The Plant-Level View of Korea's Growth Miracle

Munseob Lee Yongseok Shin

UC San Diego Washington U in St. Louis

June 5, 2023

Introduction

- South Korea is one of the rare economies that went from poor to rich in one generation.
- Is there a systematic pattern at the micro-level behind the macro-level growth?
- Our findings
 - No clear relationship between macro-level growth and the plant size distribution or static measures of allocative efficiency.
 - 2 Growth slowdown coincides with a reduction in dynamism.

Korea's Economic Miracle

Note: GDP per capita is deflated by GDP deflator (2015=100), and value-added per worker is deflated by manufacturing industry deflator (2015=100).

- Newly digitized Mining and Manufacturing Survey (MMS), 1967-2019
- Advantages
 - A unique source of plant-level data covering all plants with 5+ workers (10+ from 2007)
 - 2 Detailed information on input and output
 - When aggregated, replicates aggregate statistics
- Limitations
 - Panel dimension only after 1981
 - 2 Capital stock is available only in 1968 and after 1978

Plant Size Distribution (Number of Employees)

(a) Avg. of plants w/ 10+

(b) Avg. of plants w/ 5+

Plant Size Distribution

(a) Empl. share of plants w/ 250+

(b) Empl. share of plants w/ 500+

Fraction of plants

Plant Size Distribution

Standard deviation of log employment

Plant Size Distribution (Log-Log Plot)

Plant Size: Comparison with Other Countries

Source: Structural and Demographic Business Statistics (SDBS), OECD Only plants hiring 10+ included for comparability

Plant/Firm Size and Labor Productivity

Source: Structural and Demographic Business Statistics (SDBS), OECD

Original data in local currency deflated by their own manufacturing deflator and converted into USD using the period-average exchange rate.

• Hsieh and Klenow (2009)'s methodology of measuring misallocation:

$$TFPQ_{si} = A_{si} = \frac{(P_{si}Y_{si})^{\frac{\sigma}{1-\sigma}}}{K_{si}^{\alpha_s}L_{si}^{1-\alpha_s}}$$
$$TFPR_{si} = P_{si}A_{si} = \frac{P_{si}Y_{si}}{K_{si}^{\alpha_s}L_{si}^{1-\alpha_s}}$$

• 4-digit level industries. Plants winsorized at 1 percent.

Allocative Efficiency

Allocative Efficiency

TFPR-TFPQ elasticity

Allocative Efficiency

Distortion-TFPQ correlation

• Kim,Lee and Shin (2022) shows misallocation across plants within targeted industries/regions got worse during the HCI project (1973-79).

Dynamism 1: Churning

Dynamism 1: Churning

• We calculate the Davis/Haltiwanger/Schuh growth rates of employment (5 years windows)

• DHS growth rates: $g_{i,t1} = \frac{emp_{i,t1} - emp_{i,t0}}{0.5 \times emp_{i,t1} + 0.5 \times emp_{i,t0}}$

Dynamism 1: Churning

• Other years

Dynamism 2: Responsiveness to Productivity

 We estimate the responsiveness of businesses to shocks following Decker, Haltiwanger, Jarmin and Miranda (2020).

•
$$g_{jt+1} = \beta_0 + \beta_1 a_{jt} + T(a_{jt}, t) + \beta_2 e_{jt} + T(e_{jt}, t) + X'_{jt} \Theta + \varepsilon_{jt+1}$$

- g is DHS employment growth, a is log productivity, e is log employment, and X is other controls
- We also used investment as a dependent variable.

Dynamism 2: Responsiveness to Productivity

	Employment growth		Capital growth	
Productivity: β_1	0.0274***		0.2000***	
	(0.0047)		(0.0082)	
prod $ imes$ trend: δ	-0.0003		-0.0038***	
	(0.0002)		(0.0003)	
prod $ imes$ 1980s: λ_{80s}	(0.0199***		0.1835***
		(0.0046)		(0.0087)
prod $ imes$ 1990s: λ_{90s}	(0.0278***		0.1508***
		(0.0057)		(0.0097)
prod×2000s: λ_{00s}	(0.0239***		0.1069***
		(0.0051)		(0.0064)
prod \times 2010s: λ_{10s}	(0.0135***		0.0758***
		(0.0056)		(0.0051)

- No clear correlation between macro-level growth and the plant size distribution or static measures of allocative efficiency.
- ② Growth slowdown coincides with a reduction in dynamism.
 - More data requirement for research
 - Identifying frictions and policy responses

Fraction of Large Plants

Size Distribution: Within vs. Between Industries

m_t is aggregate average employment defined as the weighted sum of each industry's average employment:

• $m_t = \sum_i w_{i,t} m_{i,t}$, where w_i is the employment share of industry *i*

- We can decompose *m_t*:
 - $\Delta m_t = \sum_i w_{i,t-1} \Delta m_{i,t} + \sum_i \Delta w_{i,t} m_{i,t-1} + \sum_i \Delta w_{i,t} \Delta m_{i,t}$
 - The first term is within adjustment, and the second term is between adjustment.

Size Distribution: Within vs. Between Industries

Decomposition of large plants

Decomposition of Change in Large Plant Share

Churning

