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Background

1. Geospatial data are predictive of wealth, welfare, and poverty in a variety of contexts
• Jean et al, 2016,  Burke et al, 2021, Mcbride et al, 2021, Yeh et al, 2020, Chi et al, 2022, 

Khachiyan et al, 2022, Engstrom et al, 2022, many others. 
• Accuracy varies greatly depending on context, indicator, training data, estimation method, 

evaluation method, and benchmark evaluation data

2. Adding geospatial data significantly improves on survey data for small area poverty  
estimates
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Which prediction method generates the most accurate point and 
uncertainty estimates? 

1. This paper evaluates four candidate prediction methods for combining geospatial and 
survey data to generate small area estimates of mean asset index for target area level 

1. Three tree-based machine learning methods and commonly used linear mixed model
• Separately for in and out-of-sample areas 
• We do not yet compare with convolutional neural networks trained directly to 

imagery, this is planned for future 
• Focus on predictive accuracy, but parsimony and interpretability also matter 

(Efron, 2020)

• Evaluate against census data in four countries  

• Evaluate a proposed residual bootstrap procedure for estimating uncertainty using ML 
estimators that takes spatial correlation within target areas into account 

• Fills a gap in the literature on how to estimate uncertainty effectively when using 
machine learning methods 
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Candidate prediction method 1: Empirical Best Predictor (EBP) 
linear mixed model 

• Household welfare modeled as a function of village characteristics with area-level 
conditional random effect 

• Battese, Harter, and Fuller 1988, Jiang and Lahiri 2006, Molina and Rao, 2010, Masaki et al 
(2022)   

G 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑋𝑋𝑟𝑟𝑟𝑟𝑠𝑠𝛽𝛽1 + �𝑋𝑋𝑟𝑟𝑟𝑟𝛽𝛽2 + 𝐷𝐷𝑟𝑟𝛽𝛽3 + 𝜈𝜈𝑟𝑟𝑟𝑟 + 𝜖𝜖𝑟𝑟𝑟𝑟𝑠𝑠ℎ

G 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is transformed welfare for household h in sub-area s, area a, region r, 𝑋𝑋𝑟𝑟𝑟𝑟𝑠𝑠 are 
geospatial indicators, 𝐷𝐷𝑟𝑟 are regional dummies 

• Area effect 𝜈𝜈𝑟𝑟𝑟𝑟 is conditioned on survey data  
• Empirical Bayesian framework, survey prior updated by prediction 

• Use model to simulate welfare repeatedly and calculate mean or poverty rate  
• Use parametric bootstrap approach to estimate precision

• Implemented in EMDI package in R, new povmap package coming soon  

3



Candidate method 2: Cubist regression 

Generates “model trees” (Kuhn and Johnson, 
2013, Wang and Witten, 1996, Quinlan, 2014) 
to predict sub-area poverty rates. Grows a 
decision tree for which each terminal node 
contain linear regression model. 

Can estimate “committees” which incorporates 
boosting that repeatedly predict residuals 

Hyperparameters, including number of rules and 
committees, tuned through cross-validation 
or selected manually 

Model is easy to understand when selecting no 
committees and small number of rules

Predict sub-area poverty rates using Cubist 
package in R and aggregate to areas

Sample cubist model for 
predicting tree canopy 



Candidate method 3: Extreme Gradient Boosting (XGboost)

Very popular method in 
machine learning (Chen and 
Guestrin 2016) 

Develops a set of regression 
forests 𝑓𝑓𝑘𝑘 𝑥𝑥𝑖𝑖 that iteratively 
predict residuals from previous 
estimate

Hyperparameters tuned 
through cross-validation 

Predict sub-area poverty rates 
using XGboost package in R 
and aggregate to areas



Candidate method 4: Boosted Regression Forests (BRF) 

• Derived from Generalized Random Forests (Athey, Tibsherani, and Wager 2019) 

• Like XGboost, grows sequence of regression forests that iteratively predict residuals 

• Grows “Honest”  trees  
• Use different subsamples of the data to grow trees and to estimate the values of 

leaves 
• Gives desirable theoretical properties of consistency and asymptotic normality 
• At small cost in predictive performance in most settings 

• Also uses slightly different splitting rule and different hyperparameters than XGboost 
• Tuned automatically through survey cross-validation 

• Predict sub-area poverty rates and aggregate to areas using GRF package in R 



Estimating uncertainty 

For linear EBP models, use standard parametric bootstrap approach
• Butar and Lahiri (2003), Gonzalez-Manteiga et al (2008) 

For tree-based machine learning methods, use random effect block bootstrap 
• Chambers and Chandra (2013), Krennmair and Schmid (2022)
• Accounts for correlation across sub-areas within areas when estimating uncertainty 
• Assumes independent errors across areas 

1. Calculate sub-area residuals and area (a) residuals from predictions

𝑒̂𝑒𝑠𝑠𝑠𝑠 = �𝑦𝑦𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀 − �𝑦𝑦𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 and  𝑒̂𝑒𝑎𝑎 = �𝑦𝑦𝑎𝑎𝑀𝑀𝑀𝑀 − �𝑦𝑦𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

