Measuring Impact
Causal Inference
Experimental
non-Experimental Methods

Vincenzo Di Maro, DIME

Bureaucracy Lab
Development Impact Evaluation | Global Governance Practice
October 22-25, 2019, Brussels, Belgium
IMPACT EVALUATION METHODS

Causal Impacts/Inference

- Regression Discontinuity
- Difference-in-differences
- Propensity Score Matching

Experiments

- Randomized Control Trials

Non-experimental

Participants – Non Participants

Before and After

Monitoring
Case study: *training program for civil servants - magistrate/Judges*

Problem: Case disposition is slow

Intervention: Training. One-week training carried out by expert trainers on the principles and techniques to manage cases efficiently.

Invitation sent to 10000 magistrates, 4030 decide to participate, 5970 did not.

Main outcome: average case duration (in days)
How we can evaluate this?

Participants – Non Participants

Participation to intervention is voluntary

The **training** was offered to all **10000** magistrates.

Each magistrate could decide to receive the intervention (**opt in**) or just decline it and (**opt out**).

Idea: **compare case disposition speed** of magistrates that **opted in** with those that **opted out**
Problem: **Selection Bias. Why magistrates opted in?**
- Better performers or higher capacity (observable)
- Stronger motivation (unobservable)

Parts of this presentation build on material from Impact Evaluation in Practice www.worldbank.org/ieinpractice
How we can evaluate this?

Before - After

Idea: compare case disposition speed of magistrates that opted in (treated) after the intervention started with...

...same magistrates (control) before the interventions started

This is: case disposition speed for participants before and after the intervention
Problem: **Time difference.** Other things may have happened over time.

- Other programs for treated magistrates
- Overall economic conditions got better
These 2 tools are **wrong** for IE

Before - After

Compare: Same subjects Before and After they receive an intervention.

Problem: Other things may have happened over time.

Participants – Non Participants

Compare: Group of subjects treated (participants) with group that chooses not to be treated (non participants)

Problem: Selection Bias. We do not know why they are not participating.

Both counterfactuals (comparison groups) may lead to **biased estimates** of the impact.

NOT causal inference
Before-After and Monitoring

Monitoring tracks indicators over time
 Among participants
It is descriptive before-after analysis
It tells us whether things are moving in the right direction

It does not tell us \textit{why} things happen or \textit{how} to make more happen

\textit{NOT} causal inference
Impact Evaluation

Tracks mean outcomes over time in the treatment group relative to the control group.

Compares what DID happen with what WOULD HAVE happened (counterfactual).

Identifies cause-effect link controlling for ALL other time-varying factors.

IS causal inference
Other names: **Randomized Control Trials (RCTs)** or Randomization

Assignment to Treatment and Control is based on chance, it is random (like flipping a coin)

Treatment and Control groups will have exactly the same characteristics (balanced) at baseline.

Only difference is that treatment receives intervention, control does not
Random assignment

1. Population

2. Evaluation sample

3. Randomize treatment

External Validity

Internal Validity

Control

Treatment
Encouragement design

• Not always possible to randomly assign to control group:
 – Political and ethical reasons
 – Participation is voluntary and all eligible

• Randomized promotion/encouragement
 o program available to everyone
 o But provide additional promotion, encouragement or incentives to a random sub-sample:
 – Additional Information.
 – Incentives (small gift or prize).
 – Transport (bus fare).
Encouragement design

Randomize Incentive to participate. Ex. small gifts

- Encouraged
- Not encouraged

High participation (ex. 80%)

Low participation (ex. 10%)
NON-EXPERIMENTAL METHODS

Experiments are not always feasible:

Implementation issues

Political issues

Still possible to estimate impact rigorously

Treatment and control/comparison assignment is not random

Non-experimental approaches are valid but only if we use the right method

Some methods are not valid for impact evaluation.
How we can evaluate this?

Difference-in-Differences

Idea: combine the time dimension (before-after of control) with the participation choice (participants-non participants)

(under some assumptions) this deals with the problems above:

Time differences. Other things may have happened over time.

Selection Bias. We do not know why they are not participating.
Difference-in-Differences

Before and after

Participants

Non-participants

Impact

Not reliable impact

Participants – Non participants

case disposition speed

NP0

P0

T=0
(2016)

T=1
(2018)

NP1

P1

P1C

Impact

Not reliable impact

Participants – Non participants
Assumptions for Diff-in-Diff

- **NP1**
- **P0**
- **T=0 (2016)**
- **T=1 (2018)**

Impact

- **P1**
- **NP1**

Case disposition speed

- **Participants**
 - **P0**
- **Non-participants**
 - **NP0**

Treatment and Control follow the same trend

(T=0 (2016) to T=1 (2018))
Difference-in-Differences

Difference-in-differences combines *Participation decision* with *Time dimension*.

It deals with problems of previous methods under the...

...*fundamental assumption*

Trends –slopes- are the same in treatments and controls

Possible to test if you have data pre-treatment

Deals with unobservables only if constant over time

Improve diff-in-diff if you match groups based on observable characteristics (propensity score matching)
IMPACT EVALUATION METHODS

Causal Impacts/Inference

Regression Discontinuity

Difference-in-differences

Propensity Score Matching

Experiments

Randomized Control Trials

Non-experimental

Participants – Non Participants

Before and After

Monitoring