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Abstract

What factors determine the degree of spatial concentration of a country’s pop-

ulation? I investigate the drivers of concentration by adding non-homothetic pref-

erences to a modern quantitative spatial model, obtaining a two-sector spatial

model in which concentration depends on trade networks, structural transforma-

tion, and location-specific fundamentals (i.e. productivities and amenities). The

model delivers an analytical expression decomposing changes in spatial concentra-

tion into separate terms that reflect the roles of these three forces. I then bring the

model to the data in two steps: first, estimate trade gravity equations to recover

year- and sector-specific trade-cost matrices; then calibrate the model to the 2005

global economy (featuring 1611 locations across 192 countries) by finding local

fundamentals that rationalize population and income data given the equilibrium

equations. I use this calibrated model for counterfactual exercises that clarify

the role of trade access on spatial concentration. Results indicate that increasing

access to foreign markets reduces concentration in most countries. Finally, I use

the model-implied decomposition equation to disentangle the roles of structural

transformation, differential trade access, and local fundamentals in accounting for

the observed 1990-2015 changes in concentration for 44 countries. The bulk of

the variation is explained by local fundamentals, with only 1% accounted for by

differential trade access and structural transformation.

1 Introduction

Which factors determine the degree of spatial concentration of a country’s domes-

tic population? The concentration of people in space is an important aspect of the
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modern global economy, especially because it is associated with higher incomes, social

mobility, and general economic development (see e.g. Glaeser (2011)), which makes it

important to understand its drivers. Moreover, if spatial concentration is influenced

by other economic variables (such as trade costs), then a full account of the welfare

effects of changes in these variables may require explicit recognition of their effects on

concentration. A better understanding of the causes of concentration may also help us

predict the effects on the world’s economic geography of potential future events such as

a retreat from globalization (e.g. due to geopolitical tensions, trade wars, pandemics)

or the continued transition of the global economy away from agriculture.

A traditional literature within urban economics (see e.g. Roback (1982)) states

that the relative attractiveness of different locations for firms and workers depends on

location-specific fundamentals such as local productivity and local amenities, which

therefore affect the distribution of population across locations and, by consequence,

the degree of spatial concentration. Thus, any attempt to understand the drivers of

concentration should include these fundamentals. On the other hand, recent empirical

evidence has shown that both access to trade networks and the economy’s structural

transformation away from agriculture can have effects that vary across space. This

observation suggests that these two forces could also influence spatial concentration.

Furthermore, as Figure 1 shows, the increase in average spatial concentration across

countries (as measured by the primacy rate) between the 1970s and the 2010s was

accompanied by a simultaneous increase in the value of international trade (as a frac-

tion of world GDP) and by a substantial reduction in the share of world population

employed in agriculture.1 While these correlations say nothing about causality, they

reinforce our suspicion that these three phenomena could be related.

In this paper, I investigate the influences of local fundamentals, structural trans-

formation, and differential trade access on spatial concentration through the lens of

a modern quantitative spatial model. Specifically, I extend a state-of-the-art spatial

model (see e.g. Allen and Arkolakis (2014), Allen and Donaldson (2020)) to include

non-homothetic price independent generalized linear (PIGL) preferences (Eckert and

Peters (2018)). I thereby obtain a tractable two-sector spatial model that features

differential access to trade networks across domestic locations, structural transforma-

tion, and local fundamentals (i.e. exogenous location-specific amenities and sectoral

productivities). Under mild parametric restrictions, the model delivers an analytical

expression for the primacy rate (i.e. the fraction of a country’s population living in its

largest city), which is the measure of spatial concentration I use throughout the paper.

A differential version of this analytical expression allows me to decompose changes in

a country’s degree of spatial concentration into separate terms that reflect the roles of

1As discussed below, the primacy rate is defined as the share of a country’s population that lives

in its largest location.

2



Figure 1: Concentration, Trade, Structural Transformation

Notes: the figure portrays three time series: (i) cross-country average of primacy rate i.e. the share of national population in

country’s largest city (data from World Urbanization Prospects 2018); (ii) global agricultural male employment as % of global

male employment (data from World Bank Open Data); (iii) global imports of goods and services as % of global GDP (data from

World Bank Open Data).

structural transformation, changes in trade access, and changes in local fundamentals.

I then propose a methodology to bring the model to the data so that it can be

used to analyze spatial concentration in the real world. The methodology has two

steps. In the first step, I recover estimates of the global trade-cost structure for years

1962-2019 by using model-implied trade gravity equations that can be estimated with

data on bilateral distances and on international and intranational trade flows. To

implement these gravity regressions, I first obtain measures of bilateral distance that

take into account the global transportation infrastructure. For this purpose, I pro-

pose an ancillary method to transform transportation network maps into cost rasters

which are then used to compute bilateral distances through a fast marching method

(FMM) algorithm. In the second step, I combine the model’s equilibrium conditions

with data on population, sectoral employment, and per capita income for 1611 loca-

tions across 192 countries to calibrate a model of the 2005 global economy. In this

context, calibration means finding vectors of local fundamental amenities and sectoral

productivities that perfectly rationalize the observed spatial distribution of population,

sectoral employment, and income.

Having calibrated the model, I can use it to study the influence of trade access

on spatial concentration by conducting two model-driven counterfactual exercises in

which I impose counterfactual trade-cost structures while keeping other exogenous

variables and parameters fixed at their baseline 2005 levels. For a given counterfactual
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exercise, I show how to use the model’s equilibrium equations to compute the spatial

distributions of wages, populations, and sectoral employment that the model predicts

would hold under that scenario, as well as the counterfactual primacy rate. This

allows me to evaluate how the trade shocks represented by these counterfactual trade

matrices would affect spatial concentration, as predicted by the full-fledged general

equilibrium model. As for the choice of specific counterfactual trade-cost matrices, I

run two exercises: one eliminating international “border-crossing” costs (CF1), and

another increasing international trade costs back to their 1971 levels (CF2).

To be able to implement this methodology on the 2005 global economy, I obtain a

wealth of data from multiple sources. Data on sector-level bilateral trade flows, which

is used to estimate trade gravity equations in the first step, comes from the World

Bank’s World Integrated Trade Solution (WITS), which offers country-level data for

the 1962-2019 period. Global transportation network maps at the 1:10m level for

roads and rail are obtained from the public-domain data set Natural Earth. Data on

2005 population and sectoral employment at the level of subnational locations (states,

provinces, etc), which is used for calibration in the second step, is obtained from IPUMS

International, an online project that collects and harmonizes census data from multiple

countries. Data on 2005 income per capita at the national level is obtained from

World Bank Open Data, and at the subnational level from G-Econ, a “geophysically

based” data set of the world economy at the level of 1◦latitude by 1◦longitude. These

data sources, combined with ancillary data on geographic coordinates, import shares,

and the agricultural share of GDP, gives me everything I need to estimate gravity

equations and calibrate a model of the 2005 world economy with 1611 locations across

192 countries.

Having devised the methodology and collected the necessary data, I finally bring the

model to the data. The results of the trade gravity regression in the first step indicate

that international trade costs declined substantially between the 1960s and the 2005s

for both agriculture and non-agriculture. While in 1971 the border-crossing parameter

for agriculture (non-agriculture) was equivalent to a 180% (370%) ad-valorem tariff,

that number declined to 130% (280%) in 2005. Calibration results from the second

step are intuitive: developed and oil-rich countries have higher productivity values.

Results of the first counterfactual exercise (CF1), in which I eliminate border-

crossing costs, show that population tends to move to locations that were smaller at

baseline: the correlation between a location’s (log of) initial share of national popula-

tion and (log of) relative increase in population is -0.23. Thus, spatial concentration

decreases for most countries. The opposite is true for the latter counterfactual CF2,

which increases trade costs. It leads to increased spatial concentration, with the corre-

lation between (the log of) initial share of national population and (the log of) percent

increase in population being 0.25. Overall, counterfactual results imply that trade-cost
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shocks have meaningful effects on spatial concentration. More specifically, trade-cost

increases foster concentration.

The counterfactual exercises also produce interesting results on welfare and trade

volumes. Decreasing international trade costs in counterfactual CF1 leads to substan-

tial increases in trade volumes, with international trade growing from 21% of world

GDP at baseline to 78% in the counterfactual. Welfare gains are also very large, with

the average country’s adjusted welfare sum growing by 57%. The opposite is true for

counterfactual CF2, in which raises international trade costs. International trade falls

to 14% of world GDP, while the average country’s adjusted welfare sum falls by 5%.

Overall, this set of results suggests that international trade integration between the

1970s and the 2000s was only partial. Costs were still very high in 2005, with large

increases in welfare and trade flows still left to be materialized by further integration.

Finally, I leverage the model-implied analytical expression governing changes in

the primacy rate to perform an accounting exercise in which I decompose the observed

1990-2015 changes in primacy for a sample of 44 countries into three components

reflecting the roles of structural transformation, differential trade access, and local

fundamentals. Results show that only 1% of the sample variation in primacy changes

can be accounted for by structural transformation and changes in trade access, with

the bulk of the variation being accounted for by changes in local fundamentals. Thus,

I conclude that most of the observed 1990-2015 changes in concentration were driven

by changes in fundamental productivities and amenities, with structural change and

differential trade access playing only a secondary role.

Related literature The new economic geography (NEG) literature (see e.g. Krug-

man (1991), Krugman and Venables (1995)) provides models of monopolistic compe-

tition and economies of scale that generate geographical concentration of economic

activity under some circumstances. Within that literature, the most relevant paper

for our purposes is Krugman and Livas (1996), who explicitly tackle the link between

access to international trade and spatial concentration of the domestic population. My

paper revisits this question through the lens of a modern quantitative spatial model

that features agglomerative forces typical of NEG but also two additional forces ig-

nored by Krugman-Livas (differential trade access and structural transformation) and

provides a framework through which I can bring the model to the data, in contrast with

the purely theoretical nature of much of the relevant NEG literature. An empirical

exception to this rule is Ades and Glaeser (1995), who use cross-country regressions

to empirically test Krugman-Livas hypothesis. However, they do not consider the im-

portance of differential trade access, and use a cross-country methodology which has

been criticized (Levine and Renelt (1992), Rodrik (2012)). In contrast, my paper fully

specifies a general equilibrium model through which real-world data is interpreted.

A recent literature in international trade and economic geography emphasizes the
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importance of access to trade networks in determining economic outcomes. Redding

and Sturm (2008) use the post-WWII division of Germany to show that locations

closer to the east-west border, who lost the most market access from division, also

exhibited less population growth. Similarly, Ahlfeldt et al. (2014) use a general equi-

librium model and show that West Berlin neighborhoods closer to the Berlin wall

became relatively less important in terms of land rents and density of economic ac-

tivity. Donaldson and Hornbeck (2016) show that the historical integration of US

counties through railways increased land rents due to improved market access through

the rail network. Brulhart et al. (2019) use worldwide data on night lights to proxy

for economic activity and show that increases in international trade are associated

to disproportionate economic growth in a country’s border regions relative to other

regions. By incorporating domestic and international trade costs, my model naturally

reflects the importance of trade access, which may help shape spatial concentration.

A few papers directly address the effects of international trade on the internal struc-

tures of countries. Fajgelbaum and Redding (2018) study Argentinean 19th-century

economic development with a focus on the impact of international trade integration on

structural transformation and economic development. Their analysis prominently fea-

tures structural transformation and differential access to foreign markets, but not the

agglomerative NEG-style forces that manifest in my model through external economies

of scale in production. Moreover, structural transformation in their model is driven

by comparative advantage forces, while in my model it is driven by non-homothetic

preferences. Finally, their model focuses on Argentina (while mine covers the whole

world) during the late 19th and early 20th century (while mine focuses on the re-

cent past, between the 1960s and the 2000s). Cosar and Fajgelbaum (2016) develop

a two-sector model in which international trade integration affects the spatial popu-

lation distribution within a country, with a central role for differential trade access.

However, trade-induced changes in sectoral composition are driven by comparative-

advantage mechanisms, not by structural transformation, which is absent from their

model. Furthermore, they assume domestic locations are homogeneous with regard to

comparative advantage, while my model implicitly relaxes that assumption by allowing

flexible sector-specific fundamental productivities to vary freely across locations. Ad-

ditionally, their assumptions on productive technology rule out agglomerative forces.

Finally, they empirically test the model’s predictions using reduced-form analysis of

Chinese data, while my empirical exercises use worldwide data and are based on us-

ing the calibrated model to predict counterfactual population distributions under al-

ternative trade-cost structures. It should be mentioned that policymakers have also

demonstrated interest in the apparent connection between trade integration and decon-

centration of urban systems, particularly in Latin America (ECLAC (2005)), but have

not generally performed formal analyses to try to assess whether such stylized facts
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are causal.

I follow a large international trade literature studying how to estimate trade gravity

models. Anderson and van Wincoop (2003) is particularly relevant for studying the

border-crossing cost. I follow Head and Mayer (2014) instructions on how to implement

estimation in practice, in particular the exhortation to use Poisson Pseudo Maximum-

Likelihood (PPML) as shown by Santos-Silva and Terneyro (2006).

