports a high degree heterogeneity in yield growth across crops & regions.
- But some papers take a more positive view
 - Alexandratos (1999); Ausubel et al. (2013); Nature (2020).

Outline

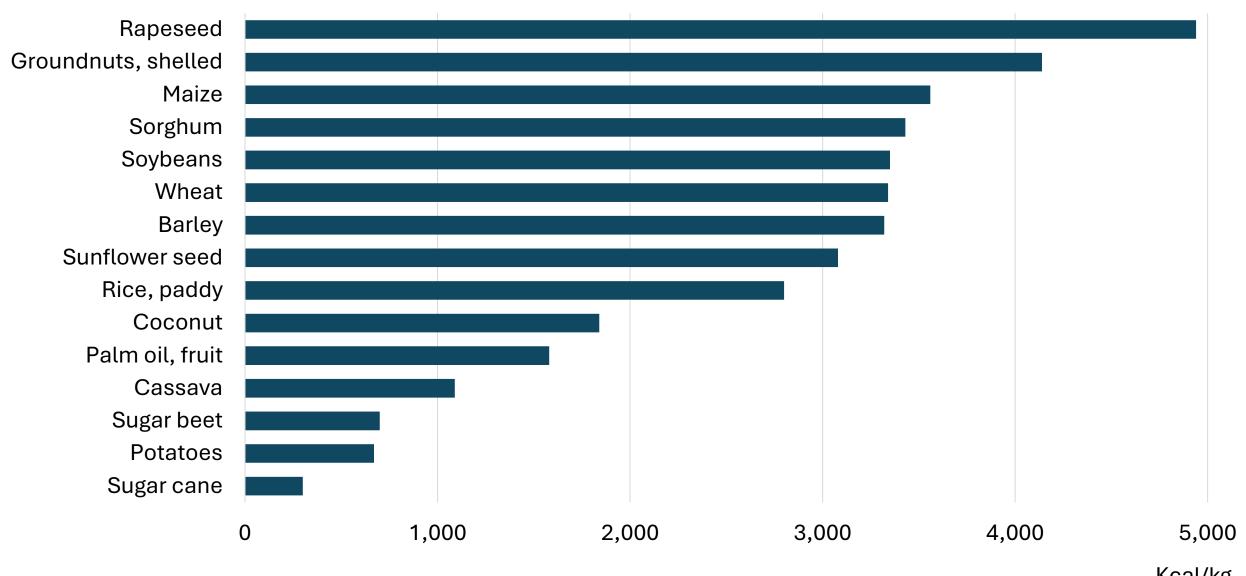
- > The context
- Objective 1: Construct global, aggregate food production and yield indices
- Objective 2: Estimate the long-term yield growth rate
- Objective 3: Test whether global yield growth has decelerated
- > Conclusions and future research

A global yield index

We compute the global calorie-based yield index as follows:

