Drivers of Concentration: the Roles of Trade Access, Structural Transformation, and Local Fundamentals

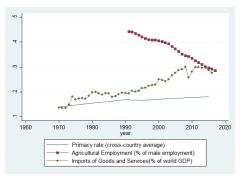
Eduardo P. Fraga

World Bank

May, 2023

• Question: which factors determine how concentrated in space a country's population is?

• Importance:


- Modern spatial concentration associated with economic development (Glaeser '11).
- Spatial responses may influence welfare effects of economic shocks.
 - e.g. trade shocks
- Help predict effects of future events on world's economic geography.
 - Retreat of globalization (e.g. protectionism, pandemics).
 - Developing countries' transition away from agriculture.

Three Potential Drivers of Concentration

- Location-specific fundamentals: productivities and amenities
 - Traditional urban economics (e.g. Rosen-Roback)
- Differential access to trade networks (e.g. Redding Sturm 2008)
- Structural transformation (e.g. Eckert Peters '18)

- Spatial concentration metric: primacy rate
- i.e. % of national population living in country's largest location.

(日)(4月)(4日)(4日)(日)

This Paper

- Investigate roles of three drivers of spatial concentration through lens of modern quantitative spatial model (QSM).
- **O** Create **theoretical framework** featuring the three drivers:
 - Must add non-homothetic preferences to workhorse QSM.
 - Derive expression decomposing spatial concentration into each driver's contribution.
- **2** Estimate global trade-cost structure (1962-2019).
- Solution Calibrate model to world economy (1990, 2005).
 - i.e. find fundamentals that rationalize observed population/income.
 - World has 192 countries comprising 1611 subnational units.
- Use model to perform counterfactual exercises:
 - Shock 2005 system with alternative trade-cost structures.
 - Result: trade integration reduces concentration for most countries.

Solution Accounting: % of 1990-2005 concentration changes explained by each driver.

- Result: changes in fundamentals account for 99% of variation.
- Trade access and structural change play minor roles.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Literature

- Access to Trade Networks:
 - Redding Sturm '08, Ahlfeldt et al '14, Donaldson Hornbeck '16, Brulhart et al '19
- Structural transformation:
 - Boppart '14, Eckert Peters '18
- New Economic Geography (NEG):
 - Krugman Livas '96, Ades Glaeser '95, Krugman '91, Krugman Venables '95
- International trade and countries' internal structure:
 - Fajgelbaum Redding '14, Cosar Fajgelbaum '16, ECLAC '05
- Gravity trade models:
 - Anderson van Wincoop '03, Head Mayer '14, Santos-Silva Terneyro '06
- Quantitative spatial models:
 - Allen Arkolakis '14, Allen Donaldson '20, Caliendo et al '18, Desmet et al '18, Ramondo et al '12 '16, Redding '16, Adao et al '20

Outline

Framework

- 2 Estimating Global Trade Costs
- **3** Calibrating Local Fundamentals
- Counterfactuals
- **5** Change Accounting
- 6 Conclusion

Outline

Framework

- 2 Estimating Global Trade Costs
- **3** Calibrating Local Fundamentals
- Counterfactuals
- Change Accounting
- 6 Conclusion

Model: Overview

- QSM (Allen Arkolakis '14, Allen Donaldson '22), applied to international context:
 - Many countries, partitioned into locations (e.g. states, provinces). Setting
- Non-homothetic preferences over two sectors (agriculture vs rest):
 - Price-Independent Generalized Linear (PIGL) form.
 - Structural transformation: agriculture to non-agriculture.
- Agents can migrate across domestic locations (but not internationally).
 - Decision considers real wages, amenities, idiosyncratic preference shocks.
- Other assumptions are conventional:
 - Within-sector CES preferences for geographically differentiated goods (Armington).
 - Perfectly competitive firm only use labor input, incur "iceberg" trade costs.
 - External economies of scale (i.e. agglomeration economies).
 - Local amenities are subject to congestion.
 - Heterogeneity in local fundamentals (productivities/amenities).
- Given assumptions, trade/migration flows take a "gravity" form. Gravity

• Equilibrium determined by a system of equations:

$$\mathbf{w}_{i}^{\sigma_{s}}(\mathbf{L}_{i}^{s})^{1-\alpha_{s}(\sigma_{s}-1)} = (\bar{A}_{i}^{s})^{\sigma_{s}-1} \sum_{j \in \mathcal{S}} (\tau_{ij}^{s})^{1-\sigma_{s}} (\mathbf{P}_{j}^{s})^{\sigma_{s}-1} v_{j}^{s} \mathbf{L}_{j} \mathbf{w}_{j}$$
(1)

$$(\mathbf{P}_{j}^{s})^{1-\sigma_{s}} = \sum_{i\in\mathcal{S}} (\tau_{ij}^{s} \mathbf{w}_{i})^{1-\sigma_{s}} (\bar{A}_{i}^{s} (\mathbf{L}_{i}^{s})^{\alpha_{s}})^{\sigma_{s}-1}$$
(2)

$$L_i^A + L_i^N = L_i = \frac{W_i^\theta}{\sum_{k \in c} W_k^\theta} \bar{L}_c$$
(3)

$$W_{j} = \bar{u}_{j}L_{j}^{\beta} \left[\frac{1}{\eta} \left(w_{j} (\boldsymbol{P}_{j}^{\boldsymbol{A}})^{-\phi} (\boldsymbol{P}_{j}^{\boldsymbol{N}})^{\phi-1} \right)^{\eta} - \frac{\nu}{\gamma} \left(\boldsymbol{P}_{j}^{\boldsymbol{A}} / \boldsymbol{P}_{j}^{\boldsymbol{N}} \right)^{\gamma} + \frac{\nu}{\gamma} - \frac{1}{\eta} \right]$$
(4)