My framework leans heavily on the quantitative spatial model literature, most of

all on Allen and Arkolakis (2014) and Allen and Donaldson (2020). Other influential

examples of that literature are Caliendo et al. (2018), Desmet et al. (2018), Ramondo

et al. (2012, 2016), Redding (2016), Adao et al. (2020), and Redding and Rossi-

Hansberg (2017), the last of which is a helpful overview of the literature. My main

theoretical distinction with respect to the literature is to incorporate non-homothetic

PIGL preferences into an otherwise standard spatial model, thus allowing structural

change to be explicitly manifested as a force that can affect economic geography. My

main distinction on the empirical front is to calibrate the model for the whole world

economy, which to the best of my knowledge can only be compared to Desmet et al.

(2018), with which my paper has several similarities and differences. In particular, I

am highly indebted to them for their use of G-Econ data to measure local per capita

income and for their methodology to transform transportation network maps into a

cost raster which is then used to compute bilateral distances. On the other hand, the

two papers have very different focuses. My paper features structural transformation

forces, emphasizes the importance of trade access in determining spatial concentration,

and focuses on long-term steady-state equilibria, while their paper is scarcely concerned

with concentration, pays much more attention to innovation, growth, and international

migration, and focuses on transitional dynamics. They also use data on subjective well-

being to disentangle countries’ welfare and amenity levels, which is somewhat moot in

the context of my paper because I rule out international migration by assumption.

Finally, my representation of non-homothetic preferences as a PIGL indirect util-

ity function borrows directly from the literature on structural transformation, chiefly

Boppart (2014) and Eckert and Peters (2018). Most of this macroeconomic literature

deals with aggregate economies rather than with subnational locations. An exception

is Eckert and Peters (2018), who use subnational US data for 1880-2000 to assess the

extent to which country-level structural transformation is associated with worker re-

allocation across labor markets. However, there are multiple differences between their

paper and this one: I use global data rather than focusing on the US; I use data for rel-

atively recent periods (1960s-2010s) while their data covers older periods (e.g. the 19th

century); spatial concentration as a key outcome of interest for me, while they are not

particularly interested in it; I analyze the geographic impacts of both structural trans-

formation and changes in international trade costs, while they are centrally concerned
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with the former but not with the latter; their production function includes capital

as a factor and features exogenous productivities, while mine has labor as the sole

factor and features external economies of scale which generate agglomeration effects;

they assume goods are freely traded, while I put trade costs at the center stage; they

posit a dynamic, overlapping-generations economy with savings and investment, while

my model is static and should be interpreted as representing a long-run equilibrium.

In terms of results, my decomposition exercise finds that structural transformation

plays a minor role in shaping 1990-2015 changes in spatial concentration, which echoes

their finding that structural transformation in the US did not lead to a major spa-

tial reallocation of workers away from labor markets that were initially specialized in

agriculture.

The rest of this paper is organized as follows. Section 2 presents the theoretical

framework. Section 3 explains my two-step methodology to bring the model to the

data. Section 4 presents data sources and describes data adjustments. Section 5

presents results and comments on them. Section 6 concludes.

2 Framework

My model is based on an application of the quantitative spatial model of Allen and

Donaldson (2020) to an international context. While they use their model to study the

historical economy of the United States and its component counties, I take a broader

look by applying the spatial model to the whole world, with its multiple countries

which in turn are composed of subnational locations such as states, provinces, and

prefectures. Moreover, their dynamic model is appropriate to study the evolution of

the US spatial economy over decades and centuries, while I will instead use a static

model and focus on the global economy in a single year (2005).2 My model should thus

be interpreted as representing the steady state of an Allen-Donaldson model applied

to the global economy. In a nutshell, it can be argued that my paper is broader in

space but narrower in time when compared to Allen-Donaldson’s.

The world is composed of multiple countries, each composed of multiple locations.

There are two sectors, agriculture and non-agriculture, each producing geographically

differentiated goods (i.e. the Armington assumption). Each location has a continuum

of perfectly competitive firms, who produce goods and sell them around the world by

paying an iceberg trade costs. There are external economies of scale in production

(agglomeration economies) but constant returns to scale at the firm level.

The world is populated by agents who are both consumers and workers. Each

2In decomposition exercises, I also compare the 2005 economy to the economy of another year,

namely 1990. I use comparative-static tools to perform this comparison, which implicitly assumes

that the economy was in steady state in each of these two years.
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utility-maximizing agent is born in a given location, chooses a location to emigrate

to, works for a firm, earns wages, consumes goods, and enjoys local amenities. I

assume migration is only possible within countries, which imbues the model with a

meaningful a notion of “country” (namely, a country is the territory to which an agent

can feasibly migrate given the location where she was born). Households have non-

homothetic preferences of the PIGL form, as in Eckert and Peters (2018). Holding

prices fixed, the share of spending in non-agricultural goods increases with income. As

a result, agriculture becomes a relatively less important sector as a country becomes

richer (i.e. structural transformation).

General equilibrium in the world economy is defined by optimality conditions (firms

maximizing profits, agents maximizing utility) and by market clearing in goods mar-

kets (local sectoral income equals worldwide sales of local sectoral good) and in labor

markets (location population equals both total local immigration and total local em-

igration). I show that, in equilibrium, the population share of a country’s largest

location follows an analytical expression that depends on the relative attractiveness of

that location in terms of trade access, fundamental sectoral productivities and ameni-

ties, and non-agricultural expenditure share.

In Sections 2.1-2.6, I present each aspect of the model in further detail.

2.1 Setting

In the model, the world is represented by a finite set S of locations, each of which

denoted by i ∈ S = {1, ..., N}. Individual locations can be interpreted as subnational

units (such as provinces, states, municipalities, etc.). The set S of locations is par-

titioned into a set C of countries, indexed by c ∈ C = {1, ..., C}. For convenience, I

also define a function c : S → C which maps each location to the country to which it

belongs.

Each location i in S is inhabited by worker-households and firms. Each firm and

worker operates in either of two economic sectors: agriculture (s = A) and non-

agriculture (s = N). Denote with Li the endogenous population of location i and with

L̄c the exogenous population of country c.

Finally, it is convenient to define a primacy function p : C → S, which maps each

country c to the largest city of that country. Following the literature, we also refer

to that largest city as the country’s primate city or just primate. The fraction of

a country’s population that lives in its primate city is denoted primacy rate, which

can be straightforwardly computed by Primacyc = Lp(c)/L̄c. Note that the primacy

function p(.) is also an endogenous equilibrium object.
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2.2 Consumer-worker

Each agent is born in a specific location i in country c, then chooses to move to a

location j of her choice within the same country c.3 She then inelastically supplies one

unit of labor to a firm in location j, earns wage income, enjoys locals amenities, and

consumes a variety of geographically differentiated goods (Armington assumption).

The resulting agent’s utility is given by the following formula:

Wj(ϵ) = Cjuj︸ ︷︷ ︸
≡Wj

ϵj , (1)

where uj is the local amenity, ϵj is an agent-specific idiosyncratic taste shock for

location j, and Cj is a PIGL indirect utility function given by:

Cj = C(wj , P
A
j , PN

j ) =
1

η

(
wj

(PA
j )ϕ(PN

j )1−ϕ

)η

− ν

γ

(
PA
j

PN
j

)γ

+
ν

γ
− 1

η
, (2)

where wj the local wage, and P s
j is the local CES ideal price index for sector s ∈ {A,N}

which can be written as:

P s
j = (

∑
k∈S

(pskj)
1−σs)

1
1−σs , (3)

where σs > 1 is the elasticity of substitution for sector s, and pskj is the (bilateral)

price of a sector-s good produced in location k and consumed in location j. To facil-

itate exposition, I also defined a welfare variable Wj that is the product of the PIGL

consumption variable and the local amenity: Wj = Cjuj .

Inspection of equations (1) and (2) shows us that the consumption portion of the

agent’s utility can be described as a composition of CES preferences within sectors

and PIGL preferences across sectors. As we will see, the implied demand system

yields tractable equations while allowing for income effects that shift consumption

from agriculture towards non-agriculture as the agent’s income increases. These income

effects become more apparent in the following equation for the agriculture consumption

share υAj , which is implied by the PIGL preferences:

υAj = ϕ+ ν(
PA
j

PN
j

)γw−η
j (4)

Local amenities, represented by uj in the utility function (1), can be further de-

composed into an exogenous and an endogenous component according to the equation:

uj = ūjL
β
j , (5)

3Note that the destination location j may be the birth location i itself.
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where ūj is the (exogenous) fundamental local amenity, Lj is local population, and

β ≤ 0 is a parameter that governs the intensity of congestion forces. Following the

urban economics literature, we can interpret the endogenous component Lβ
j as the

negative effect of spatial congestion on agents’ utility.

Each agent receives an idiosyncratic taste shock ϵj for each location j. These shocks

follow a Frechet distribution: Pr(ϵj ≤ x) = exp(−x−θ), with θ > 1, and the shocks

are distributed i.i.d. across agents and locations. The presence of this ϵj term in the

utility function helps to “convexify” equilibrium distributions, guaranteeing that each

location j is chosen as a destination by a positive measure of agents and thus has a

non-zero population Lj .

The agent’s migration decision can be concisely summarized by the following max-

imization program:

max
j∈c(i)

Wj(ϵ) (6)

where Wj(ϵ) is given by equations (1) and (2).

Note that the agent is only allowed to migrate to another location within the

same country where she was born. Besides increasing tractability, this assumption

also establishes a meaningful conceptual notion of “country” within the context of the

model. Namely, a country is the set of locations to which a person who is born in a

certain location can feasibly migrate.

2.3 Firm

The goods consumed by agents are produced by firms. Each location i and sector s has

a continuum of perfectly competitive firms producing the local sector-s good according

to the following production technology:

qsi = As
i l
s
i , with: A

s
i = Ās

i (L
s
i )

αs (7)

where qsi is output quantity, lsi is firm employment, Ās
i is the local fundamental pro-

ductivity parameter, Ls
i is local employment in sector s, and αs ≥ 0 is a parameter.

Equation (7) shows us that the productive technology features constant returns to

scale at the firm level but increasing returns to scale at the local industry level. This

phenomenon is usually described in the literature as external economies of scale or

agglomeration economies. The strength of agglomeration economies is governed by the

parameter αs. The presence of the (Ls
i )

αs term in equation (7) is the central way in

which the agglomerative forces described by the NEG literature appear in this model.

The goods produced by a firm are sold to consumers worldwide. In order to ship a

unit of its good to a location j, a firm from location i and sector s pays a multiplicative

“iceberg” shipping cost given by τ sij ≥ 1, with τ sii = 1.
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The assumptions described above regarding perfect competition, production tech-

nology, and iceberg shipping costs imply the following pricing equation for the bilateral

unit price psij charged by a sector-s firm from location i who sells to location j:

psij =
τ sijwi

As
i

(8)

2.4 Gravity Flows

Given the assumptions on consumer preferences and firm pricing embedded in equa-

tions (2), (3), and (8), it can be shown that bilateral trade flows have the following

“gravity”-like form:

XA
ij =

[
τAijwi

AA
i P

A
j

]1−σA

υAj wjLj (9)

XN
ij =

[
τNij wi

AN
i PN

j

]1−σN

υNj wjLj (10)

where υNj = 1− υAj is non-agricultural expenditure share in location j, and Xs
ij is the

dollar value of trade flows in sector s from location i to location j. The total bilateral

trade flows from location i to location j is given by: Xij = XA
ij +XN

ij .

The formulas in equations (9) and (10) closely follow the usual gravity trade for-

mulas in the trade literature (e.g. Allen and Arkolakis (2014)). The main difference is

the inclusion of multiplicative terms υAj and υNj which account for a location’s relative

expenditure on agricultural and non-agricultural goods, respectively. As a location j

becomes richer, its consumption basket becomes relatively heavier on non-agricultural

goods.

The assumptions on agent utility, amenities, and migration decisions embedded

in equations (1), (5), and (6) imply that bilateral gross migration flows also follow a

“gravity”-like form as given by the following equation:

Lij =

(
(Wj)

θ∑
k∈S(Wk)θ

)
Li (11)

where Lij is the number of migrants who are born in location i and choose to live in

location j.

Equation (11) shows us that a location j will tend to attract many migrants if it

has a relatively high welfare Wj . In my model, equilibrium should be interpreted as

the steady state of a more general dynamic model. In other words, one can think of

this model as the sub-case (of a dynamic model) in which the total population Li of

each location i is constant across periods, which implies that net migration flows are
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zero. Gross migration flows Lij need not be zero: it is sufficient that gross “inbound”

flows (
∑

k ̸=j Lkj) equal gross “outbound” flows (
∑

k ̸=j Ljk) for each location j. If that

equality holds, then inward and outward flows cancel out and local population remains

constant.

2.5 Equilibrium

I impose four equilibrium conditions to close the model. The first condition establishes

market clearing in goods markets. Namely, for each location i and sector s, the total

income received by firms in that location-sector must equal their total sales across all

locations in the world:

wiL
s
i =

∑
j∈S

Xs
ij , ∀(i, s) (12)

The second condition establishes that a location’s population must correspond to

its total immigration and total emigration:4

Li =
∑
j∈S

Lij =
∑
j∈S

Lji, ∀i (13)

The third condition simply links a location’s population to the sum of its two

subpopulations, the one that works in agriculture and the one that works in non-

agriculture:

Li = LA
i + LN

i , ∀i (14)

Finally, the fourth condition requires that a country’s (exogenous) population must

equal the sum of the populations of all locations that compose that country:

L̄c =
∑
i∈c

Li, ∀c ∈ C (15)

Having presented the four equilibrium conditions, we are ready to formally define

equilibrium:

Definition 1 (Equilibrium). Given parameters (σA, σN , θ, αA, αN , β, ν, η, γ) and ex-

ogenous variables { ĀA
i ,Ā

N
i ,ūi }i∈S , {τAij ,τNij }(i,j)∈S2 , {L̄c}c∈C , an equilibrium is a set of

endogenous variables {Ci,wi,Li,L
A
i ,L

N
i ,Wi,P

A
i ,PN

i ,υAi ,ui,A
A
i ,A

N
i }i∈S , {XA

ij ,X
N
ij ,Lij}(i,j)∈S2

that satisfies equations (2), (3), (4),(5), (7), (9) (10) (11), equilibrium conditions (12)-

(15), and such that Wj = Cjuj .