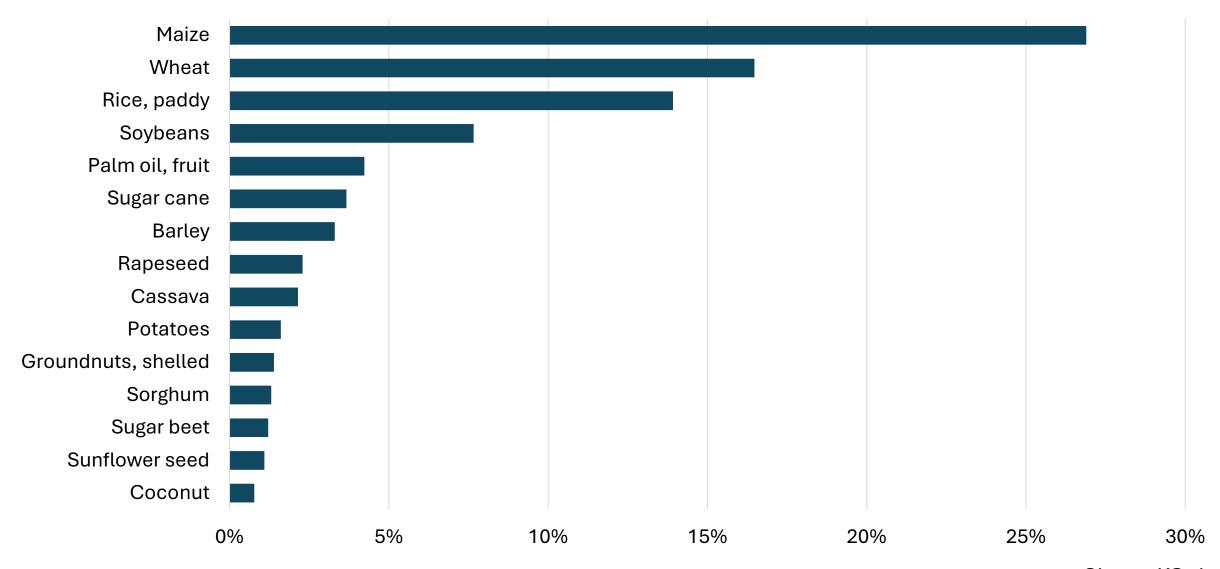
$$y_{t} = \frac{\sum_{i=1}^{N} w_{i} Q_{it}}{\sum_{i=1}^{N} L_{it}}$$

 $i=1,\ldots,N$: individual commodities; $t=1,\ldots,T$: year w_i : calorific content of i per weight unit; Q_{it} : total output of crop i at year t in weight unit


 L_{it} : land allocated to commodity i at year t

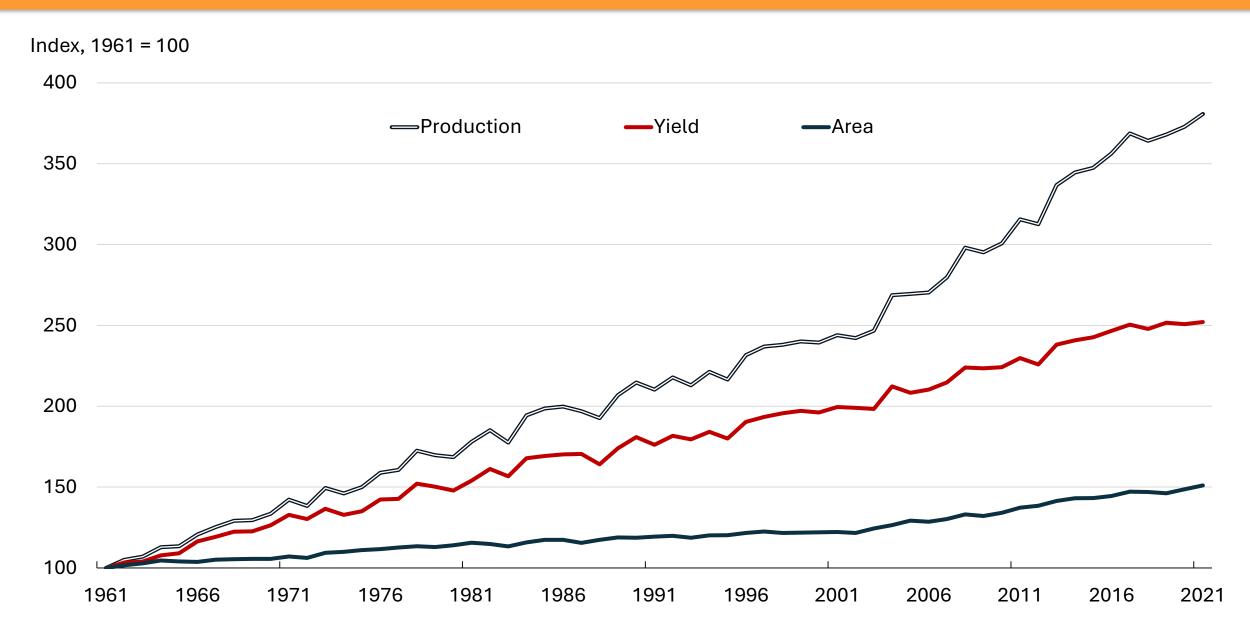
- Calorific-based indices have been widely used on the consumption side:
 - > Bekaert (1991); Sibhatu and Qaim (2017).
- They have not been used on the production side as much, with some exceptions:
 - Williamson and Williamson (1942); Roberts and Schlenker (2009); D'Odorico et al. (2014); Bobenrieth, Bobenrieth, and Wright (2013); Cassidy et al. (2013).