• Equilibrium: set of endogenous variables (w, L, L^s, W, P^s, v^s) that satisfies equations (1)-(4) given parameters (σ_s , θ , α_s , β , ν , η , γ) and exogenous variables (\bar{A}^s , \bar{u}), (τ^s), { \bar{L}_c }_{c\inC}. Equilibrium Conditions

• Under parametric assumptions ($\sigma_s = \sigma$, $\alpha_s = \alpha$) primacy rate is:

$$Primacy_{c} \equiv \frac{L_{p(c)}}{\bar{L}_{c}} = \frac{\left(\bar{u}_{p(c)}\rho_{p(c)}\zeta_{p(c)}^{-\frac{\eta}{\Omega}}\right)^{\frac{\theta}{1-\theta(\beta+\eta/\Omega)}}}{\sum_{k \in c} \left(\bar{u}_{k}\rho_{k}\zeta_{k}^{-\frac{\eta}{\Omega}}\right)^{\frac{\theta}{1-\theta(\beta+\eta/\Omega)}}}$$

where:

- L is population, and p(c) is primate location of country c
- \bar{u} is fundamental amenity, \bar{A} is fundamental productivity, v^A is agricultural expenditure share
- $\rho_i = \frac{1}{\eta} (P_i^{\mathcal{A}})^{-\eta \phi} (P_i^{\mathcal{N}})^{\eta (\phi-1)} \frac{1}{\gamma} (\upsilon_i^{\mathcal{A}} \phi)$ is consumer trade access
- $\Pi_{i}^{s} = \sum_{j \in S} (\tau_{ij}^{s})^{1-\sigma} (P_{j}^{s})^{\sigma-1} \frac{\upsilon_{j}^{s}}{\upsilon_{j}} w_{j} L_{j}$ is producer trade access

•
$$\zeta_i = \sum_{s} [(\bar{A}_i^s)^{\sigma-1} \prod_i^s]^{\frac{1}{1-\alpha(\sigma-1)}}$$

•
$$\Omega \equiv \sigma / (\alpha (\sigma - 1) - 1)$$

• Intuition: primacy increasing in primate's fundamentals (productivities and amenities) and trade access relative to other domestic locations.

(5)

Model: Primacy Rate (Differential Version)

• This differential version will later be brought to the data ("change accounting"):

$$\left(\frac{1-\theta(\beta+\frac{\eta}{\Omega})}{\theta}\right)d\ln(Primacy_c) = contrib_c^{ST} + contrib_c^{DTA} + contrib_c^{LF}$$
(6)

where:

$$contrib_{c}^{ST} = \underbrace{\kappa_{p(c)}(-dv_{p(c)}^{A}) - \sum_{k \in c} \left(\frac{L_{k}}{\overline{L_{c}}}\right) \kappa_{k}(-dv_{k}^{A})}_{\text{Structural Transformation}}$$

$$contrib_{c}^{DTA} = \underbrace{\left[\Gamma_{p(c)}d\ln(l_{p(c)}) - \sum_{k \in c} \left(\frac{L_{k}}{\overline{L_{c}}}\right)\Gamma_{k}d\ln(l_{k})\right]}_{\text{Differential Trade Access #1: Consumer Trade Access}} + \underbrace{\frac{\eta}{\sigma}\left[\sum_{s} \mu_{p(c)}^{s}d\ln(\Pi_{p(c)}^{s}) - \sum_{k \in c} \left(\frac{L_{k}}{\overline{L_{c}}}\right)\sum_{s} \mu_{k}^{s}d\ln(\Pi_{k}^{s})\right]}_{\text{Differential Trade Access #1: Consumer Trade Access}} + \underbrace{\frac{\eta(\sigma-1)}{\sigma}\left[\sum_{s} \mu_{p(c)}^{s}d\ln(\overline{A}_{p(c)}^{s}) - \sum_{k \in c} \left(\frac{L_{k}}{\overline{L_{c}}}\right)\sum_{s} \mu_{k}^{s}d\ln(\overline{A}_{k}^{s})\right]}_{\text{Local Fundamental #1: Amenities}} + \underbrace{\frac{\eta(\sigma-1)}{\sigma}\left[\sum_{s} \mu_{p(c)}^{s}d\ln(\overline{A}_{p(c)}^{s}) - \sum_{k \in c} \left(\frac{L_{k}}{\overline{L_{c}}}\right)\sum_{s} \mu_{k}^{s}d\ln(\overline{A}_{k}^{s})\right]}_{\text{Local Fundamental #1: Amenities}} + \underbrace{\frac{\eta(\sigma-1)}{\sigma}\left[\sum_{s} \mu_{p(c)}^{s}d\ln(\overline{A}_{p(c)}^{s}) - \sum_{k \in c} \left(\frac{L_{k}}{\overline{L_{c}}}\right)\sum_{s} \mu_{k}^{s}d\ln(\overline{A}_{k}^{s})\right]}_{\text{Local Fundamental #2: Sectoral Productivities}} + \underbrace{\frac{\eta}{\sigma}\left[\sum_{k \in c} \mu_{p(c)}^{s}d\ln(\overline{A}_{p(c)}^{s}) - \sum_{k \in c} \left(\frac{L_{k}}{\overline{L_{c}}}\right)\sum_{s} \mu_{k}^{s}d\ln(\overline{A}_{k}^{s})\right]}_{\text{Local Fundamental #2: Amenities}} + \underbrace{\frac{\eta(\sigma-1)}{\sigma}\left[\sum_{s} \mu_{p(c)}^{s}d\ln(\overline{A}_{p(c)}^{s}) - \sum_{k \in c} \left(\frac{L_{k}}{\overline{L_{c}}}\right)\sum_{s} \mu_{k}^{s}d\ln(\overline{A}_{k}^{s})\right]}_{\text{Local Fundamental #2: Sectoral Productivities}} + \underbrace{\frac{\eta}{\rho}\left[\sum_{k \in c} \mu_{p(c)}^{s}\right]}_{\text{Local Fundamental #2: Amenities}} + \underbrace{\frac{\eta}{\rho}\left[\sum_{k \in c} \mu_{p(c)}^{s}\right]}_{\text{Local Fundamental #2: Amenities} + \underbrace{\frac{\eta}{\rho}\left[\sum_{k \in c} \mu_{p(c)}^{s}\right]}_{\text{Local Fundamental #2: Amenities} + \underbrace{\frac{\eta}{\rho}\left[\sum_{k \in c} \mu_{p(c)}^{s}\right]}_{\text{Local Fundamental #2: Amenities} + \underbrace{\frac{\eta}{\rho}\left[\sum_{k \in c} \mu_{p(c)}^{s}\right]}_{\text{Local Fundamental #2: Ame$$