It is possible to rewrite the equilibrium system in a simplified manner that conve-

niently reduces the number of variables and equations. Namely, given parameters and

4Note that the total immigration to a location j includes immigration from itself, Ljj . The same

applies to total emigration.
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exogenous variables, an equilibrium is a set of endogenous variables {wi, Li, L
A
i , L

N
i ,

Wi, P
A
i , PN

i , υAi , ui, A
A
i , A

N
i }i∈S that satisfies the following four equations:

wσs
i (Ls

i )
1−αs(σs−1) = (Ās

i )
σs−1

∑
j∈S

(τ sij)
1−σs(P s

j )
σs−1υsjLjwj (16)

(P s
j )

1−σs =
∑
i∈S

(τ sijwi)
1−σs(Ās

i (L
s
i )

αs)σs−1 (17)

LA
i + LN

i = Li =
W θ

i∑
k∈cW

θ
k

L̄c (18)

Wj = ūjL
β
j

[1
η

(
wj(P

A
j )−ϕ(PN

j )ϕ−1
)η − ν

γ

(
PA
j /PN

j

)γ
+

ν

γ
− 1

η

]
(19)

The main advantage of writing the equilibrium system in this simplified way is that

it suggests an equilibrium-computing algorithm that will be useful later on.

2.6 Primacy and Market Access

I consider a special case of the model to better understand its main mechanisms. I

focus on the model’s predictions for the primacy rate, my main measure of spatial

concentration. Assume σA = σN = σ and αA = αN = α. That is, agglomeration

parameters and elasticities of substitution are the same in both sectors. Then it can

be shown that the model yields the following equation for the primacy index of each

country c in C:

Primacyc ≡
Lp(c)

L̄c
=

(
ūp(c)ρp(c)ζ

− η
Ω

p(c)

) θ
1−θ(β+η/Ω)

∑
k∈c

(
ūkρkζ

− η
Ω

k

) θ
1−θ(β+η/Ω)

(20)

where ρi = [ 1η (P
A
i )−ηϕ(PN

i )η(ϕ−1) − 1
γ (υ

A
i − ϕ)] is (the inverse of) the ideal total price

index, ζi = [(ĀA
i )

σ−1ΠA
i ]

1
1−α(σ−1) + [(ĀN

i )σ−1ΠN
i ]

1
1−α(σ−1) is a composite of fundamen-

tal productivities and producer market access, Πs
i =

∑
j∈S(τ

s
ij)

1−σ(P s
j )

σ−1υsjwjLj is

producer market access, and Ω ≡ σ
α(σ−1)−1 .
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The differential form of equation (20) is given by:(
1− θ(β + η

Ω)

θ

)
d ln(Primacyc) = κp(c)(−dυAp(c))−

∑
k∈c

(Lk

L̄c

)
κk(−dυAk )︸ ︷︷ ︸

Structural Change Force

+ Ξp(c)d ln(Ip(c))−
∑
k∈c

(Lk

L̄c

)
Ξkd ln(Ik)︸ ︷︷ ︸

Differential Trade Access Force #1: Consumer Market Access

+
η

σ

[∑
s

µs
p(c)d ln(Π

s
p(c))−

∑
k∈c

(Lk

L̄c

)∑
s

µs
kd ln(Π

s
k)
]

︸ ︷︷ ︸
Differential Trade Access Force #2: Producer Market Access

+ d ln(ūp(c))−
∑
k∈c

(Lk

L̄c

)
d ln(ūk)︸ ︷︷ ︸

Local Fundamental Force #1: Amenities

+
η(σ − 1)

σ

[∑
s

µs
p(c)d ln(Ā

s
p(c))−

∑
k∈c

(Lk

L̄c

)∑
s

µs
kd ln(Ā

s
k)
]

︸ ︷︷ ︸
Local Fundamental Force #2: Sectoral Productivities

,

(21)

where:

µs
i = (ζi)

−1[(Ās
i )

σ−1Πs
i ]

1
1−α(σ−1) ,

κi =
1

γρi
, Ξi =

Iηi
ρi

,

and Ii = (PA
i )−ϕ(PN

i )ϕ−1 is the Cobb-Douglas portion of the ideal price index, which

coincides with the ideal price index when preferences are homothetic (ν = 0,η = 1).

Let us examine equations (20)-(21) more carefully. Variable Πs
i is producer market

access for firms in sector s of location i. This variable will be high if these firms’

customers have high incomes (wjLj), relatively high price levels for sector-s goods

(P s
j ), and are located relatively “close” (low τ sij). Overall, producer market access Πs

j

can be interpreted as a measure of how good are the business opportunities for the

producer in terms of having rich markets with a low degree of competitiveness located

relatively nearby. Variable ζi is a cross-sector average of a location’s productivity and

producer market access. It will be higher whenever a location is very productive (high

ĀA
i or ĀN

i ) or has privileged access to lucrative markets (high ΠA
i or ΠN

i ). Finally,

variable ρi is the inverse of the ideal price index.5 It is high when sectoral price

indices PA
i and PN

i are low, but also involves a second term (− 1
γ (υ

A
i − ϕ)) reflecting

non-homothetic preferences.

5That is, it can be shown that Cj =
wj

(ρi)−1 .
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Equation (20) has a relatively straightforward interpretation. A country c will

have a high primacy rate if its primate city p(c) has a high fundamental amenity

(high ūp(c)), a low ideal price index (high ρp(c)), or a high composite ζp(c) of producer

market access and fundamental productivities. Moreover, what matters is not the

absolute value of these three variables but the relative value they assume for the

primate city compared to other domestic locations, as evidenced by the denominator∑
k∈c(ūkρkζ

− η
Ω

k )
θ

1−θ(β+η/Ω) in equation (20).

Which factors can explain changes in a country’s primacy rate? We can use equa-

tion (21) to help answer this question by decomposing changes in primacy into the

contributions of structural transformation, changes in trade access, and changes in

local fundamentals. For example, changes in trade costs τ will directly affect producer

market access Π and indirectly affect consumer market access I through their effect

on sectoral price indices PA, PN . According to equation (21), a country’s primacy

rate will then increase if consumer and producer market access improve more for the

primate location than for other domestic locations. In other words, since trade access

improves differentially across domestic locations, the direction in which primacy moves

will depend on whether the primate location’s trade access is relatively privileged or

harmed by the shock. Hence the idea of a “differential-trade-access” force. Analogous

observations apply to structural transformation forces and local-fundamentals forces.

Thus, structural transformation, differential trade access, and local fundamentals each

play a particular role in shaping spatial concentration, as measured by the primacy

rate. Finally, note that agglomerative NEG forces are also represented in the expres-

sion (albeit indirectly) through parameter α.

3 Bringing the Model to the Data

Having presented the model, I now tackle the question of how to bring the model to

the data. By doing so, I will be able to interpret real-world data through the lens

of the model and thus to estimate the contributions of different factors to spatial

concentration. It will be helpful to keep this goal in mind as this Section 3 presents

the specific steps I take to achieve it.

The estimation procedure has two steps. In the first step, I estimate trade costs.

Using equations (9)-(10) as a guide, I run gravity regressions using data on global

trade and transportation infrastructure, which then yields estimates of the structure

of bilateral trade costs, and in particular of international trade costs (“border-crossing

parameters”). Since I run these regressions for different years, my trade-cost estimates

are also year-specific, covering years from 1962 to 2019. In the second step, I calibrate

the model to the global 2005 economy using location-level data on populations, sectoral

employments, and incomes, as well as the trade-cost estimates obtained in the first
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step. Specifically, I use the equilibrium system (16)-(19) to back out the exact values

of fundamental productivities (ĀA, ĀN ) and amenities (ū) that perfectly rationalize

the observed 2005 data, which covers 1611 locations across 192 countries.

Having calibrated the model, I use it for a few empirical exercises. I perform a

series of counterfactual exercises using the equilibrium system (16)-(19). Specifically,

for each exercise, I impose a counterfactual trade cost structure τ cf (while keeping pa-

rameters and exogenous variables such as ĀA, ĀN , ū constant at their 2005 levels) and

recompute the equilibrium spatial distributions of population (Lcf ) and wages (wcf )

under this new trade-cost structure. By comparing actual and counterfactual popu-

lation distributions, I can assess the effect that the counterfactual trade-cost shock

would have on the spatial concentration of population. I also perform an accounting

exercise using decomposition equation (21). Specifically, I repeat the calibration proce-

dure for the global 1990 economy, then use the decomposition equation to disentangle

the contributions of structural transformation, changes in trade access, and changes in

local fundamentals in explaining the sample variation in observed 1990-2005 primacy

changes for the 44 countries for which I have data on subnational locations for both

1990 and 2005.

3.1 First Step: Gravity

In the first step, I estimate bilateral trade costs. To do that, I start by following

Ramondo et al. (2012) and imposing the following functional form for trade costs:

τ sijt = (Es
t )
1j ̸∈c(i)

B∏
z=1

(Cs,z)
1distij∈bz (22)

where τ sijt is the bilateral iceberg trade cost in sector s between locations i and j in

year t, Es
t ≥ 1 is a sector- and year-specific border-crossing parameter, {Cs,z}Bz=1 is a

set of sector-specific “cost-of-distance” parameters, distij is the distance between loca-

tions i and j (further detailed below), and {bz}Bz=1 is a set of equally-spaced distance

“bins”. Thus, trade costs have two components: an “international” cost Es
t that is

paid whenever a good is shipped across international borders, and a “distance” cost

Cs,z that depends on distance in a potentially non-linear manner.

The goal of the first step is to estimate parameters Es
t and {Cs,z}Bz=1 which will in

turn yield estimates of trade costs through equation (22). This is where using model-

implied trade equations (9) and (10) is helpful. Using equation (22) to substitute for

τij into these two equations, we obtain the following estimable trade gravity equation:

17



ln(Xs
ijt) =

B∑
z=1

(1− σs) ln(Cs,z)︸ ︷︷ ︸
C̃s,z

1distij∈bz+

(1− σs) ln(Es
t )︸ ︷︷ ︸

Ẽs
t

1j ̸∈c(i) + ωs,X
it + ωs,M

jt + ηsijt

(23)

where ωs,X
it = (1 − σs) ln(wi/A

s
i ) and ωs,M

jt = ln((P s
j )

σs−1υsjwjLj) are exporter-year

and importer-year fixed effects respectively, and ηsijt is an added error term.

Given data on trade flows Xs
ijt, distances distij , and the mapping of locations

to countries (i.e. the function c(.)), one can estimate equation (23), thus recovering

estimates of {C̃s,z}z and Ẽs
t (respectively denoted { ˆ̃Cs,z}z and ˆ̃Es

t ). Following the

international trade literature, the estimation method used is Poisson Pseudo-Maximum

Likelihood (PPML) (Santos-Silva and Tenreyro (2006), Head and Mayer (2014)). It

should be noted that identification of the border-crossing term Ẽs
t requires variation

in the indicator variable 1j ̸∈c(i), which means in practice that there must exist data

on both intranational and international trade flows for at least some countries in the

estimation sample. This topic will be further discussed when I present the data in

Section 4.

Given estimates { ˆ̃Cs,z}z and ˆ̃Es
t obtained from equation (23), and assuming specific

values for parameters (σA, σN ), one can then use the definitions of {C̃s,z}z and Ẽs
t to

back out estimates of trade-cost parameters {Cs,z}z and Es
t :

Ês
t = exp

( ˆ̃Es
t

1− σs

)
, Ĉs,z = exp

( ˆ̃Cs,z

1− σs

)
, (24)

Finally, using estimates Ês
t and Ĉs,z, I compute estimated trade costs {τ̂ijt}ij

following the parametrization from equation (22):

τ̂ sijt = (Ês
t )
1j∈c(i)

B∏
z=1

(Ĉs,z)
1distij∈bz (25)

3.1.1 Measuring Distances

One of the variables required for the estimation of gravity equation (23) described in

Section 3.1 is bilateral distance, distij . In this paper, I do not use straight-line distance,

as is common in the literature, but rather present a methodology for accounting for

transportation infrastructure when computing bilateral distances.

This methodology requires using worldwide infrastructure maps, which I obtain

from the Natural Earth website (see Section 4 for details). Figure 2 presents the final

map. One notes that the density of transportation infrastructure like roads and rail

varies substantially across regions. For example, transportation density is generally
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high in Europe but low in northern Canada and northern Russia. This suggests that

usual straight-line distance measurements, which ignore transportation infrastructure,

could be misleading. Moreover, since much of global transportation happens over

water, it could be important to account for the difference in trade costs between water

and land when measuring bilateral distances.