2. Sample 𝑒̂𝑒𝑠𝑠𝑠𝑠 and 𝑒̂𝑒𝑎𝑎with replacement to obtain 𝑒̃𝑒𝑎𝑎𝑘𝑘 and 𝑒̃𝑒𝑠𝑠𝑠𝑠𝑘𝑘 for replication k 

3. Use bootstrapped residuals to simulate sub-area wealth index or poverty

�𝑦𝑦𝑠𝑠𝑠𝑠𝑘𝑘 = �𝑦𝑦𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀 + 𝑒̃𝑒𝑎𝑎𝑘𝑘 + 𝑒̃𝑒𝑠𝑠𝑠𝑠𝑘𝑘

4. Aggregate to target area to obtain �𝑦𝑦𝑎𝑎𝑘𝑘

5. Repeat steps 2-4 100 times, take 5th and 95th percentile of distribution to obtain 
estimated confidence interval 



Uses geolocated census data from four countries 

Can be linked to geospatial data using sub-area identifiers and corresponding shapefile 
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Madagascar Malawi Mozambique Sri Lanka
Target area Commune TA Locality DS Division
Number 1515 420 1258 331
Sub-area Fokontany EA Bairro GN Division
Count 14,412 18,700 65,707 13,984

Share of 
population

100% 20% 
Extract

100% 100%

Households 5 mn 0.8 mn 6 mn 4.8 mn 
Year 2017 2018 2017 2012 



Geospatial features 

Basic list, mostly publicly available from Google Earth Engine 

Indicator Source
Population Worldpop
Precipitation TerraClimate 
Temperature TerraClimate 
Nightlights VIIRS 
Land Cover Copernicus 
Elevation Conservation Science Partners 
NDVI MODIS 
Pollution measures Sentinel 5P/Copernicus 
Distance to key cities Constructed by authors 



Evaluation strategy 

1. Estimate wealth index in census data for four countries using PCA 
• And poverty rates in Malawi based on predicted per capita consumption 

2. Calculate area-level benchmark reference estimates using full census 
3. Draw two-stage sample from the census 

• First stage draws 500 sub-areas using probability proportional to population size  
• 8 households per sub-area in second stage, N=4000 households  
• This is a realistic sample but further robustness checks would be useful 
• Generate small area estimates for target areas by combining sample with 

geospatial indicators 
4. Repeat step 3 100 times 
5. Compare with full census 

• Accuracy: R2 vs census benchmark 
• Coverage rate: Share of areas for which confidence interval contains true value 



Results on accuracy 

• Estimates highly accurate for 
in-sample areas 

• XGboost usually most 
accurate 

• BRF usually close 

• In-sample much better than 
out of-sample 

• XGboost and BRF much more 
accurate than EBP and 
moderately more accurate 
than Cubist in out-of-sample 
areas 

• Outside Sri Lanka, little 
difference between XGboost 
and BRF  
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Results on coverage 

• Residual bootstrap gives good 
uncertainty estimates, overall 
coverage rate > 90% 

• BRF coverage rates higher than 
XGboost in Madagascar and 
Malawi

• EBP significantly underestimates 
coverage for poverty 

• Because model ignores 
uncertainty in estimated 
variance components �𝜎𝜎𝑣𝑣2
and �𝜎𝜎𝜀𝜀2 in parametric 
bootstrap procedure 
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Conclusions 

1. Further evidence that geospatial small area estimation works well, especially for 
sampled areas 
• Estimates are less accurate for non-sampled areas, but still very good 
• More due to differences between sampled and non-sampled areas (like less 

population) than being out of the sample per se (analysis in paper)  

2. XGboost and BRF outperform linear mixed models in terms of accuracy 
• Especially out of sample 
• But in-sample too, despite presence of conditional random effect in linear mixed 

model 
• May not hold in a smaller sample of sub-areas 

3. Cubist not quite as good as XGboost and BRF 
• Limiting to three rules and no committees worsens performance but still beats EBP  

4. Random effect block bootstrap works well to estimate uncertainty 
• while accounting for  within-area correlation 



Implications and future work 

1. Data fusion can improve accuracy a lot in realistic settings 

2. XGboost and BRF are attractive methods for small area estimation in these settings 
• Tree-based ML methods are more robust to outliers and more accurate than linear models 
• Users need to balance additional accuracy against loss in parsimony and interpretability
• XGboost and BRF could further benefit from adding conditional random effect, building on mixed 

effect random forests model (Krennmair and Schmid, 2022) 
• But conditional random effects appear to be a minor factor when applying tree-based 

machine learning techniques to a sufficiently large sample 
• Even simple cubist regression with 3 rules and no committees usually outperforms EBP  

3. Residual block bootstrap works well  
• Simple and effective way to incorporate spatial correlation into ML estimation 

4. Important agenda for further work 
• Compare with CNN-based estimates 
• Better understand how accuracy depends on sample size and structure 



Thank you! 
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