11 / 29

Framework

2 Estimating Global Trade Costs

3 Calibrating Local Fundamentals

Counterfactuals

Change Accounting

6 Conclusion

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ =

 12/29

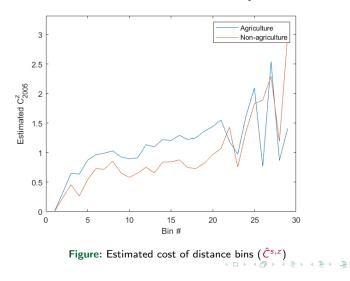
Estimating Trade Costs

- To bring model to the data, first step is to estimate global trade costs.
- Impose functional form for trade costs (Ramondo et al '14):

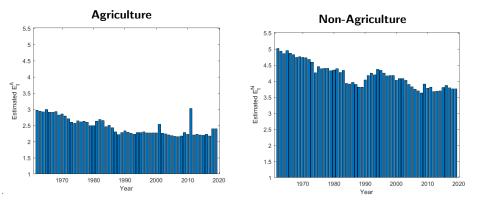
$$\tau_{ijt}^{s} = (\boldsymbol{E}_{t}^{s})^{\mathbb{1}_{j \notin c(i)}} \prod_{z=1}^{B} (\boldsymbol{C}^{s,z})^{\mathbb{1}_{dist_{ij} \in b_{z}}}$$

• E^s_t: border-crossing parameter

• $\{b_z\}_{z=1}^B$: set of distance "bins" Computing distances


• In consequence, the model's gravity trade equation becomes estimable:

$$\ln(X_{ijt}^{s}) = \sum_{z=1}^{B} \underbrace{(1 - \sigma_{s}) \ln(C^{s,z})}_{\tilde{C}^{s,z}} \mathbb{1}_{dist_{ij} \in b_{z}} + \underbrace{(1 - \sigma_{s}) \ln(E_{t}^{s})}_{\tilde{E}_{t}^{s}} \mathbb{1}_{j \notin c(i)} + \omega_{it}^{s,X} + \omega_{jt}^{s,M} + \eta_{ijt}^{s}$$

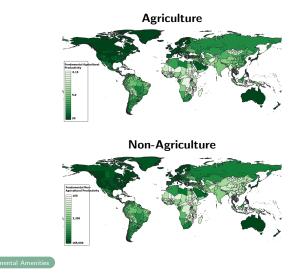

$$(7)$$

Results: Trade Costs (1/2)

- Estimate gravity trade equation (7) using PPML (Santos-Silva Tenreyro '06)
 - Recover $\{\hat{\tilde{E}}_{t}^{s}, \hat{\tilde{C}}^{s,z}\} \Rightarrow \text{compute } \{\hat{E}_{t}^{s}, \hat{C}^{s,z}\} \Rightarrow \text{compute } \{\hat{\tau}_{iit}^{s}\}.$

Figure: Estimated border-crossing costs (\hat{E}_t^s)

• Substantial decline in border-crossing costs over the decades (but still high in 2019).


Framework

- 2 Estimating Global Trade Costs
- **3** Calibrating Local Fundamentals
- Counterfactuals
- **5** Change Accounting
- 6 Conclusion

- We already have:
 - Estimated trade costs $\hat{\tau}_t$ for each year t.
 - Data in year t (wages, populations, sectoral employment).
 - Parameter values (from literature). Parameters Normalization
- Given these inputs, can solve system of equilibrium equations to recover fundamentals $(\bar{A}_t^A, \bar{A}_t^N, \bar{u}_t)$ that rationalize data from year t:

$$(w_{it})^{\sigma_{s}} (L_{it}^{s})^{1-\alpha_{s}(\sigma_{s}-1)} = \sum_{j \in S} (\hat{\tau}_{ijt}^{s})^{1-\sigma_{s}} (\bar{A}_{it}^{s} P_{jt}^{s})^{\sigma_{s}-1} v_{jt}^{s} L_{jt} w_{jt}$$
$$(P_{jt}^{s})^{1-\sigma_{s}} = \sum_{i \in S} (\hat{\tau}_{ijt}^{s} w_{it})^{1-\sigma_{s}} (\bar{A}_{it}^{s} (L_{it}^{s})^{\alpha_{s}})^{\sigma_{s}-1}$$
$$v_{jt}^{A} = \phi + \nu (P_{jt}^{A}/P_{jt}^{N})^{\gamma} w_{jt}^{-\eta}, \ L_{it} = \frac{W_{it}^{\theta}}{\sum_{k \in c} W_{kt}^{\theta}} \bar{L}_{c(i),t},$$
$$W_{jt} = \bar{u}_{jt} L_{jt}^{\beta} \Big[\frac{1}{\eta} (w_{jt} (P_{jt}^{A})^{-\phi} (P_{jt}^{N})^{\phi-1})^{\eta} - \frac{\nu}{\gamma} (P_{jt}^{A}/P_{jt}^{N})^{\gamma} + \frac{\nu}{\gamma} - \frac{1}{\eta} \Big]$$

17 / 29

• Intuitive: high productivities in developed/oil-rich locations.

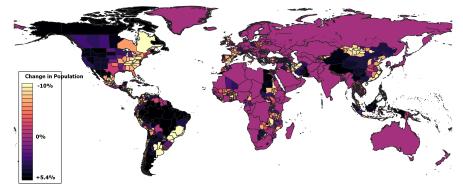
Framework

- 2 Estimating Global Trade Costs
- **3** Calibrating Local Fundamentals

Counterfactuals

5 Change Accounting

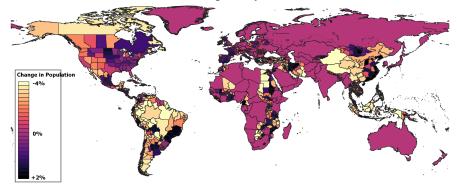
Conclusion


- Choose counterfactual trade-cost matrix τ^{cf} :
 - CF #1: remove all border-crossing costs.
 - CF #2: roll back trade-cost structure to 1971.
- Given τ^{cf} and fundamentals (\bar{A}_t^s, \bar{u}_t) , solve system of equilibrium equations (1)-(4)
 - Recover counterfactual endogenous variables (population, wage, welfare, etc).

Equilibrium System

- Interpretation: how would the world economy look like if...
 - trade costs were different...
 - but the other fundamentals (productivities, amenities) remained the same as in the 2005 baseline?

<ロ> <同> <目> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>


Results: Counterfactual #1 (no border-crossing costs)

Change in Population

- Counterfactual trade costs are: $\tau^{s,cf}_{ij} = \prod^B_{z=1} (\hat{C}^{s,z})^{\mathbb{I}_{dist_{ij} \in b_z}}$
- Spatial concentration falls: $\rho\left(\ln(L_{i,baseline}^{sh}), \Delta \ln(L_i)\right) = -0.227$
 - Initially large locations shrink.

Results: Counterfactual #2 (1971 trade costs)

Change in Population

- Counterfactual trade costs are: $\tau_{ij}^{s,cf} = \hat{\tau}_{ij,1971}^{s}$
- Spatial concentration rises: $\rho\left(\ln(L_{i,baseline}^{sh}), \Delta \ln(L_i)\right) = 0.249$
 - Initially large locations grow.

<ロト < 部ト < 言ト < 言ト 三言 のへで 22/29 • International trade (as % of world GDP):

Scenario	CF #1	CF #2
Baseline	0.21	0.21
Long-Run CF	0.78	0.14
CF (strong immobility)	0.78	0.16
CF (weak immobility)	0.78	0.14

• Cross-country average of national welfare $(\pi_c \equiv (\sum_{k \in c} W_k^{\theta})^{\frac{1}{\theta}})$:

Scenario	CF #1	CF #2
Baseline	1	1
Long-Run CF	1.569	0.949
CF (strong immobility)	1.568	0.956
CF (weak immobility)	1.569	0.949

• Even from 2005 starting point, further trade integration would still yield large gains.

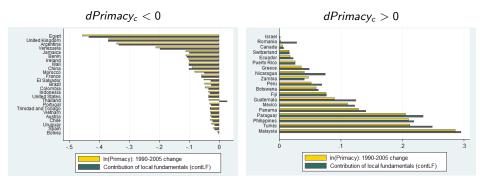
Framework

- 2 Estimating Global Trade Costs
- **3** Calibrating Local Fundamentals

Counterfactuals

5 Change Accounting

Conclusion


• How much of observed 1990-2005 changes in concentration is accounted for by:

- Structural transformation (ST)?
- Differential trade access (DTA)?
- Local fundamentals (LF): productivities/amenities?
- Calibrate world economy separately for 1990 and 2015.
- Then use equation (6) to separate contributions of three factors:

 $\ln(Primacy_{c,2005}) - \ln(Primacy_{c,1990}) = contrib_{c}^{ST} + contrib_{c}^{LF} + contrib_{c}^{LF}$

Equation: primacy rate

• Can also decompose cross-country variance of primacy changes ($d \ln(Primacy_c)$) into sum of variances of three factors (plus bilateral covariances).