Figure 2: Global Transportation Infrastructure

Notes: the figure portrays the global road and rail networks. Data on location of rail and road was downloaded from the Natural

Earth webasite: https://www.naturalearthdata.com

Using QGIS software, I transform the global infrastructure map into the cost raster

displayed in Figure 3. This is done by first partitioning the Earth’s surface into grid

cells measuring 1◦of latitude by 1◦of longitude. For each of six transportation modesm,

I assume the mode-specific cost of traversing a single hypothetical grid cell using that

mode is equal to κm, the value of which is based on estimates from Allen and Arkolakis

(2014).6 I then ascribe a traversal cost T (x) to each grid cell x that corresponds to

the lowest-cost transportation mode present in that grid cell.7

Formally, let M(x) denote the set of all transportation modes present in grid cell

x. Since every grid cells contains water or land, the set M(x) is guaranteed to be

non-empty for all cells x. The traversal cost T (x) of cell x is then formally given by:

T (x) = min
m∈M(x)

κm (26)

One notable feature in Figure 3 are the additional pipe-like cells “outside” the

world map. These pipes are simply a programming device that will help with the

computation of least-cost paths between pairs of cells. Specifically, a grid cell x within

6The values of mode-specific per-cell costs κm are: κwater = 0.0779, κrail = 0.1793,

κinterstate highway = 0.5640, κnon−interstate highway = 0.717, κarterial road = 1.1270, κland = 1.9200.

See Appendix A.2 for a more detailed explanation of how these specific values were chosen.
7For example, suppose a grid cell x contains both land and rail. Since rail offers cheaper trans-

portation than land, the grid cell’s traversal cost T (x) is set to κrail.

19



Figure 3: Cost Raster

Notes: the figure portrays a cost raster in which the value of each pixel is color-coded. The scale on the right-hand side indicates

the mapping from colors to values.

a yellow pipe is set to have a very high traversal cost (T (x) = 106 − 1), while a blue-

pipe cell x has a very low traversal costs (T (x) = 0.00001). This allows a traveler to

move at near-zero cost from the eastern edge to the western edge of the world map

(or vice-versa) as long as she stays at the same latitude. Similar low-cost pipes are

placed in the North and South Poles. This allows me to implement a least-cost path

algorithm in a straightforward manner by using the two-dimensional fast marching

method of Allen and Arkolakis (2014). The algorithm will work despite the fact that,

unlike Allen and Arkolakis (2014), I must account for the sphericity of the Earth.

Given the cost raster of Figure 3, we are finally ready to compute bilateral distances.

The distance between each pair of grid cells is simply the total traversal cost of the

least-cost path that connects the two grid cells. Formally, for a given origin grid cell

i and destination grid cell j, define Pij as the set of all continuous paths p on the

world map that start at location i and end at location j.8 Then, the distance between

locations i and j is the results of the following minimization program:

distij = min
p∈Pij

∑
x∈p

T (x)

I implement the minimization program for all relevant grid cells using the fast

8A path p is classified as continuous if all pairs of adjacent cells within the path are either physically

adjacent or connected by a blue pipe.
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marching method (FMM) algorithm from Allen and Arkolakis (2014).9 As an illus-

tration, the heat map in Figure 4 portrays the bilateral distances between a single

destination cell (market with a star) and all other cells in the world. Some of most

accessible cells with respect to the star are located in the northwestern corner of the

figure, showing that the blue-pipe device worked to cheaply connect the western and

eastern ends of the map. Moreover, note that infrastructure matters: for example, the

innermost regions of Africa are much more expensive to reach than Central Europe

because rail and road networks are much denser in the latter. Finally, ocean trans-

portation also matters: cell pairs that are connected by water pathways rather than

land pathways tend to have lower bilateral distances.

Figure 4: Heat Map: Transportation Cost

Notes: the figure portrays a heat map in which the transportation cost between the pixel marked with the star and every other

pixel on the map is color-coded. The scale on the right-hand side indicates the mapping from colors to values.

3.2 Second Step: Calibration

Having estimated trade-cost structures in the first step, I proceed to calibrate the model

to the 2005 global economy. In this context, calibration means finding the vectors

of fundamental productivities ({ĀA
i,2005, Ā

N
i,2005}i∈S) and amenities ({ūi,2005}i∈S) that

9For computational reasons, I do not implement the minimization program for all grid-cell pairs as

this will not be necessary for the rest of the analysis. Instead, I implement the minimization program

for all destination cells that house a centroid of at least one relevant polygon. Relevant polygons are

polygons that represent a location/country that appears either in the estimation sample of the gravity

equation (see Section 3.1) or in the calibration (see Section 3.2).
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rationalize the observed 2005 spatial distribution of wages ({wi,2005}i∈S) and sector-

level populations ({LA
i,2005, L

N
i,2005}i∈S) given estimated 2005 trade costs ({τ̂ sij,2005}ij).

What is meant by “rationalization” is that these vectors of fundamental productivities

and amenities must be such that the equilibrium equations (16)-(19) hold exactly,

given observed population, sectoral employment and wage distributions.

Formally, one recovers fundamental productivities and amenities by first solving

the following equilibrium system for variables (ĀA
2005, Ā

N
2005, P

s
2005, υ

s
2005):

wσs
i,2005(L

s
i,2005)

1−αs(σs−1) = (Ās
i,2005)

σs−1
∑
j∈S

(τ̂ sij,2005)
1−σs(P s

j,2005)
σs−1υsj,2005Lj,2005wj,2005

(P s
j,2005)

1−σs =
∑
i∈S

(τ̂ sij,2005wi,2005)
1−σs(Ās

i,2005(L
s
i,2005)

αs)σs−1

υAj,2005 = ϕ+ ν(PA
j,2005/P

N
j,2005)

γw−η
j,2005

Intuitively, by solving this equation system I find the set of fundamental produc-

tivities that results in a set of prices such that the supply and demand for the good

produced by each location-sector are perfectly balanced (while taking as given the dis-

tribution of wages, populations, and sectoral employments). The next step is to find

the set of fundamental amenities that rationalizes the spatial distribution of population

by solving the following equation system for variables (ū2005,W2005):

Wj,2005 = ūj,2005L
β
j,2005

[1
η

(
wj,2005(P

A
j,2005)

−ϕ(PN
j,2005)

ϕ−1
)η−ν

γ

(
PA
j,2005/P

N
j,2005

)γ
+
ν

γ
−1

η

]

Li,2005 =
Wi,2005

θ∑
k∈cWk,2005

θ
L̄c(i),2005

πc ≡
(∑
k∈c

Wk,2005
θ
) 1

θ = 1, ∀c ∈ C

Intuitively, by solving this equation system I first find the set of welfare values

that makes agents desire a spatial distribution of population that corresponds to the

distribution actually observed in the data, and then I back out the set of fundamental

amenities needed to implement these welfare values (all while taking wages, popula-

tions, and prices as given).

Note that in addition to equilibrium conditions (18)-(19), I also use the normaliza-

tion condition πc = 1, which states that the adjusted welfare sum πc in each country

must equal one. Why is this condition necessary? The reason is that, within a given

country, the average amenity level and the average welfare level are not separately
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Table 1: Parameter Values

Parameter Description Value

σA, σN Sector-level elasticity of substitution 4

θ Dispersion parameter of taste shock 1.2

αA, αN Sector-level agglomeration elasticity 0.1

β Congestion elasticity -0.345

ν Degree of non-homotheticity 0.1

η Concavity of Cobb-Douglas portion of utility 0.31

γ Concavity of non-homothetic portion of utility 0.35

ϕ Asymptotic agricultural share of consumption 0.01

Notes: for each parameter in the model, this table displays a description of the parameter and the value I impose for that

parameter.

identified. For example, if a certain set of fundamental amenities and welfares ratio-

nalizes a specific data set, then that data set can be equally rationalized if we multiply

all fundamental amenities in a given country by two while also multiplying all welfares

in that country by two. Therefore, normalizing average welfare levels within a country

is necessary to obtain an unique vector of fundamental amenities. The only relevant

consequence of this normalization is that I will not be able to compare welfare levels

across countries, which is not particularly problematic in the context of my model

because I had already ruled out international migration by assumption. I will still

be able to compare welfare levels across locations within a country and to compare

welfare levels across different counterfactual scenarios for a given location or country.

Equations in this Section 3.2 contain multiple parameters (σA,σN ,αA,αN ,θ,β,η,ν,γ,ϕ)

whose knowledge is necessary for calibration. Table 1 displays the specific values these

parameters assume in my implementation. Elasticities of substitution σs use a typical

value from the trade literature (e.g. Simonovska and Waugh (2011)). Agglomeration

parameters αs are based in Rosenthal and Strange (2004). Taste-dispersion parameter

θ and PIGL parameter ν are chosen to guarantee equilibrium existence. Congestion

parameter β is taken from Allen and Donaldson (2020). PIGL parameters η and γ are

taken from Eckert and Peters (2018). Asymptotic agricultural share of consumption

ϕ is set to the agricultural share of Germany’s GDP in 2019.10

10Germany is chosen because it is a particularly developed economy and thus far along in its path

of structural change. Other developed countries yield similar values. The German number is taken

from: https://www.statista.com/statistics/295519/
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3.3 Counterfactuals

Having estimated trade costs ({τ̂ sijt}ijt) in the first step and computed fundamentals in

the second step, I can use the calibrated model to perform empirical exercises, such as

counterfactuals. Each counterfactual exercise can be thought of as the answer to the

following question: how would the observed 2005 distribution of wages and popula-

tions change if the world’s trade-cost structure changed while the other fundamentals

remained the same? These exercises can thus help us understand the influence of trade

access on the world’s economic geography, in particular on spatial concentration.

Therefore, each counterfactual exercise is characterized by its specific counterfac-

tual trade-cost matrix, τ cf . Given this matrix τ cf and the fundamental productivities

and amenities (ĀA
2005,Ā

N
2005,ū2005) recovered in the second step, I can then compute the

counterfactual equilibrium by solving the equilibrium system of equations (16)-(19) for

counterfactual variables: wages, populations, sectoral employments, price levels, agri-

cultural share of consumption, and welfare (wcf , Lcf , Lcf,A, Lcf,N , P cf,A, P cf,N , υcf,A,W cf ):

(wcf
i )σs(Lcf,s

i )1−αs(σs−1) = (Ās
i,2005)

σs−1
∑
j∈S

(τ cf,sij )1−σs(P cf,s
j )σs−1υcf,sj Lcf

j wcf
j

(P cf,s
j )1−σs =

∑
i∈S

(τ cf,sij wcf
i )1−σs(Ās

i,2005(L
cf,s
i )αs)σs−1

Lcf,A
i + Lcf,N

i = Lcf
i =

(W cf
i )θ∑

k∈c(W
cf
k )θ

L̄c(i),2005

W cf
j = ūj,2005(L

cf
j )β

[1
η

(
wcf
j (P cf,A

j )−ϕ(P cf,N
j )ϕ−1

)η − ν

γ

(
P cf,A
j /P cf,N

j

)γ
+

ν

γ
− 1

η

]
After solving this equation system, I can easily recover other variables of interest

such as countries’ primacy indices and adjusted welfare sums:

Primacycfc =
Lcf
pcf (c)

L̄c,2005
(27)

πcf
c =

(∑
k∈c

(W cf
k )θ

) 1
θ (28)

where pcf (.) is the primacy function that holds in the counterfactual equilibrium.

Note that computing adjusted welfare sums πcf
c is useful because this variable

offers a concept of country-level welfare. Moreover, since this variable was normalized

in the second step to equal one, its counterfactual value can be straightforwardly

interpreted as the country’s relative welfare gain due to the counterfactual trade shock.
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For example, if πcf
c = 1.8 for a given country c, we can then conclude that this country’s

average welfare sum increased 80% due to the counterfactual change in trade costs.

Finally, given counterfactual variables (τ cf,A, τ cf,N , wcf , Lcf,A, Lcf,N , Lcf , υcf,A),

it is straightforward to compute counterfactual trade flows according to equations (9)-

(10):

Xcf,s
ij =

[
τ cf,sij wcf

i

Ās
i,2005(L

cf,s
i )αsP cf,s

j

]1−σA

υcf,sj wcf
j Lcf

j

which then allows me to compute each country’s counterfactual import share, as well

as the causal effect of the counterfactual trade shock on the share of global trade in

world GDP: (M
Y

)cf

c
=

∑
s∈{A,N}

∑
j∈c

∑
i ̸∈cX

cf,s
ij∑

s∈{A,N}
∑

j∈c
∑

i∈S Xcf,s
ij

(29)

∆
(M
Y

)WLD
=

∑
s∈{A,N}

∑
j∈c

∑
i ̸∈cX

cf,s
ij∑

s∈{A,N}
∑

j∈c
∑

i∈S Xcf,s
ij

−
∑

s∈{A,N}
∑

j∈c
∑

i ̸∈cX
s
ij,2005∑

s∈{A,N}
∑

j∈c
∑

i∈S Xs
ij,2005

(30)

Therefore, equations (27)-(30) allow us to assess the extent to which counterfactual

trade shocks affected spatial concentration, welfare, and the volume of international

trade. Additionally, it is also possible to assess how much spatial reallocation matters

as a channel for the effects on welfare and volume by comparing the counterfactual

values of these two variables against their values in an alternative “immobility” coun-

terfactual in which the trade-cost matrix is still τ cf but agents are not allowed to

spatially reallocate away from their baseline location (see Appendix C for details).