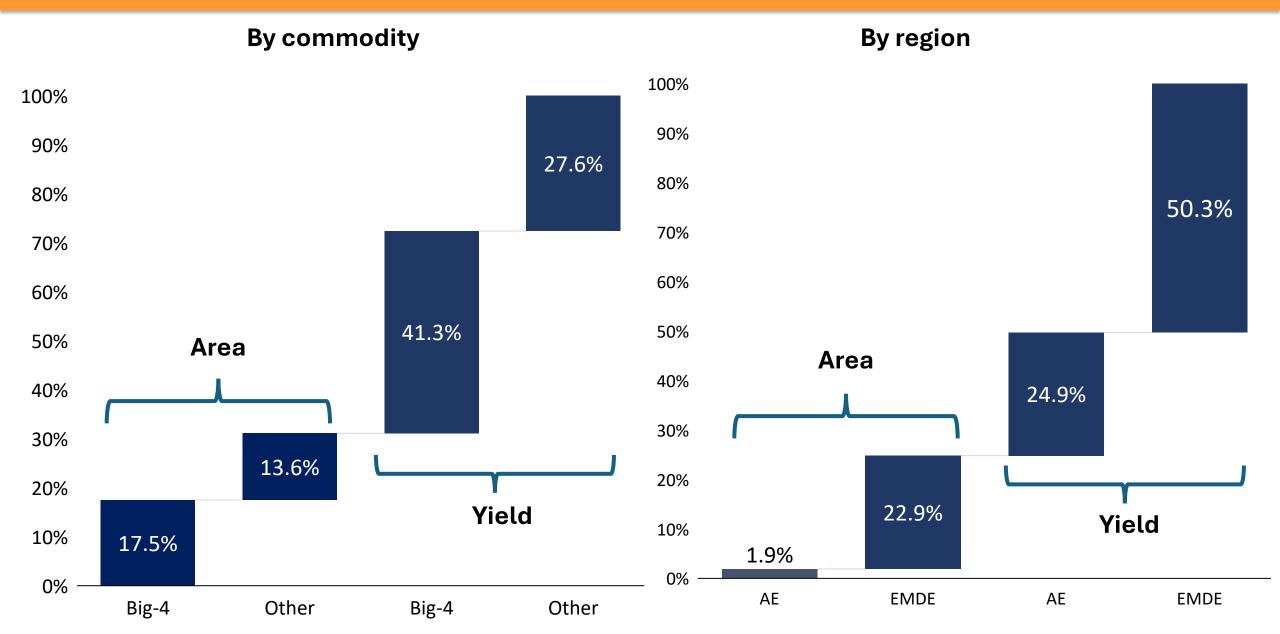
Data


- Production and calorific content data for 144 major crops globally
 - Include cereals, oilseeds, vegetables, fruits, pulses, and other crops
 - Account for roughly 98% of total agricultural land and crop production
 - Data source: FAOSTAT, FAO food balance sheet, and USDA PS&D
- Sample period: 1961-2021
- We construct aggregate, regional, and commodity-specific yield indices