Country-by-country table

<ロト < 部 > < 主 > < 主 > 三 = の Q () 26 / 29 Decomposition of Var(d ln(Primacy)):

		in %
Var(<i>contribST</i>)	0.000002	0.008%
Var(<i>contrib^{DTA}</i>)	.0002	0.99%
Var(<i>contrib^{LF}</i>)	.0202	103.7%
2cov(contrib ST , contrib ^{DTA})	-0.000005	03%
2cov(<i>contrib</i> ST , <i>contrib</i> ^{LF})	.00005	0.25%
2cov(<i>contrib^{DTA}</i> , <i>contrib^{LF}</i>)	001	-4.93%
Var(d ln(Primacy))	.0195	100%

$$\begin{aligned} \mathsf{Var}(d\,\mathsf{ln}(Primacy)) &= \mathsf{Var}(contrib^{ST}) + \mathsf{Var}(contrib^{DTA}) + \mathsf{Var}(contrib^{LF}) \\ &+ 2\mathsf{cov}(contrib^{ST}, contrib^{DTA}) + 2\mathsf{cov}(contrib^{ST}, contrib^{LF}) + 2\mathsf{cov}(contrib^{DTA}, contrib^{LF}) \end{aligned}$$

• Bottom line: dominant influence of local fundamentals.

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Framework

- 2 Estimating Global Trade Costs
- **3** Calibrating Local Fundamentals
- Counterfactuals
- Change Accounting

- Augment a quantitative spatial model with non-homothetic preferences to study three drivers of spatial concentration:
 - Structural transformation, differential trade access, and local fundamentals.
- Bring model to the data:
 - Estimate global trade-cost structure between 1962-2019.
 - Calibrate model to the world economy in 1990 and 2005.
- Perform counterfactual exercises to assess effect of trade shocks:
 - For most countries, trade decreases concentration.
- Decompose 1990-2005 changes in concentration into roles of the three factors:
 - Local fundamentals were the dominant factor.
 - Only 1% of variance is explained by trade access.

- \bullet World is a set ${\mathcal S}$ of locations.
 - Locations: $i \in S = \{1, ..., N\}$.
- \bullet World is partitioned into set of countries $\mathcal{C}.$
 - Countries: $c \in C = \{1, ..., C\}$.
 - Function $c: \mathcal{S} \rightarrow \mathcal{C}$ maps locations to countries.
- Define the primacy function $p:\mathcal{C}\to\mathcal{S}$
 - Maps each country to its largest city (primate).
 - It is an equilibrium object.
- Two sectors:
 - Agriculture (s = A) and non-agriculture (s = N).

• Agent who is born in location *i* and moves to *j* receives welfare:

$$W_j(\epsilon) = \underbrace{C_j u_j}_{\equiv W_i} \epsilon_j$$

where C_j is PIGL indirect utility function (Eckert Peters '18):

$$C_j = \frac{1}{\eta} \left(\frac{w_j}{(P_j^A)^{\phi} (P_j^N)^{1-\phi}} \right)^{\eta} - \frac{\nu}{\gamma} \left(\frac{P_j^A}{P_j^N} \right)^{\gamma} + \frac{\nu}{\gamma} - \frac{1}{\eta}$$

- $P_j^s = (\sum_{k \in S} (p_{kj}^s)^{1-\sigma_s})^{\frac{1}{1-\sigma_s}}$ is CES price index for sector s.
- w_j is local wage, p_{ki}^s is local price of sector-s good from k.
- Non-homothetic preferences and structural transformation:
 - Agricultural spending share v_i^A decreases with income.

$$v_j^{\mathsf{A}} = \phi + \nu (P_j^{\mathsf{A}}/P_j^{\mathsf{N}})^{\gamma} \mathbf{w}_j^{-\eta}$$

• Agent who is born in location *i* and moves to *j* receives welfare:

$$W_j(\epsilon) = \underbrace{C_j u_j}_{\equiv W_j} \epsilon_j$$

•
$$u_j = \bar{u}_j L_j^{\beta}$$
 is local amenity $(\beta \le 0)$.

• ϵ_i is idiosyncratic taste shock for location *j*.

• i.i.d. Frechet distribution: $Pr(\epsilon_j \leq x) = exp(-x^{-\theta})$

- Migration decision:
 - Agent born in *i* migrates to highest-welfare destination:

 $\max_{j} W_{ij}(\epsilon)$

Back

• Sector *s* in location *i* has continuum of perfectly competitive firms with production function:

 $q_i^s = A_i^s l_i^s$, with: $A_i^s = \overline{A}_i^s (L_i^s)^{\alpha_s}$

- A_i^s is local productivity of sector s
- $I_i^{s'}$ is firm employment.
- L^s_i is local employment in sector s.
- External economies of scale ($\alpha_s \ge 0$): related to NEG
- Firm sells good worldwide paying "iceberg" shipping cost:
 - $\tau_{ii}^{s} \geq 1$, with $\tau_{ii}^{s} = 1$
- Assumptions imply the pricing equation:

$$p_{ij}^{s} = \frac{\tau_{ij}^{s} w_{i}}{A_{i}^{s}} \tag{8}$$

4/24

• Bilateral trade flows (X_{ij}^s) assume "gravity" form:

$$X_{ij}^{s} = \left[\frac{\tau_{ij}^{s} w_{i}}{A_{i}^{s} P_{j}^{s}}\right]^{1-\sigma_{s}} \upsilon_{j}^{s} w_{j} L_{j}$$

$$\tag{9}$$

where L_j is local population and $v_j^N = 1 - v_j^A$.