3.4 Decomposition

I also use the calibrated model to perform a decomposition exercise. Specifically, I

use equation (21) to decompose the changes in spatial concentration (as measured by

the primacy rate) between 1990 and 2005 into the contributions of structural trans-

formation, changes in trade access, and changes in local fundamentals (i.e. exogenous

productivities and amenities). To implement the exercise, start by rewriting equation

(21) in a more succinct form:

d ln(Primacyc) = ln
(Primacyc,2005
Primacyc,1990

)
= contSTc + contDTA

c + contLFc , (31)

where:

contST
c =

( θ

1− θ(β + η
Ω )

)[
κp(c),2005(−dυA

p(c))−
∑
k∈c

(Lk,2005

L̄c,2005

)
κk,2005(−dυA

k )
]
,
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contDTA
c =

( θ

1− θ(β + η
Ω )

){
Ξp(c),2005d ln(Ip(c))−

∑
k∈c

(Lk,2005

L̄c,2005

)
Ξk,2005d ln(Ik)

+
η

σ
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µs
p(c),2005d ln(Π

s
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∑
k∈c
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)∑
s

µs
k,2005d ln(Π

s
k)
]}

,

contLF
c =

( θ

1− θ(β + η
Ω )

){
d ln(ūp(c))−

∑
k∈c

(Lk,2005

L̄c,2005

)
d ln(ūk)

+
η(σ − 1)

σ

[∑
s

µs
p(c),2005d ln(Ā

s
p(c))−

∑
k∈c

(Lk,2005

L̄c,2005

)∑
s

µs
k,2005d ln(Ā

s
k)
]}

,

and the differential operator d refers to changes between 2005 and 1990, i.e. dxi =

xi,2005 − xi,1990 for any variable x.

Empirical implementation of equation (31) requires data on population (L2005) and

knowledge of calibrated variables (υA2005,κ2005, Ξ2005,I2005,µ2005, Π2005, ū2005,Ā
A
2005,Ā

N
2005)

for baseline year 2005, all of which were recovered in the second step. However, to com-

pute the differentials (dυA, d ln(Ik), d ln(Π
A
k ),d ln(Π

N
k ), d ln(ūk), d ln(Ā

A, d ln(ĀA)), I

also need knowledge of variables (υA1990, I1990, ΠA
1990,Π

N
1990, ū1990, ĀA

1990, ĀN
1990) for

year 1990. Thus, it is necessary to separately calibrate the model to the global 1990

economy using the same methodology from Section 3.2 that was used for baseline year

2005.11

Taking the variance operator of equation (31), I obtain the following decomposition

for the variance of primacy changes:

Var(d ln(Primacy)) = Var(contST ) + Var(contDTA) + Var(contLF )

+ 2cov(contST , contDTA) + 2cov(contST , contLF ) + 2cov(contDTA, contLF ) (32)

Thus, after using calibration results and data to recover (contSTc ,contDTA
c ,contLFc )

for 44 countries in my sample with the help of equation (31), I can the decompose

the variance of 1990-2005 changes in primacy into components explained by structural

transformation, change in trade access, and changes in local fundamentals (as well as

the covariances among the three) using equation (32).12 This allows me to measure

the extent to which each of these three drivers have mattered in accounting for the

changes in spatial concentration that happened in the recent past in these real-world

countries.

11See Appendix D.1 for more details on the calibration of the 1990 economy.
12These 44 countries are the ones for which I have IPUMS data on subnational units for both 1990

and 2005.
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4 Data

In this section, I describe the data sources from which I obtained the variables used to

bring the model to the data. I also describe data adjustments that were necessary to

bring the data into an appropriate format for usage in my empirical applications.

4.1 Population

4.1.1 IPUMS International

My main source of location-level population is IPUMS International, a project that

harmonizes and disseminates census data from multiple countries around the world.

I use the version of the data at the first level of geographic disaggregation, which

typically partitions countries into states or provinces. For each country, whenever

2005 data is not available, I use data from the closest year to 2005 as long as that

year is within the 1995-2011 interval. My final IPUMS samples covers 79 countries,

totaling 1511 locations. Figure 5 displays the world map with countries partitioned

into IPUMS locations (with geometric centroids overlayed).

Figure 5: Countries, Subnational Locations, and Geometric Centroids

Notes: the figure portrays a world map partitioned into countries and within-country subnational units corresponding to the

geographic coding of the IPUMS International data set for year 2005. Subnational units are typical states or provinces. In

addition, for each country or subnational unit, the map displays the geometric centroid (in orange) of the polygon that represents

that location.

IPUMS data includes local employment by industry, which is coded according

to variable INDGEN (“Industry, general recode”). I aggregate this variable’s multi-

ple categories into two groups: agriculture (category 010, “Agriculture, fishing, and

forestry”) and non-agriculture (categories 020-130). The resulting variables (agricul-

tural and non-agricultural employment) are the data analogues of model variables
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LA
2005 and LN

2005.

4.1.2 World Bank Open Data

IPUMS data by subnational location does not cover every country: for example, note

that Australia is not divided into provinces in Figure 5. Therefore, sectoral population

data at the national level is needed. For these countries, I obtain national 2005 popu-

lation data (L2005) from World Bank Open Data, which covers the 1960-2019 period. I

then distribute this national population between the agricultural and non-agricultural

sectors (LA
2005,L

N
2005) using another variable from World Bank Open Data, the agri-

cultural share of GDP (formally “Agriculture, forestry, and fishing, value added (%

of GDP)”). Conveniently, this variable uses the same sectoral coding as the one from

variable INDGEN in IPUMS, thus guaranteeing comparability. The agricultural share

of GDP is missing for some countries for 2005, so in these cases I impute it using the

closest year (as long as that year is within the 1995-2015 time window).

Even for countries for which IPUMS data at the subnational level is available, World

Bank Open Data’s national population data is helpful. To guarantee comparability,

I adjust these countries’ sector-location population distributions so that the implied

national population matches its World Bank Open Data 2005 national population.

Specifically, the population in sector s of location i is set to:

Ls
i,2005 = Ls,IPUMS

i,2005

L̄WBOD
c(i),2005∑

j∈c(i) L
IPUMS
j,2005

where Ls,IPUMS
i,2005 is the population of sector s of location i in 2005 according to IPUMS,

LIPUMS
i,2005 is the population of location i in 2005 according to IPUMS, and L̄WBOD

c,2005 is

the 2005 national population of country c according to World Bank Open Data.

4.2 Per capita income

To obtain data on 2005 local wages (w2005), I follow Desmet et al. (2018) and use

the data set G-Econ 4.0. This is a project that builds a “geophysically based data set

on economic activity for the world”. The basic units of measurement are grid cells

measuring 1-degree longitude by 1-degree latitude, for each of which output (gross cell

product) and population are estimated.

I divide output by population to obtain an estimate of each cell’s per capita income

for year 2005, which proxies for wages in my empirical applications. The basic data set

cointains 24,903 cells (some of which involve more than one country) but only 17,043

of them have enough information to compute income per capita.

Given this wage proxy for grid cells, I use this data to compute wages at the level

of IPUMS subnational locations. Note that each location i is represented by a polygon
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poli, as seen in Figure 5. I set the wage of that location i to be a weighted average of

the wages of the grid cells that overlap its polygon poli, where the weights are given

by the land area of the intersection of each grid cell with the polygon. Formally, let

all grid cells in the world be indexed by g = 1, ..., G and let the wage of grid cell g

be denoted by wagecellg,2005. Then, the wage wi,2005 of each location i represented a

polygon poli is set to:

wi,2005 =
G∑

g=1

wagecellg,2005

(Area(g ∩ poli)

Area(poli)

)
For countries for which IPUMS data at the subnational level is not available, I

simply obtain 2005 per capita income (officially “GDP per capita (current US$)”)
from World Bank Open Data, which covers the 1960-2017 period.

4.3 Trade flows

World Integrated Trade Solution (WITS) is a data service by the World Bank “in col-

laboration with the United Nations Conference on Trade and Development (UNCTAD)

and in consultation with organizations such as International Trade Center, United Na-

tions Statistical Division (UNSD) and the World Trade Organization (WTO)”. From

this source I obtain country-level bilateral trade flows in US dollars for 1962-2019.

The data lists trade flows separately by sector, including agriculture. I compute non-

agricultural trade flows by subtracting bilateral agricultural trade flows from total

bilateral trade flows. Whenever that results in a negative value for, I replace that

value with zero.

As mentioned in Section 3.1, identification of the border-crossing parameter when

estimating the trade gravity equation requires data on both intranational and inter-

national trade flows. WITS only covers international trade.13 So, I augment the data

set by imputing sector-level trade flows from a country i to itself (i.e. Xs
ii) using two

additional country-level variables from World Bank Open Data: agricultural share of

GDP Agsh, which was already mentioned in Section 4.1.2, and import share Msh

(officially “Imports of goods and services (% of GDP)”).

The imputing procedure for Xs
ii goes as follows. First use WITS data to compute

each country-sector international exports each year: EXP s
it =

∑
j ̸=iX

s
ijt; and each

country’s international imports each year: IMPit =
∑

j ̸=i(X
A
jit + XN

jit). To obtain

implied national GDP Yit, divide international exports IMPit by import share Mshit:

13As a robustness check, in Appendix B I rerun gravity regressions for year 2010 using WITS data

and compare its results to the analogous gravity regression that uses the German data set Verkehrsver-

flechtungsprognose 2030, which has (non-imputed) intranational trade data for Europe in 2010. Check

Appendix B for details and results.
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Yit =
IMPit

Mshit

This national GDP can be distributed between agricultural and non-agricultural

GDP using data on the agricultural share of GDP. Specifically, national agricultural

and non-agricultural GDP (Y A
i , Y N

i ) are given by:

Y A
it = Yit ×Agshit, Y N

it = Yit × (1−Agshit)

Finally, I compute intranational trade Xs
iit in sector s of country i as the difference

between sectoral GDP and sectoral exports:

Xs
iit = Y s

it − EXP s
it

Any resulting negative intranational trade flows (Xs
iit < 0) are dropped from the

sample.

4.4 Transportation infrastructure

I download maps of global transportation infrastructure from Natural Earth, a public

domain data set (Desmet et al. (2018)). I use the “large-scale” version of the data set

containing cultural aspects of the terrain.14 From the list of cultural aspects, I select

the layers “roads” and “railroads”.

In Natural Earth, roads are categorized, so it is necessary to create a mapping from

those categories to the ones for which we have estimates of traversal costs (see Section

3.1.1). I classify “beltway” and “major highway” as interstate highways, “secondary

highway” as non-interstate highway, and the remaining road types as arterial roads. I

delete all road features that correspond to over-water transportation (ferries).

Using these transportation network maps, I generate the cost raster of Figure 3

following the procedure described in Section 3.1.1.

4.5 Geographic coordinates

I use the maps provided by IPUMS International to obtain geographic coordinates for

countries and subnational locations. For subnational locations, I use the GIS bound-

ary file titled “spatially harmonized first-level geography” (world geolev1 2019.shp),

which is displayed in Figure 5. For countries, it’s the GIS boundary file titled “world

map” (world countries 2017.shp). In either case, I use QGIS to compute the geometric

centroids of the polygons representing each country or location. This process yields a

total of 248 country centroids and 2023 subnational location centroids (see Figure 5).

14Download links can be found at: https://www.naturalearthdata.com/downloads/10m-cultural-

vectors/

30



4.6 Bilateral Distances

For each pair of subnational locations and/or countries, bilateral distances distij are

computed using the centroids obtained in Section 4.5. First, I locate the two 1◦x

1◦grid cells in which the two centroids are located. Then, as described in Section 3.1.1,

I apply the fast marching method (FMM) algorithm using the cost raster mentioned

in Section 4.4 (see Figure 3) to compute the bilateral distance between the two cells.

Note that after obtaining bilateral distances I must partition the distance range

into bins to implement the trade gravity regression (as explained in Section 3.1). To do

that, I first take the maximum bilateral distance in the data set (which is the distance

between Greenland and Russia, approximately 33.35) and multiply it by 1.05 to obtain

an upper bound dmax. I then divide the interval [0, dmax] into B = 30 equally spaced

distance bins.

4.7 Final calibration sample

After performing all data adjustments described in this Section 4 and dropping coun-

tries for which it was not possible to obtain estimates of sector-level population and/or

per capita income (neither at the national nor subnational level), I arrive at the final

sample that will be used in the calibration exercise. This includes N = 1611 locations

across C = 192 countries.

5 Results

In this Section, I present the results of the empirical exercise by which I bring the model

to the data. I first present results of trade gravity estimation (first step). Then I discuss

the calibration results (second step) and the results of the counterfactual exercises. I

use counterfactual results to further discuss the effects of trade shocks on welfare and

trade volumes, as well as the extent to which these effects are influenced by population

mobility across space and sectors. Finally, I present the result of the decomposition of

1990-2005 primacy changes into the contributions of structural transformation, changes

in trade access, and changes in local fundamentals.