Calorific content for selected commodities

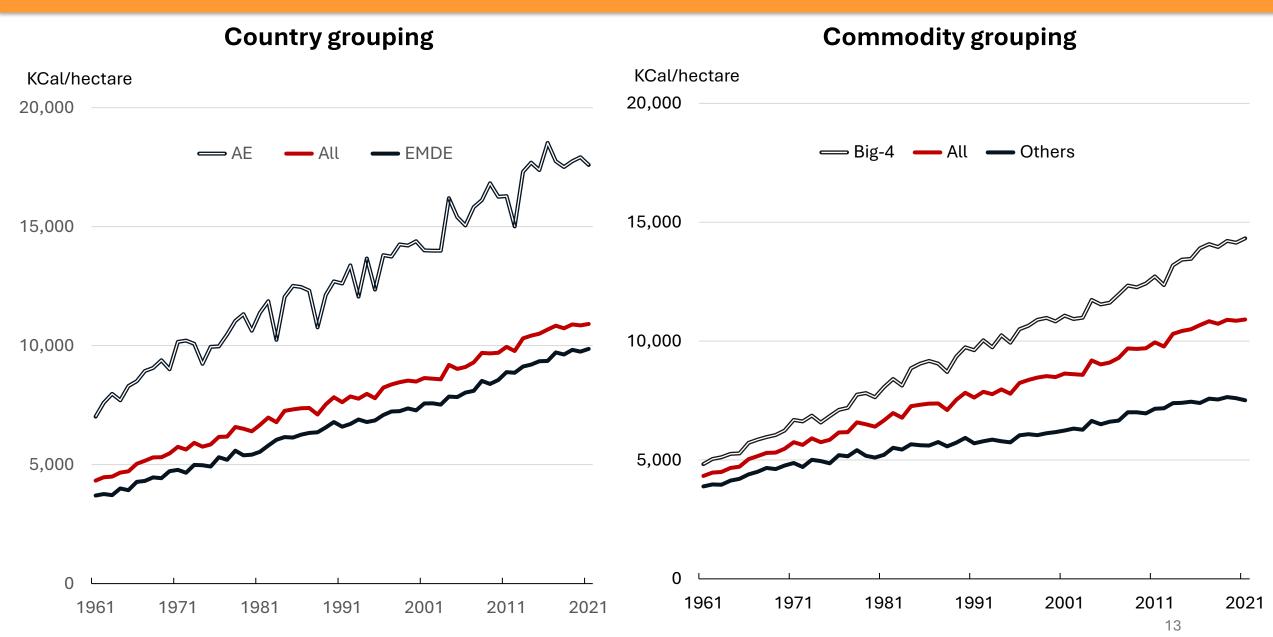
Kcal/kg


Global food production shares for selected commodities, 2019-21


Share, KCal

Sources: Authors calculation from FAO data

Global production, yield, and area



Contribution to production growth from 1961-63 to 2019-21

Notes: AEs= Advanced Economies; EMDEs = Emerging Markets and Developing Economies; Big-4 includes maize, wheat, rice, and soybeans.

Yield growth by country and commodity grouping

Sources: Authors calculation from FAO data

Outline

- > The context
- Objective 1: Construct global, aggregate food production and yield indices
- Objective 2: Estimate the long-term yield growth rate
- Objective 3: Test whether global yield growth has decelerated
- > Conclusions and future research

Defining and estimating growth rates

• In a two-period context, growth rate typically calculated as the percentage change

$$\rho = (y_1 - y_0)/y_0.$$

• Because $(y_1 - y_0)/y_0 \neq (y_0 - y_1)/y_1$, often growth rate reported as logarithm of the ratio,

$$\rho = \log\left(\frac{y_1}{y_0}\right).$$

• For multiple periods, the following regression model is estimated,

$$log(y_t) = \beta_0 + \beta_1 t + \varepsilon_t$$

growth rate is calculated as:

$$\rho = exp(\beta_1) - 1$$

 \blacktriangleright growth rate is often reported as estimate of β_1 rather than ρ , since for small growth rates $\beta_1 \approx \rho$