• So do bilateral migration flows (*L_{ij}*):

$$L_{ij} = \left(\frac{(W_j)^{\theta}}{\sum_{k \in \mathcal{S}} (W_k)^{\theta}}\right) L_i$$
(10)

Back: model overview 📜 Back: estimating trade costs

<ロ > < 部 > < 言 > < 言 > 三日 のへの 5/24

Model: Equilibrium Conditions

• (I) Goods markets clear:

$$w_i L_i^s = \sum_{j \in S} X_{ij}^s, \ \forall (i, s)$$
(11)

• (II) Local labor markets clear:

$$L_i = \sum_{j \in S} L_{ij} = \sum_{j \in S} L_{ji}, \ \forall i$$
(12)

- Like steady-state of dynamic spatial migration model
- (III) Local population adds up:

$$L_i = L_i^A + L_i^N, \ \forall i \tag{13}$$

• (IV) National population adds up:

$$\bar{L}_{c} = \sum_{i \in c} L_{i}, \ \forall c \in \mathcal{C}$$
(14)

6/24

Microfoundation: Trade Costs

- Path from *i* to *j*, partitioned into *B* segments with lengths $\{dx_b\}_{b=1}^{B}$.
- The final amount of goods is approximately given by:

$$q_f \approx q_0 \prod_{k=1}^B r(x_k)^{\frac{d_{x_k}}{s(x_k)}}$$
(15)

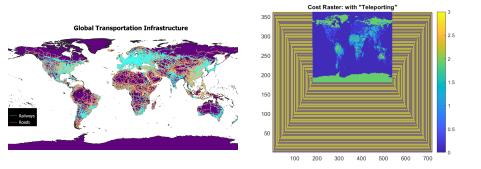
- x_k: arbitrarily chosen point in segment k.
- r(x): "Net-of-melting" rate (per unit of time).
- *s*(*x*): speed.
- Take limit: infinitesimal partitioning yields iceberg trade cost:

$$\tau_{ij} = \frac{q_0}{q_f} = \lim_{k \to 0} \prod_{k=1}^{B} \left(r(x_k)^{\frac{1}{s(x_k)}} \right)^{dx_k} = \pi_i^j \left(r(x)^{\frac{1}{s(x)}} \right)^{dx}$$
(16)

where π indicates the geometric integral.

• By properties of geometric integral:

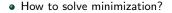
$$\tau_{ij} = e^{\int_{i}^{j} \ln(r(x)^{\frac{1}{s(x)}}) dx} = e^{\int_{i}^{j} \frac{1}{s(x)} \ln(r(x)) dx}$$

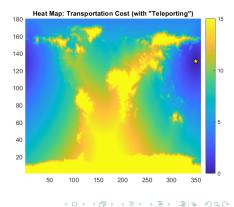

- Consider trade costs T(i, j) in Allen Arkolakis '14, assuming:
 - $\theta = 1$
 - A single model of transportation m
 - No fixed cost $(b_m = 0)$
- Yields: $T(i,j) = e^{a_m d_m(i,j)}$
- Distance $d_m(i,j)$ can be represented as $\int_i^j \tau_{mode}(x) dx$
 - $\tau_{mode}(x)$: relative "slowness" of mode m
- Matching terms in integral $e^{\int_{i}^{j} \frac{1}{s(x)} \ln(r(x)) dx}$, obtain:

$$a_m \tau_{mode}(x) = \frac{1}{s(x)} \ln(r(x)) \tag{17}$$

- Therefore, can calibrate by using:
 - *a_m* from Row 1, Table II
 - $\tau_{mode}(x)$ from Appendix B3

Measuring Distances (1/2)


- Bilateral distances (*dist_{ij}*) are key inputs for gravity estimation.
 - How do we measure them?
- Generate cost raster using infrastructure network maps:
 - Assign traversal cost T(x) to each 1°-by-1° pixel x.
 - Mode-specific traversal costs adapted from Allen Arkolakis '14. Details


Measuring Distances (2/2)

• Define \mathcal{P}_{ij} as set of continuous paths \mathbb{P} on world map starting at pixel *i* and ending at *j*. Then:

$$dist_{ij} = \min_{\mathbb{P}\in\mathcal{P}_{ij}}\sum_{x\in\mathbb{P}}T(x)$$

- Use FMM algorithm
- (from Allen Arkolakis '14)

Data Sources (1/2)

- IPUMS International: location-level population, sectoral employment.
 - Harmonized censuses (88 countries, 1605 locations).
 - Locations are typically states or provinces.
 - Covers 1960-2015 period.
 - Use year closest to 2005 (or 1990).
- World Bank Open Data:
 - Country-level data.
 - Population, GDP per capita, agricultural employment share.
 - Covers 1960-2017 period.
- G-Econ 4.0: income per capita (Desmet et al '18)
 - Data at $1^\circ \times 1^\circ$ grid-cell level.
 - Proxy for wages.
 - Covers 1990, 1995, 2000, 2005.

Data Sources (2/2)

- WITS: World Integrated Trade Solutions data set.
 - Country-level bilateral trade flows (total and in agriculture).
 - Covers 1962-2019 period, 222 countries.
 - But no intranational flows (X^s_{nn}):
 - Augment data using import share and agricultural share of GDP (World Bank Open Data).
 Data Adjustments
- IPUMS maps: geographic coordinates
 - Polygon's centroids.
- Natural Earth: global transportation infrastructure (Desmet et al '18)
 - Maps: roads, railway lines, oceans, landmasses.
- Final calibration sample (2005):
 - 1611 locations across 192 countries.