5.1 Results of First Step: Gravity

I now present results for the main trade gravity regressions, as described in Section

3.1, using WITS trade data. Estimated sector-level costs of distance bins {Cs,z}Bz=1

for year 2005 are displayed on Figure 6. The costs of traversing a given distance seems

to be slightly higher for agriculture than non-agriculture, but overall the estimates are

roughly similar.
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Figure 6: Cost of Distance Bins (2005)

Notes: the figure portrays the estimated values of the agricultural and non-agricultural distance costs ĈA,z and ĈN,z for each

one of the distance bins z ∈ {0, ..., B}.

Figures 7 and 8 present estimates of sector-level border-crossing parameters Ês
t ,

by year. Overall, border-crossing costs are substantially lower for agriculture than for

non-agriculture. For both sectors, there seems to have been a substantial decrease

in trade costs between the 1960s and today. For example, the agricultural border-

crossing cost in the early 1960s was equivalent to a 200% ad-valorem tariff, decreasing

to approximately 130-150% in the late 2010s. Similarly, for the non-agricultural sector

border-crossing costs seem to have declined from around 400% to 270% between the

1960s and the 2010s. These estimates are consistent with findings in the trade literature

that point to a trend of declining international trade costs over the second half of the

twentieth century.

As described in Section 3.1, I use the estimated distance costs and border-crossing

costs presented in this section to construct estimated trade-cost matrices for years

1971, 1990 and 2005 (τ̂1971,τ̂1990,τ̂2005). These trade-cost matrices that will be used in

the calibration, counterfactual exercises, and decompositions below.

5.2 Results of Second Step: Calibration

I now present the results of the second step, namely calibration. As described in

Section 3.2, I back out the fundamental productivity (ĀA
2005,Ā

N
2005) and fundamental

amenity (ū2005) vectors that rationalize the observed 2005 worldwide distribution of

wages, population, and sectoral employment across 1611 locations in 192 countries.
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Figure 7: Estimated Border-Crossing Cost, Agriculture

Notes: the figure portrays the estimated agricultural border-crossing cost ÊA
t for each year t between 1962 and 2019.

Figures 9 and 10 display estimated fundamental productivities in 2005.

As one can see in the figure, the spatial distribution of fundamental productivities

is somewhat intuitive. Developed countries and oil-rich countries tend to display par-

ticularly large values. Within countries like China, richer regions (e.g. eastern China)

tend to have somewhat higher fundamental productivities than poorer regions (e.g.

western China).

Figure 11 displays the estimates of fundamental amenities. It should be empha-

sized that cross-location comparisons of amenities are meaningful within countries but

not across countries. As explained in section 3.2, within-country average fundamental

amenities are not separately identified from within-country average welfare, making it

necessary to normalize each country’s adjusted welfare sum to an arbitrary number

(πc,2005 = 1). However, it is still possible to compare fundamental amenities within a

country. As a general rule, the calibration tends to yield relatively high estimates of

fundamental amenities for well-populated regions within a country. From the perspec-

tive of the model, this is necessary to rationalize a large number of people in those

locations whenever their superior income or market access is not sufficient to fully

counterbalance their substantial congestion given the assumption of costless internal

migration.
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Figure 8: Estimated Border-Crossing Cost, Non-Agriculture

Notes: the figure portrays the estimated non-agricultural border-crossing cost ÊN
t for each year t between 1962 and 2019.

5.3 Results of Counterfactual Exercises

5.3.1 Counterfactual trade matrices

As described in Section 3.3, each counterfactual exercise is characterized by its coun-

terfactual trade-cost structure. Thus, before presenting results for counterfactual exer-

cises, it is necessary to present the specific counterfactual trade-cost matrices that will

be used in these exercises. I run two counterfactual exercises. The first exercise, CF1,

lowers international trade costs by simply eliminating border-crossing costs from the

estimated trade-cost structure. One can think of this scenario as the elimination of all

international trade barriers, be them policy-driven (e.g. tariffs, non-tariff barriers) or

not (e.g. language differences, social networks). Formally, trade costs in counterfactual

CF1 are given by:

τ s,cf1ij =

B∏
z=1

(Ĉs,z
2005)

1distij∈bz

The second counterfactual exercise, CF2, increases trade costs back to their 1971

levels. This counterfactual should be interpreted as answering the question: how would

the global 2005 distribution of population and wages change if trade costs rose to their

1971 levels while the remaining economic fundamentals remained the same? Formally,

the counterfactual trade-cost matrix is given by:

τ s,cf2ij = τ̂ sij,1971

34



Figure 9: Fundamental Productivities, Agriculture (2005)

Notes: the figure portrays the calibrated fundamental agricultural productivity ĀA
i,2005 in year 2005 for each location i in the

world.

Figure 10: Fundamental Productivities, Non-Agriculture (2005)

Notes: the figure portrays the calibrated fundamental non-agricultural productivity ĀN
i,2005 in year 2005 for each location i in

the world.

5.3.2 Counterfactual Results

In each counterfactual exercise, I impose one of the counterfactual trade matrices

listed in Section 5.3.1 and then compute the counterfactual spatial equilibrium which

includes variables such as counterfactual wages wcf and counterfactual populations

Lcf . Given these variables, I compute the percentage increase in population between

the baseline 2005 equilibrium and the counterfactual equilibrium for each and every

location i: 100× (
Lcf
i

Li,2005
− 1)%.

Figures 12 and 13 display the percentage increase in population for every location

in the world for each of the counterfactual exercises. Note that in every map there are

many locations with zero change in population. These are countries for which we do not

have data at the subnational level. They were thus included in the analysis as single

units, which when combined with the assumed cross-country population immobility

implies that their population must remain constant under any counterfactual trade-

cost structure.

When examining the maps in Figure 12 and 13, one should note that the range of
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Figure 11: Fundamental Amenities (2005)

Notes: the figure portrays the calibrated fundamental amenity ūi,2005 in year 2005 for each location i in the world.

Figure 12: Results: Counterfactual CF1 (No-border Crossing Cost)

Notes: for each location in the world, the figure portrays the percentage change in population in the counterfactual equilibrium

CF1 (in which I eliminate all border-crossing costs) with respect to the 2005 baseline.

percent population changes is modest. For example, in counterfactual CF1 (elimination

of border-crossing costs) no location gains more than 5.5% or loses more than 10%

of its baseline population. This implies that, given model parameters and calibrated

fundamentals, trade shocks seem to influence the spatial distribution of population only

moderately. This observation may help explain the result presented below that changes

in trade access account for little of the actually observed change in concentration in

recent decades.

For each counterfactual, which locations grow within a country and which locations

shrink? Casual inspection of Figures 12 and 13 suggests that the geographic pattern

of population changes for counterfactual CF1, where trade costs fall, is the opposite

of the pattern for counterfactual CF2 where trade costs increase. When we decrease

trade costs in CF1, locations that housed a low fraction of the national population at

baseline (e.g. northwestern USA, western China, northwestern Brazil) tend to be the

ones that grow the most, thus reducing population concentration at the national level.

On the other hand, when trade costs rise in CF2, the locations that grow the most
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Figure 13: Results: Counterfactual CF2 (1971 Trade Costs)

Notes: for each location in the world, the figure portrays the percentage change in population in the counterfactual equilibrium

CF2 (in which raise trade costs back to their 1971 levels) with respect to the 2005 baseline.

Table 2: Correlation of Baseline Population Share and Population Relative Change

Counterfactual CF1 CF2

ρ
(
ln(

Lcf
i

Li,2005
), ln(

Li,2005

L̄c(i),2005
)
)

-0.227 0.249

Notes: for each counterfactual exercise, the table displays the correlation (across all locations in the world) between the log of

the location’s initial share of the national population (ln(Li,2005/L̄c(i),2005)) and the log of the relative change in the location’s

population in the counterfactual equilibrium with respect to baseline (ln( L
cf
i /Li,2005)).

tend to be the ones that had a high fraction of the national population at baseline (e.g.

northeastern USA, eastern China, southeastern Brazil), thereby increasing the spatial

concentration of population.

Table 2 provides a more systematic assessment of these casual observations. For

each counterfactual exercise, it displays the correlation coefficient between (the log

of) a location’s baseline share of the national population and (the log of) its relative

population change between the baseline and the counterfactual equilibrium. For coun-

terfactual CF1, which decreases trade costs, the correlation is negative (around -0.25),

while the opposite holds for counterfactual CF2, which increases trade costs and for

which the correlation is positive (around 0.25).

It short, these results indicate that international trade integration tends to cause

spatial deconcentration of population, while increased trade costs have an opposite,

concentrating effect. Note that this is consistent with the predictions of Krugman

and Livas (1996). Thus, a prediction originally made in a simple stylized model also

seems to hold in a model that is much more sophisticated (including elements such

as structural change and differential access to foreign markets) and that is closely

calibrated to the world economy using real-world data.
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Table 3: Change in International Trade (as % of world GDP)

Counterfactual # CF1 CF2

Long-Run CF +57 p.p. -7 p.p.

CF (strong immobility) +57 p.p. -5 p.p.

CF (weak immobility) +57 p.p. -7 p.p.

Notes: for each counterfactual exercise, the table’s first row displays the counterfactual change in international trade (as a % of

world GDP) with respect to the calibrated 2005 economy. The second and third rows display the corresponding counterfactual

change for the strong-immobility and weak-immobility counterfactuals, respectively, in which the spatial distribution of popu-

lation is not allowed to adjust in the counterfactual equilibrium (see Appendix C for details).

5.3.3 Trade Volumes and Welfare

Counterfactual exercises also allow us to predict the effects that each counterfactual

trade shock would have on welfare and on trade volumes. These effects are central

topics of interest in the trade literature. Within that context, this model’s predic-

tions are useful because they come from a full-fledged general equilibrium model that

includes several important mechanisms such as trade diversion, cross-sectoral real-

location, geographic reallocation, and structural change. Therefore, its predictions

regarding welfare and trade volumes are arguably an useful addition to the ones from

traditional models, which often lack mechanisms such as spatial population realloca-

tion, for example.

The first row of Table 3 presents the effect of counterfactual trade-cost structures

on trade volumes by displaying the value of international trade as a fraction of world

GDP in each scenario. International trade corresponds to 21% of world GDP in the

calibrated 2005 world economy. Counterfactual exercise CF1, which eliminates inter-

national trade costs, has very large effects on trade volumes: trade as a fraction of

world GDP grows by 57 percentage points, reaching 78%. This suggests that global

trade is not close to being completely free, even for practical purposes, since there

is much potential trade that is repressed by currently standing border-crossing costs.

Counterfactual CF2, which raises international trade costs to 1971 levels, cause the

fraction of trade in global GDP to decline by 7 p.p., reaching 14%.

The first row of Table 4 presents the effect of counterfactual trade structures on wel-

fare by displaying the percent change in the cross-country average of adjusted welfare

sums (variable πc) in each scenario. Eliminating international trade costs in counter-

factual CF1 yields substantial average welfare increases of 57%. Once again, the results

imply that international trade costs were sufficiently high in 2005 that there were still

major gains to be had from lowering those costs. In that sense, the process of interna-

tional trade integration was still not close to being completed. Increasing international

trade costs to 1971 levels in counterfactual CF2 decreases average welfare by about 5%.
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Table 4: % Change in Cross-country Average of National Welfare (πc ≡ (
∑

k∈cW
θ
k )

1
θ )

Counterfactual # CF1 CF2

Long-Run CF 56.9% -5.1%

CF (strong immobility) +56.8% -4.4%

CF (weak immobility) +56.9 % -5.1%

Notes: for each counterfactual exercise, the table’s first row displays the counterfactual change in the cross-country average

of country-level adjusted welfare sums (πc = (
∑

k∈c Wθ
k )

1
θ ) with respect to the calibrated 2005 economy. The second and

third rows display the corresponding counterfactual change for the strong-immobility and weak-immobility counterfactuals,

respectively, in which the spatial distribution of population is not allowed to adjust in the counterfactual equilibrium (see

Appendix C for details).

Taken at face value, these numbers seem to suggest that trade integration between the

1970s and the 2000s, albeit meaningful, was very incomplete. From the perspective

of the 1970s, most of the welfare gains and trade intensification that would occur in

a free-trade world had not been materialized by 2005. Therefore, understanding what

the remaining trade barriers are and how to decrease them in order to further trade

integration would appear to be a valuable endeavor.

5.4 Decomposition

I also take advantage of the calibrated 2005 model to perform an additional empirical

exercise in which I separate the relative contributions of structural transformation,

changes in differential trade access, and changes in local fundamentals for the 1990-

2005 changes in spatial concentration observed in the data, as measured by the primacy

rate. To do so, I use the methodology described in Section 3.4, which allows me to

decompose the variance of (the log of) primacy change in a sample of 44 countries into

multiple components as stated in equation (32). Results are presented in Table 5.

The first two rows of Table 5 show that the variances of the impacts of structural

change (Var(contST )) and of differential trade access (Var(contDTA)) are relatively

small, accounting for only around 1% of the total sample variance of primacy changes.

On the other hand, the variance of the impact of local fundamentals (productivities

and amenities) is slightly higher than the total variance of primacy changes. This is

possible because two of the covariances are negative, which allows the sum of variances

to be larger than the total variance of primacy changes.