The "problem" with the logarithmic regression

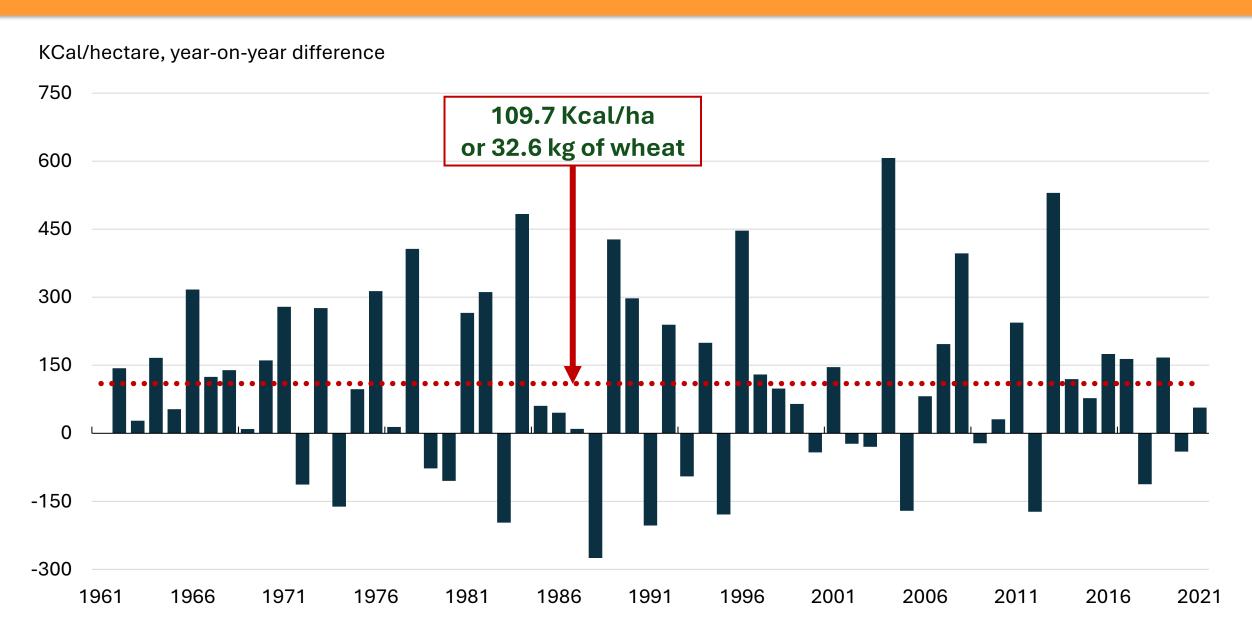
An important issue with logarithmic regression is that the results are sensitive to the "base effect".

- Maize yields grew at 2.6 percent per annum during 1961-71 and 1.7 percent during 2011-21.
- However, maize yields grew at 203 KCal and 324 KCal annually during these two periods.
- Conclusion—yield growth for maize:
 - decelerated by one-third (based on the logarithmic specification)
 - but accelerated by more than 50 percent (based on the linear specification).

Choosing the right model

We utilize the following Box-Cox transformation:

$$y(\lambda) = \begin{cases} (y^{\lambda} - 1)/\lambda & \lambda \neq 0\\ \log(y) & \lambda = 0 \end{cases}$$


which embeds linear ($\lambda = 1$, $y_t = \beta_0 + \beta_1 t + \varepsilon_t$) and logarithmic ($\lambda = 0$, see earlier slide) transformation of the dependent variable.

- Based on the Box-Cox test, we conclude that data generation process for global yield growth is better represented by linear specification.
- We use linear model to (i) estimate growth rate; (ii) test for structural break.