• Scale local IPUMS populations to match national WBOD population:

$$L_{i,2005}^{s} = L_{i,2005}^{s,IPUMS} \frac{\bar{L}_{c(i),2005}^{WBOD}}{\sum_{j \in c(i)} L_{j,2005}^{IPUMS}}$$

• Impute locations' wages using per capita income data from G-Econ:

$$w_{i,2005} = \sum_{g=1}^{G} wagecell_{g,2005}^{G-Econ} \left(\frac{Area_{g\cap i}}{Area_i}\right)$$

Back

- To obtain intranational trade flows (X^s_{ii,t}):
 - Use WITS data to obtain country-year sectoral exports and country-year imports:

$$\mathsf{EXP}_{it}^{s} = \sum_{j \neq i} X_{ijt}^{s,WITS}, \ \mathsf{IMP}_{it} = \sum_{j \neq i} (X_{jit}^{A,WITS} + X_{jit}^{N,WITS})$$

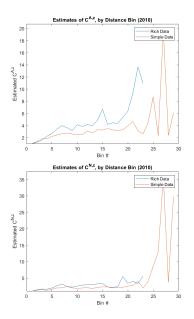
• Use country-year imports and import share to compute implied GDP

$$Y_{it} = \frac{IMP_{it}}{Msh_{it}}$$

• Divide GDP between sectors using agricultural share of GDP:

$$Y_{it}^{A} = Y_{it} \times Agsh_{it}, \ Y_{it}^{N} = Y_{it} \times (1 - Agsh_{it})$$

Subtract sectoral exports from sectoral GDP:


$$X_{iit}^s = Y_{it}^s - EXP_{it}^s$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

14/24

- German Survey Verkehrsverflechtungsprognose 2030 (GSV)
 - 265 regions in 24 European countries, plus 16 non-European countries.
 - Includes intranational trade flows (helps identify border-crossing cost).
 - 15 sectors, aggregated into agriculture vs non-agriculture.
 - Richer than WITS but covers 2010 only.
- Rerun gravity regressions with GSV (for 2010 only):
 - Compare results to WITS'.
 - If they are similar, that is reassuring.
- Adjust GSV so that country-level flows match WITS:

$$X_{ij}^{s,GSV_{1}} = X_{ij}^{s,GSV_{0}} \frac{X_{c(i),c(j)}^{s,WITS}}{\sum_{i \in c(i)} \sum_{j \in c(j)} X_{ij}^{s,GSV_{0}}}$$

Estimate: Border-Crossing Parameters (2010)

		"Rich"		"Simple"			
		(1)	(2)	(3)	(4)		
\hat{E}_{201}^{A}	.0	1.871		2.39			
\hat{E}_{201}^{N}	.0		3.73		3.81		
N		32,483	34,165	18,357	18,394		
WIT	S?	Yes	Yes	No	No		
GSV	/?	No	No	Yes	Yes		

• Parameter values taken from the literature:

Parameter	Description	Value
σ_A, σ_N	Elasticities of substitution	4
θ	Dispersion of taste shock	1.2
α_A, α_N	Agglomeration elasticities	0.1
β	Congestion elasticity	-0.345
ϕ	Asymptotic agricultural share of consumption	0.01
ν	Degree of non-homotheticity	0.5
γ	Concavity of non-homothetic part of utility	0.35
η	Concavity of Cobb-Douglas part of utility	0.31

• Normalization:
$$\pi_c \equiv \left(\sum_{k \in c} W_{kt}^{\theta}\right)^{\frac{1}{\theta}} = 1$$
 for all countries $c \in C$

• Reason: country's average welfare levels and amenity levels not separately identifiable.

Results: Calibrated Fundamental Amenities (2005)

- Given counterfactual equilibrium allocation, recover counterfactual variables of interest:
 - Country's primacy rate and average welfare:

$$Primacy_{c}^{cf} = L_{p_{cf}(c)}^{cf} / \bar{L}_{c}$$

$$\pi_c^{cf} = \left(\sum_{k \in c} (W_k^{cf})^{\theta}\right)^{\frac{1}{\theta}}$$

• International trade (as % of world GDP):

$$\left(\frac{M}{Y}\right)^{cf} = \frac{\sum_{s \in \{A,N\}} \sum_{i \in S} \sum_{j \notin c(i)} X_{ij}^{s,cf}}{\sum_{s \in \{A,N\}} \sum_{i \in S} \sum_{j \in S} X_{ij}^{s,cf}}$$

• Effect of on variable y obtained by comparing y^{cf} to y_t .

- How much does worker spatial/sectoral reallocation influence the effects of trade shocks on welfare and trade volume?
- Compare long-run counterfactual to "immobility" counterfactuals:
 - Strong immobility: no reallocation across sectors or locations.
 - Weak immobility: reallociation across sectors but not locations.
- Strong: solve system for $(w^{cf,SI,s}, P^{cf,SI,s}, v^{cf,SI,s \times s'})$:

$$(w_i^{cf,Sl,s})^{\sigma_s} (L_{i,2005}^s)^{1-\alpha_s(\sigma_s-1)} = (\bar{A}_{i,2005}^s)^{\sigma_s-1} \sum_{j \in S} (\tau_{ij}^{cf,s})^{1-\sigma_s} (P_j^{cf,Sl,s})^{\sigma_s-1} \sum_{r \in \{A,N\}} v_j^{cf,Sl,s \times r} L_{j,2005}^r w_j^{cf,Sl,r} (P_j^{cf,Sl,s})^{1-\sigma_s} = \sum_{i \in S} (\hat{\tau}_{ij,2005}^s w_i^{cf,Sl,s})^{1-\sigma_s} (\bar{A}_{i,2005}^s (L_{i,2005}^s)^{\alpha_s})^{\sigma_s-1} v_j^{cf,Sl,A \times s} = \phi + \nu (P_j^{cf,Sl,A}/P_j^{cf,Sl,N})^{\gamma} (w_j^{cf,Sl,s})^{-\eta}$$