In any case, the results indicate that the vast majority of the variance in observed

primacy changes can be accounted for by local fundamentals. Therefore, while the

counterfactual results of Section 5.3.2 suggest a potentially substantial influence of

trade access on spatial concentration, in practice it is dwarfed by the magnitude of

changes in productivities and amenities, which end up being dominant. This reinforces

the importance of fundamentals in the determination of spatial equilibria, as empha-
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Table 5: Decomposition of Variance of 1990-2015 Changes in Primacy

in %

Var(contST ) 0.000002 0.008%

Var(contDTA) .0002 0.99%

Var(contLF ) .0202 103.7%

2cov(contST , contDTA) -0.000005 -.03%

2cov(contST , contLF ) .00005 0.25%

2cov(contDMA, contLF ) -.001 -4.93%

Var(d ln(Primacy)) .0195 100%

Notes: the table displays the values of the sample variances and covariances of the terms in equation 32, namely the 1990-

2015 change in primacy (d ln(Primacyc)) and the contributions of structural transformation (contST
c ), differential trade access

(contDTA
c ), and local fundamentals ((contLF

c )). The values are displayed both in absolute terms and as a percentage of the

variance of primacy changes (Var(d ln(Primacyc))).

sized by a more traditional urban economics literature, relative to considerations of

access to trade networks and structural transformation that have been the focus of

more recent literatures in spatial economics, trade, and macroeconomics.

Figure 14: Contribution of Local Fundamentals for Primacy Reductions

Notes: the figure displays the value of the 1990-2005 change in the log of primacy (d ln(Primacyc)) for each country in the

sample for whom this change was negative, as well as the contributions of local fundamentals ((contLF
c )).

Figures 14 and 15 show 1990-2005 changes in primacy and the contribution of local

fundamentals country-by-country. For example, Figure 14 shows that Brazil’s primacy

rate decreased by 0.049 between 1990 and 2005, with changes in local fundamentals

accounting for 0.027 (that is, slightly over half) of this decrease. Thus, in the case

of Brazil, changes in differential market access and in local fundamentals contributed

roughly equal parts to the change in primacy. Analogous analyses can be made for
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Figure 15: Contribution of Local Fundamentals for Primacy Increases

Notes: the figure displays the value of the 1990-2005 change in the log of primacy (d ln(Primacyc)) for each country in the

sample for whom this change was positive, as well as the contributions of local fundamentals ((contLF
c )).

other countries by adequately inspecting Figures 14 and 15.15 However, the case of

Brazil is atypical since the change in primacy in most countries is almost entirely

explained by changes in local fundamentals. This can be seen by noting that the

values of the golden and gray bars are very close in most countries. This echoes the

results of the variance decomposition, implying that changes in local fundamentals

were the dominant factor to explain 1990-2005 changes in concentration observed in

the sample.

6 Conclusion

In this paper, I investigate the drivers of spatial concentration, disentangling the con-

tributions of three different factors: structural transformation, differential trade access,

and location-specific fundamentals (i.e. exogenous productivities and amenities). To

do so, I augment a modern quantitative spatial model (Allen and Arkolakis (2014),

Allen and Donaldson (2020)) with non-homothetic PIGL preferences (Eckert and Pe-

ters (2018)), obtaining a two-sector spatial model that features the three driving fac-

tors of concentration, which is measured by the primacy rate, namely, the fraction of a

country’s population that lives in its largest city. I show that changes in the primacy

rate can be analytically decomposed into separate terms reflecting the contribution of

the the three drivers.

15For completeness, Table 7 in Appendix 7 presents 2005 primacy rates, 1990-2005 changes in

primacy, and the contribution of structural change, differential trade access, and local fundamentals

for each country in the sample.
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To assess the relative importance of these factors in practice, I develop a method-

ology to bring the model to the data in two steps: first, I use global data on trans-

portation infrastructure, international and intranational trade to estimate sector- and

year-specific bilateral trade costs between 1962 and 2019; second, I use location-level

data on population, sectoral employment and per capita income to calibrate the spa-

tial model to the 2005 global economy, which is composed of 1611 locations across 192

countries. The calibrated model can be used to study the influence of trade access on

spatial concentration through a series of counterfactual exercises in which I impose a

series of alternative trade-cost structures on the 2005 world economy: eliminating in-

ternational trade costs, eliminating all trade costs, raising international trade costs by

10%, and raising trade costs back to their 1971 levels. Moreover, an additional empir-

ical exercise allows me to use the analytical expression mentioned above to decompose

the variance of observed 1990-2015 primacy changes in a sample of 44 countries into

components reflecting the relative roles of structural transformation, differential trade

access, and local fundamentals.

Counterfactual results suggest that the net effect of lowering international trade

costs is deconcentrating for most countries. For example, the substantial decline in

international trade costs between the 1970s and 2000s had a non-negligible negative

in spatial concentration by increasing the populations of locations that were initially

more empty at the expensive of initially populous locations. However, results of the

decomposition exercise show that, from an accounting perspective, the vast majority

of the variance in the primacy changes actually observed in the data between 1990

and 2005 can be explained by changes in local fundamentals, that is, in exogenous

productivities and amenities. Structural transformation and changes in trade access

account for only approximately 1% of the total variance. Therefore, although these two

factors may have had significant effects on concentration, in practice their magnitude

appears to have been small enough to be dominated by changes in local fundamentals.

A limitation of the paper are the assumptions governing agent migration. Namely,

I assume that migration is costless within countries and infinitely costly across coun-

tries. It should be possible to relax this strong assumption by extending the empirical

methodology and gathering more migration data (both within and across countries).

This would yield a more complete model of the world economy and also open up the

possibility of international labor reallocation as a response to shocks in trade costs

and other variables, thereby enriching our understanding of the mechanisms through

which the effects of these shocks operate. Another limitation is that most parameters

I used were borrowed from the literature rather than estimated within the context of

the model, which would be preferable. By conveniently gathering additional data on

population and income per capita for additional time periods and by wisely choos-

ing instrumental variables that provide sources of exogenous variation to international
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trade costs (e.g. policy-driven trade liberalizations), it should be possible to estimate

some of the model’s parameters using an instrumental-variable approach similar in

spirit to Adao et al. (2020).
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A Calibrating Traversal Costs

In Section 3.1.1, I mention that I build the world transportation cost raster using

transportation-specific traversal costs that were adapted from Allen and Arkolakis

(2014). Here I give a more detailed explanation of this procedure. I do that in two steps.

First, I present a general microfoundation of trade costs that justify an exponential

form for these costs. Then, by comparing this formula to formulae derived in Allen

and Arkolakis (2014), I map the traversal cost variable in my model to the equivalent

variables in their model, thus clarifying the relationship between the two and allowing

me to borrow their values in a relatively straightforward manner, given the appropriate

adaptations.

A.1 Microfoundations of Trade Costs

Assume that a truck is carrying an iceberg between points i and j through a continuous

path T , with points along the path indexed by variable x. The iceberg’s melting rate is

1−r(x) per hour. Thus, at the end of each hour only a fraction r(x) of the iceberg mass

at the start of the hour remains. The instantaneous truck speed is given by function

s(x). Note that I allow the melting rate and truck speed to vary along different points

of the path. I also assume both functions r and s are continuous.
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Divide the complete path from i to j into a finite number B of segments indexed by

k = 1, ..., B, with corresponding lengths [dx1, ...dxB]. Given an initial quantity of ice

q0, the final quantity of ice when the iceberg arrives at final point j is approximately

equal to:

qf ≈ q0

B∏
k=1

r(xk)
dxk
s(xk) (33)

where xk is an arbitrarily chosen point in segment k.

Note that τij , the conventionally defined multiplicative “iceberg” trade cost be-

tween i and j, is equivalent to q0/qf in this formulation. To find the exact value of

q0/qf , I take the expression in equation 33 to the limit as we divide the path into a

higher and higher number (B → ∞) of smaller and smaller segments (dxk → 0+ for

k = 1, ..., B):

τij =
q0
qf

= lim
dx→0

B∏
k=1

(
r(xk)

1
s(xk)

)dxk

= πj
i

(
r(x)

1
s(x)

)dx
(34)

where the symbol π indicates the geometric integral. By the properties of the geometric

integral, it then follows that:

τij = e
∫ j
i ln(r(x)

1
s(x) )dx = e

∫ j
i

1
s(x)

ln(r(x))dx

Therefore, I have found an expression for the iceberg trade cost between two regions

that is a function only of a regular integral that is taken over an expression depending

only the speed function (s) and the net-of-melting rate (r). This expression forms the

basis for the calibration of the (mode-specific) traversal costs of the next section.

A.2 Mode-Specific Traversal Costs

In this section, I calibrate values for the mode-specific traversal costs used in Section

3.1.1. I do that by drawing a parallel between my derived equation A.1 and the mode-

specific costs estimated by Allen and Arkolakis (2014).

First consider equation (22) in Allen and Arkolakis (2014). Assuming a single

mode of transportation m and setting bm = 0 and θ = 1, we get that the model

transportation cost is proportional to T (i, j) = eamdm(i,j). Now, consider that dm(i, j)

can be represented as an integral
∫ j
i τmode(x)dx, where x indexes the points along the

path and τmode(x) is the relative slowness of that mode of transportation on that point.

Comparing this expression to equation A.1, we can then draw the following parallel:

amτmode(x) =
1

s(x)
ln(r(x))
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Therefore, I can take the values for mode-specific variable costs am from the first

row of Table II of Allen and Arkolakis (2014) and adjust them by a representative

of τmode(x), which I take from their Appendix B3, to obtain a measure of the mode-

specific traversal cost which I use in the main analysis.

B Robustness of Gravity Results

B.1 Alternative Data Set: GSV

In my main estimates of the gravity equation (see Sections 3.1 and 5.1), I use the

WITS trade data described in Section 4.3. One disadvantage of this data set is that

it does not include data at the subnational level nor intranational trade data at the

country level. Since my main parameter of interest in the gravity estimation (namely,

the border-crossing cost) is identified by comparing intranational to international trade

flows in a given period (see Section 3.1), I must deal with these data limitations by

imputing WITS intranational trade flows at the country level (as explained in Section

4.3 above). Therefore, identification of border-crossing costs is partially based on

imputed data, which may be unsatisfactory. In that aspect, it would be preferable to

have non-imputed data on intracountry trade flows.

To partially allay these concerns, I perform a robustness check in which I repeat

gravity estimation for year 2010 using an alternative data source that does include trade

flows at the subnational and within-country levels. By verifying that gravity results

under WITS and this alternative data set are qualitatively similar, one becomes more

confident in using WITS data in the main analysis.

This alternative data set data set is the German Survey Verkehrsverflechtungsprog-

nose 2030 (GSV), which covers bilateral trade flows in euros across 249 regions within

24 European countries, plus 16 non-European countries and regions.1617 Unfortu-

nately, unlike WITS, the data only covers year 2010. Thus, we can think of GSV as

being richer but less comprehensive than WITS.

To permit comparability across WITS and GSV data, I adjust GSV bilateral trade

flows to be consistent with WITS. Specifically, I first aggregate GSV flows “up” to the

country level and compare these aggregated flows to the corresponding WITS flows.

Then, for each origin-country by destination-country by sector triplet, I multiply the

original GSV trade flows by a constant such that the adjusted GSV flows match the

corresponding WITS flows at the country level. Formally:

16Flows are converted into US dollar using the exchange rate of 1.33 USD per euro from:

https://www.statista.com/statistics/412794/
17Trade flows are reported at the level of 15 disaggregated sectors. I classify sector ss1 (“Agricul-

ture”) as agriculture and the remaining sectors ss2 -ss15 as non-agricultural
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Xs,GSV1
ij = Xs,GSV0

ij

Xs,WITS
c(i),c(j)∑

i∈c(i)
∑

j∈c(j)X
s,GSV0
ij

where Xs,GSV1
ij is the final, adjusted value of GSV sector-s trade flows from location i

to location j, Xs,GSV0
ij is the corresponding raw, unadjusted value, and Xs,WITS

c(i),c(j) is the

value of sector-s trade flows from country c(i) to country c(j).

B.2 Results: Comparing WITS to GSV (2010)

I now present results of running trade gravity regressions for year 2010 only separately

for WITS and GSV data sets. I then compare the estimated trade-cost structures

implied by these alternative methods, verifying that they yield qualitatively (and, to

some extent, quantitatively) comparable results. This gives further credence to the

decision of proceeding with the main analysis using the WITS data.

Figures 16-17 presents estimates of the sector-level costs of distance bins, {Cs,z}Bz=1,

for each of the two data sets (WITS and GSV). The figures show that the estimates

are quite similar for the non-agricultural sector, although less so for agriculture.

Figure 16: Estimated Cost of Distance Bins, Agriculture (2010)

Notes: the figure portrays the estimated values of the agricultural distance cost ĈA,z in year 2010 for each distance bin z ∈
{0, ..., B} for each of two data sets: the “simple” data set refers to the WITS trade data set (which is the same data I used in the

main gravity estimation of Section 5.1), and the “rich” data set refers to the German survey data set Verkehrsverflechtungsprognose

2030 (GSV), which covers multiple European countries and their subnational units for year 2010 only.