Parameter estimates of yield growth

	All	Big-4	Other	AE	EMDE
Constant	4332.75*** (41.08)	4691.98*** (47.48)	4020.06*** (50.27)	7401.90*** (131.02)	3526.23*** (34.60)
Trend	108.98*** (1.33)	158.05*** (1.62)	59.12*** (1.41)	175.71*** (4.20)	102.05*** (1.43)
PP test	-5.47***	-6.14***	-3.81***	-7.33***	-4.28***
AIC	803.07	836.07	795.83	955.25	796.18

Yield growth

Outline

- > The context
- Objective 1: Construct global, aggregate food production and yield indices
- Objective 2: Estimate the long-term yield growth rate
- Objective 3: Test whether global yield growth has decelerated
- > Conclusions and future research

Testing for non-linearities

Based on the linear specification we tested for two types of non-linearities:

• First, we introduced a time-square term to determine if the yield growth pattern has changed throughout the sample period:

$$y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \varepsilon_t$$

where β_1 approximates the growth rate and β_2 denotes the rate at which growth decelerates (when negative) or accelerates (when positive).

• Second, we tested for structural break:

$$y_t = \beta_0 + \beta_1 t + \beta_2 (t - \tilde{\tau}) D + \varepsilon_t$$

where τ is the estimated break year, D is a dummy variable taking the value of one for the years after the break and zero otherwise. We used the QRL procedure to determine the break date (Andrews 1993; Andrews and Ploberger 1994)

Parameter estimates of yield growth w/ Trend²

	All	Big-4	Other	AE	EMDE
Constant	4367.41***	4705.00***	4077.56***	7548.26***	3688.04***
	(68.35)	(55.38)	(97.15)	(196.21)	(59.54)
Trend	105.67***	156.81***	53.64***	161.77***	86.64***
	(5.65)	(5.85)	(6.85)	(16.22)	(5.00)
Trend ²	0.05	0.02	0.09	0.22	0.25***
	(0.09)	(0.10)	(0.10)	(0.27)	(0.08)
PP test	-5.52***	-6.15***	-3.93***	-7.49 ***	-5.01***
AIC	804.60	838.03	796.37	956.56	785.64

Parameter estimates of yield growth w/ structural break in 1993

	All	Big-4	Other	AE	EMDE
Constant	4366.77***	4679.28***	4091.72***	7574.11***	3640.02***
	(55.31)	(45.70)	(82.58)	(166.17)	(41.18)
Trend_before	106.85***	158.84***	54.64***	164.95***	94.94***
	(2.80)	(2.82)	(3.60)	(8.07)	(2.41)
Trend_after	4.47	-1.67	9.42	22.64	14.96***
	(5.40)	(6.47)	(5.85)	(16.58)	(4.77)
PP test	-5.54***	-6.15***	-4.07***	-7.67***	-4.93***
AIC	804.24	838.00	793.57	955.48	786.86

Outline

- > The context
- Objective 1: Construct global, aggregate food production and yield indices
- Objective 2: Estimate the long-term yield growth rate
- Objective 3: Test whether global yield growth has decelerated
- Conclusions and future research

Conclusion

- We find that, contrary to the commonly held view, there is no evidence of deceleration in global yield growth (in fact, there is weak evidence of acceleration),
- This suggests that while certain regions, commodities, or countries may experience stagnation or slower growth in yields, these are balanced by yield acceleration in other areas.
- On a global scale, yields have consistently increased from 1961 to 2021 at a rate equivalent to 109 KCal/ha per year, which translates to an additional 32.6 kilograms of wheat per hectare annually.

Further discussions

Challenges:

- Increasing frequency and intensity of adverse weather patterns, exacerbated by climate change
- Distorting trade polices that restrict food availability in regions experiencing food deficits
- Equitable access to food across income groups
- The aggregate approach proposed useful for future research
 - > Assessment of environmental strain: water usage, chemical input use
 - Identifying patterns of production or yield variability
 - Understand susceptibility of commodities and regions to changes in weather patterns and climate phenomena