• Weak: solve system for (w^{cf,WI}, L^{cf,WI,s}, P^{cf,WI,s}, v^{cf,WI,s}):

$$(w_{i}^{cf,Wl})^{\sigma_{s}} (L_{i}^{cf,Wl,s})^{1-\alpha_{s}(\sigma_{s}-1)} = (\bar{A}_{i,2005}^{s})^{\sigma_{s}-1} \sum_{j \in S} (\tau_{ij}^{cf,s})^{1-\sigma_{s}} (P_{j}^{cf,Wl,s})^{\sigma_{s}-1} v_{j}^{cf,Wl,s} L_{j,2005} w_{j}^{cf,Wl} (P_{j}^{cf,Wl,s})^{1-\sigma_{s}} = \sum_{i \in S} (\tau_{ij}^{cf,s} w_{i}^{cf,Wl})^{1-\sigma_{s}} (\bar{A}_{i,2005}^{s} (L_{i}^{cf,Wl,s})^{\alpha_{s}})^{\sigma_{s}-1} v_{j}^{cf,Wl,A} = \phi + \nu (P_{j}^{cf,Wl,A} / P_{j}^{cf,Wl,N})^{\gamma} (w_{j}^{cf,Wl})^{-\eta} L_{i,2005} = L_{i}^{cf,Wl,A} + L_{i}^{cf,Wl,N}$$

Back

・ロ・・西・・ヨ・・ヨ・ 山口 うへぐ

• International trade (as % of world GDP):

Counterfactual #	CF1	CF2
Baseline	0.21	0.21
Long-Run CF	0.78	0.14
CF (strong immobility)	0.78	0.16
CF (weak immobility)	0.78	0.14

• Cross-country average of national welfare $(\pi_c \equiv (\sum_{k \in c} W_k^{\theta})^{\frac{1}{\theta}})$:

Counterfactual #	CF1	CF2
Baseline	1	1
Long-RUn CF	1.569	0.949
CF (strong immobility)	1.568	0.956
CF (weak immobility)	1.569	0.949

- Welfare/trade volumes in immobility CFs similar to long-run CF.
 - Worker sectoral/spatial mobility are secondary factors mediating trade-shock effects on welfare/trade volumes.

Country	Primacy _{c,2005}	d ln(Primacyc)	cont _c ST	cont _c DTA	cont _c ^{LF}
Argentina	0.371	-0.342	0.000	-0.008	-0.334
Austria	0.203	-0.029	-0.000	-0.003	-0.026
Bolivia	0.295	-0.005	0.000	-0.003	-0.002
Botswana	0.193	0.060	-0.000	-0.003	0.064
Brazil	0.227	-0.049	-0.000	-0.022	-0.027
Canada	0.384	0.005	-0.000	-0.002	0.007
Chile	0.345	-0.029	-0.000	-0.007	-0.022
China	0.092	-0.091	-0.000	0.011	-0.101
Colombia	0.229	-0.048	0.000	-0.012	-0.036
Benin	0.112	-0.111	-0.000	-0.003	-0.108
Ecuador	0.649	0.018	-0.000	-0.005	0.023
El Salvador	0.332	-0.052	0.000	-0.024	-0.028
Fiji	0.427	0.076	-0.000	-0.001	0.077
France	0.206	-0.061	0.000	-0.002	-0.059
Greece	0.268	0.036	0.001	-0.014	0.049
Guatemala	0.291	0.090	-0.000	-0.035	0.125
Indonesia	0.201	-0.037	0.001	-0.006	-0.032
Ireland	0.288	-0.103	0.000	-0.003	-0.100
Israel	0.242	0.000	0.000	-0.001	0.001
Jamaica	0.230	-0.112	0.000	-0.012	-0.100
Malaysia	0.284	0.286	-0.000	-0.009	0.296
Mali	0.182	-0.101	0.001	-0.000	-0.102
Mexico	0.138	0.111	-0.001	-0.011	0.123

Country	Primacy _{c,2005}	d ln(Primacy _c)	cont _c ST	cont _c ^{DTA}	cont _c ^{LF}
Morocco	0.130	-0.082	-0.000	-0.032	-0.050
Nicaragua	0.330	0.041	-0.000	-0.035	0.075
Panama	0.567	0.129	0.000	-0.012	0.141
Paraguay	0.279	0.205	0.000	-0.029	0.234
Peru	0.355	0.052	0.000	-0.017	0.069
Philippines	0.054	0.210	0.008	-0.016	0.219
Portugal	0.203	-0.032	0.000	-0.005	-0.027
Puerto Rico	0.728	0.026	0.000	0.000	0.026
Romania	0.094	0.003	0.001	-0.027	0.028
Vietnam	0.107	-0.030	0.000	-0.002	-0.028
Spain	0.173	-0.020	0.000	-0.005	-0.015
Switzerland	0.184	0.016	0.000	-0.001	0.017
Thailand	0.090	-0.034	0.001	-0.062	0.027
Trinidad and Tobago	0.875	-0.031	0.000	0.001	-0.031
Turkey	0.186	0.212	0.000	-0.037	0.249
Egypt	0.198	-0.456	0.000	-0.022	-0.434
United Kingdom	0.144	-0.369	0.000	0.000	-0.370
United States	0.117	-0.037	-0.000	0.000	-0.037
Uruguay	0.455	-0.026	-0.000	-0.010	-0.015
Venezuela	0.120	-0.212	0.002	-0.016	-0.198
Zambia	0.304	0.047	0.000	0.006	0.041