Table 6 presents estimated sector-level border-crossing parameters (ÊA
2010,Ê

N
2010)

for each data source. For the non-agricultural sector, the border-crossing estimate is

very similar: ÊN
2010 = 3.73 for the GSV data set versus ÊN

2010 = 3.81 for the WITS

data. Note that these are very high costs: an estimate of 3.81 is equivalent to an
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Figure 17: Estimated Cost of Distance Bins, Non-Agriculture (2010)

Notes: the figure portrays the estimated values of the non-agricultural distance cost ĈN,z in year 2010 for each distance

bin z ∈ {0, ..., B} for each of two data sets: the “simple” data set refers to the WITS trade data set (which is the same

data I used in the main gravity estimation of Section 5.1), and the “rich” data set refers to the German survey data set

Verkehrsverflechtungsprognose 2030 (GSV), which covers multiple European countries and their subnational units for year 2010

only.

ad-valorem tariff of 281%. For the agricultural sector, estimates are lower and also not

that similar across data sets: ÊA
2010 = 1.87 for GSV versus ÊA

2010 = 2.39 for WITS.

However, they are qualitatively in the same ballpark. Moreover, part of the difference

could be explained by differences in sample coverage: WITS covers the whole world

while GSV is mostly restricted to European countries.

C “Immobility” Counterfactuals

Counterfactual exercises allow us to better understand the effects of changes in trade

access not only on the spatial distribution of population, but also on welfare and on the

volume of international trade (see Sections 3.3, 5.3.2 and 5.3.3). Additionally, these

exercises also allow me to investigate the extent to which this spatial reallocation itself

works as a contributing mechanism to the effects on welfare and trade volume. In other

words: if spatial reallocation in reaction to trade shocks is not allowed to take place,

does the final effect of trade shocks on welfare and trade volumes look very different?

My framework provides a convenient setting to study this question. For each

counterfactual trade-cost matrix τ cf , I can compute an “immobility” counterfactual

equilibrium, in addition to the “long-run” counterfactual equilibrium computed with

the methodology of Section 3.3. In this immobility counterfactual, I compute the

equilibrium distribution of wages wcf,immob (and potentially sector-level population
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Table 6: Estimated Border-Crossing Parameters (2010)

“Rich” “Simple”

(1) (2) (3) (4)

ÊA
2010 1.871 2.39

ÊN
2010 3.73 3.81

N 32,483 34,165 18,357 18,394

WITS data? Yes Yes No No

GSV data? No No Yes Yes

Notes: the table displays the estimated values of the agricultural and non-agricultural border-crossing costs ÊA
2010 and ÊN

2010 in

year 2010 for each of two data sets: the “simple” data set refers to the WITS trade data set (which is the same data I used in the

main gravity estimation of Section 5.1), and the “rich” data set refers to the German survey data set Verkehrsverflechtungsprognose

2030 (GSV), which covers multiple European countries and their subnational units for year 2010 only.

Lcf,immob,A,Lcf,immob,N ) under counterfactual trade-cost matrix τ cf while keeping the

spatial population distribution fixed at 2005 levels (i.e. Lcf,immob
i = Li,2005 for all

locations i). In other words, I allow wages but not population to adjust in response

to the trade-cost shock. In that sense, immobility counterfactuals can be interpreted

either as a short run equilibrium (in which workers have not yet had enough time to

reallocate) or as a long-run equilibrium in which severe mobility frictions stop workers

from reallocating.

Immobility counterfactuals come in two versions: in the strong immobility coun-

terfactual I do not allow population to reallocate either across sectors or locations,

while in the weak immobility counterfactual I allow population to reallocate across

sectors but not across locations. Formally, a strong-immobility counterfactual equilib-

rium is obtained by solving the following equation system for variables (wcf,Simmob,A,

wcf,Simmob,N , P cf,Simmob,A, P cf,Simmob,N ,υcf,Simmob,A):

(wcf,SI,s
i )σs(Ls

i,2005)
1−αs(σs−1) = (Ās

i,2005)
σs−1∑

j∈S
(τ cf,sij )1−σs(P cf,SI,s

j )σs−1
∑

r∈{A,N}

υcf,SI,s×r
j Lr

j,2005w
cf,SI,r
j

(P cf,SI,s
j )1−σs =

∑
i∈S

(τ̂ sij,2005w
cf,SI,s
i )1−σs(Ās

i,2005(L
s
i,2005)

αs)σs−1

υcf,SI,A×s
j = ϕ+ ν(P cf,SI,A

j /P cf,SI,N
j )γ(wcf,SI,s

j )−η

Note that wages are now allowed to vary by sector, owing to the fact that workers

cannot reallocate across sectors. Therefore, wage differences across sectors within a

given location are not arbitraged away by workers moving from the lower-wage to the

higher-wage sector. Mathematically, since sector-level populations (LA, LN ) are not

“free” variables anymore, it is necessary to allow wage vectors to vary by sector so
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that goods market-clearing equations can simultaneously hold for the agricultural and

non-agricultural sectors. Moreover, in the right-hand side of these market-clearing

equations there is now an internal summation term across sectors. This is necessary to

separately account for the demand from a location’s agricultural and non-agricultural

workers. This demand may differ across the two groups of workers because their wages

(and hence agricultural shares of consumption expenditure) may now be different.

A weak-immobility counterfactual equilibrium can similarly be obtained by solving

the following equation system for variables (wcf,WI , P cf,WI,A, P cf,WI,N ,υcf,WI,A):

(wcf,WI
i )σs(Lcf,WI,s

i )1−αs(σs−1) =

(Ās
i,2005)

σs−1
∑
j∈S

(τ cf,sij )1−σs(P cf,WI,s
j )σs−1υcf,WI,s

j Lj,2005w
cf,WI
j

(P cf,WI,s
j )1−σs =

∑
i∈S

(τ cf,sij wcf,WI
i )1−σs(Ās

i,2005(L
cf,WI,s
i )αs)σs−1

υcf,WI,A
j = ϕ+ ν(P cf,WI,A

j /P cf,WI,N
j )γ(wcf,WI

j )−η

Li,2005 = Lcf,WI,A
i + Lcf,WI,N

i

Note that, unlike in the strong-immobility counterfactual, the weak-immobility

counterfactual forces wages to be the same for both sectors in a given location. This is

possible because sector-level populations are allowed to reallocate from one sector to

the other within a given location, thus arbitraging away any cross-sectoral differences

in wages.

For either the strong- or weak-immobility counterfactual, it is relatively straight-

forward to compute the effect of trade shocks on welfare (πcf,SI ,πcf,WI) and trade

volume ((MY )cf,SI , (MY )cf,WI ,(MY )cf,SI,WLD,(MY )cf,WI,WLD) using similar equations to

(28)-(30). I can then compare these effects to their counterparts in the long-run coun-

terfactual and assess how much of the effect of trade-cost shocks on welfare and trade

volumes is mediated by population reallocation. That is, I can uncover the extent to

which trade-induced labor reallocation contributes to the increase in trade volumes

and gains from trade brought about by trade integration.

C.1 Results of Immobility Counterfactuals

As described in the last section, I rerun each counterfactual exercise without allowing

population to reallocate geographically (“weak” immobility) or without allowing it to

reallocate either geographically or across sectors (“strong” immobility). For each of

these exercises, I compute the counterfactual fraction of international trade in world
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GDP and the counterfactual cross-country average of adjusted welfare sums (πc) and

present them in Tables 3 and 4, respectively.

For each of the two tables, both the strong and weak Immobility rows have very

similar results to the long-run counterfactual row. For example, while increasing trade

costs to 1971 levels decreases the cross-country average of adjusted welfare sums by

5.1% when mobility is allowed, the corresponding decrease is 4.4% and 5.1% with

strong and weak immobility, respectively. That same counterfactual increase in trade

costs decreases the fraction of trade in world GDP from 21% to 14% when mobility is

allowed, whereas this fraction falls to 16% and 14% when assuming strong and weak

immobility, respectively.

Therefore, given parameters and the exogenous variables calibrated to the 2005

economy, the results imply that internal mobility within countries and across sectors

are relatively secondary factors mediating the effects of trade-cost shocks on both trade

volumes and welfare. In other words, when observing the world through the lens of

this model, we conclude that the reallocation of workers across sectors and locations

does not seem to be a major mechanism contributing to the effects of international

trade integration on trade volumes and on national welfare levels.

D Details of the Decomposition Exercise

D.1 Calibrating the 1990 Economy

As explained in Sections 3.4 and 5.4, I use the calibrated model to perform a decom-

position exercise in which I separate the contributions of structural transformation,

differential market access, and local fundamentals in explaining the 1990-2015 changes

in my measure of spatial concentration (i.e. the primacy rate) observed in the data. As

explained above, doing so requires knowledge of calibrated fundamentals (ū, ĀA, ĀN )

and variables (υA, I,ΠA,ΠN ) not only for 2005 but also for 1990. Therefore, to obtain

these variables I must separately calibrate the model to the global 1990 economy.

Calibration procedures and data sources for 1990 are remarkably similar to the

ones for 2005, which were described in sections 3.2 and 4. In particular, I use IPUMS

International data for population and sectoral employment and G-Econ 4.0 data for per

capita income. IPUMS data on the population share of each location within a country

is taken from 1990 or from the closest available year (as long as that year is between

1985 and 1995). The final 1990 calibration sample features 1152 locations across 188

countries. The substantial difference in the number of locations with respect to the

2005 sample is explained by the fact that IPUMS International covers fewer countries

at the subnational level in 1990 compared to 2005.
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D.2 Decomposition Results: Country-by-Country

Table 7 presents complete results for the decomposition exercise of Section 5.4 for each

country. Specifically, the table displays the primacy rate in 2005, the 1990-2005 change

in (the log of) the primacy rate, and the contributions of structural transformation

(contSTc ), differential trade access (contDTA
c ), and local fundamentals (contLFc ).

As an example, consider the case of Brazil. Its log primacy rate decreased by

0.049 between 1990 and 2005, leading to a 2005 primacy rate of 0.227. Changes in

differential market access and in local fundamentals contributed roughly equal parts to

this change in primacy (contDTA
BRA = 0.022, contLFBRA = 0.027), with structural change

having a much smaller influence (contSTBRA ≈ 0). However, for most countries, the

fraction of the primacy change accounted for by local fundamentals is much higher.

For example, the change in log primacy in Argentina was -0.342, with -0.334 (97.6%)

of that being accounted for changes in local fundamentals. Similar analyses can be

performed for other countries by inspecting Table 7.
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Table 7: Countries’ Primacies and Contributing Factors

Country Primacyc,2005 d ln(Primacyc) contSTc contDTA
c contLFc

Argentina 0.371 -0.342 0.000 -0.008 -0.334

Austria 0.203 -0.029 -0.000 -0.003 -0.026

Bolivia 0.295 -0.005 0.000 -0.003 -0.002

Botswana 0.193 0.060 -0.000 -0.003 0.064

Brazil 0.227 -0.049 -0.000 -0.022 -0.027

Canada 0.384 0.005 -0.000 -0.002 0.007

Chile 0.345 -0.029 -0.000 -0.007 -0.022

China 0.092 -0.091 -0.000 0.011 -0.101

Colombia 0.229 -0.048 0.000 -0.012 -0.036

Benin 0.112 -0.111 -0.000 -0.003 -0.108

Ecuador 0.649 0.018 -0.000 -0.005 0.023

El Salvador 0.332 -0.052 0.000 -0.024 -0.028

Fiji 0.427 0.076 -0.000 -0.001 0.077

France 0.206 -0.061 0.000 -0.002 -0.059

Greece 0.268 0.036 0.001 -0.014 0.049

Guatemala 0.291 0.090 -0.000 -0.035 0.125

Indonesia 0.201 -0.037 0.001 -0.006 -0.032

Ireland 0.288 -0.103 0.000 -0.003 -0.100

Israel 0.242 0.000 0.000 -0.001 0.001

Jamaica 0.230 -0.112 0.000 -0.012 -0.100

Malaysia 0.284 0.286 -0.000 -0.009 0.296

Mali 0.182 -0.101 0.001 -0.000 -0.102

Mexico 0.138 0.111 -0.001 -0.011 0.123

Morocco 0.130 -0.082 -0.000 -0.032 -0.050

Nicaragua 0.330 0.041 -0.000 -0.035 0.075

Panama 0.567 0.129 0.000 -0.012 0.141

Paraguay 0.279 0.205 0.000 -0.029 0.234

Peru 0.355 0.052 0.000 -0.017 0.069

Philippines 0.054 0.210 0.008 -0.016 0.219

Portugal 0.203 -0.032 0.000 -0.005 -0.027

Puerto Rico 0.728 0.026 0.000 0.000 0.026

Romania 0.094 0.003 0.001 -0.027 0.028

Vietnam 0.107 -0.030 0.000 -0.002 -0.028

Spain 0.173 -0.020 0.000 -0.005 -0.015

Switzerland 0.184 0.016 0.000 -0.001 0.017

Thailand 0.090 -0.034 0.001 -0.062 0.027

Trinidad and Tobago 0.875 -0.031 0.000 0.001 -0.031

Turkey 0.186 0.212 0.000 -0.037 0.249

Egypt 0.198 -0.456 0.000 -0.022 -0.434

United Kingdom 0.144 -0.369 0.000 0.000 -0.370

United States 0.117 -0.037 -0.000 0.000 -0.037

Uruguay 0.455 -0.026 -0.000 -0.010 -0.015

Venezuela 0.120 -0.212 0.002 -0.016 -0.198

Zambia 0.304 0.047 0.000 0.006 0.041

Notes: for each country in the sample of the decomposition exercise, the table displays the primacy rate in 2005, the change

in the log of primacy between 1990 and 2005 (d ln(Primacyc)), and the contributions of structural transformation (contST
c ),

differential trade access (contDTA
c ), and local fundamentals (contLF

c ).
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