An Empirical Approximation of the Effects of Trade Sanctions with an Application to Russia

Jean Imbs¹ Laurent Pauwels²

¹NYUAD, PSE, CEPR *jmi5@nyu.edu*

²NYUAD, University of Sydney, CAMA (ANU) *Ilp9748@nyu.edu*

Trade and Global Value Chains in Times of Insecurity

Imbs, Pauwels

Trade Sanctions

We now have frontier GE models to simulate the economic consequences of trade sanctions. (Baqaee-Farhi 2019, Huo et al 2023).

Many applications to Russia's case (Bachmann et al 2002, Baqaee et al 2022, etc.)

Trade Sanctions

We now have frontier GE models to simulate the economic consequences of trade sanctions. (Baqaee-Farhi 2019, Huo et al 2023).

Many applications to Russia's case (Bachmann et al 2002, Baqaee et al 2022, etc.)

A difficulty is calibration, particularly of elasticities of substitution. Hard to discipline, so extensive sensitivity analyses.

Trade Sanctions

We now have frontier GE models to simulate the economic consequences of trade sanctions. (Baqaee-Farhi 2019, Huo et al 2023).

Many applications to Russia's case (Bachmann et al 2002, Baqaee et al 2022, etc.)

A difficulty is calibration, particularly of elasticities of substitution. Hard to discipline, so extensive sensitivity analyses.

Policymakers / journalists often use shortcuts like trade exposure. But no guarantee that is accurate, or even relevant.

(4) (3) (4) (3) (4)

We now have frontier GE models to simulate the economic consequences of trade sanctions. (Baqaee-Farhi 2019, Huo et al 2023).

Many applications to Russia's case (Bachmann et al 2002, Baqaee et al 2022, etc.)

A difficulty is calibration, particularly of elasticities of substitution. Hard to discipline, so extensive sensitivity analyses.

Policymakers / journalists often use shortcuts like trade exposure. But no guarantee that is accurate, or even relevant.

We have to get rid of our dependency on Russian fossil fuels all over Europe. Last year, Russian gas accounted for 40% of our gas imports. Today it's down to 9% pipeline gas.

— Ursula Von Der Leyen, State of the Union 2022

Imbs, Pauwels

▲□▶▲□▶▲□▶▲□▶ □ のQで

э.

Approximation is actually akin to trade exposure but accounting for indirect trade. Which can be very different from direct trade exposure.

Approximation is actually akin to trade exposure but accounting for indirect trade. Which can be very different from direct trade exposure.

Apply the approximation to embargoes on Russian (energy) exports to EU and on EU exports to Russia.

• • = • • = •

Approximation is actually akin to trade exposure but accounting for indirect trade. Which can be very different from direct trade exposure.

Apply the approximation to embargoes on Russian (energy) exports to EU and on EU exports to Russia.

Compare results implied by approximation vs. exact responses in model

Imbs, Pauwels

æ –

Image: A = 1

Both embargoes have small effects (< 1% GDP). Not surprising: As in the literature.

Both embargoes have small effects (< 1% GDP). Not surprising: As in the literature.

Small average effects mask enormous asymmetries:

Both embargoes have small effects (< 1% GDP). Not surprising: As in the literature.

Small average effects mask enormous asymmetries:

- Russia affected much more than EU by either embargo; Russia much more affected by ban on its exports to EU than by ban on its imports from EU.

• • = • • = •

Both embargoes have small effects (< 1% GDP). Not surprising: As in the literature.

Small average effects mask enormous asymmetries:

- Russia affected much more than EU by either embargo; Russia much more affected by ban on its exports to EU than by ban on its imports from EU.
- Within EU, small ex-Soviet Union "satellite" countries much, much more affected by either embargo than large West European countries.

イロト イヨト イヨト

Imbs, Pauwels

æ –

Image: A = 1

Still, can use approximation as implied by measures of indirect trade to gauge availability of (historical) substitutes.

Still, can use approximation as implied by measures of indirect trade to gauge availability of (historical) substitutes.

Consider historical existence of alternative supply chains:

Still, can use approximation as implied by measures of indirect trade to gauge availability of (historical) substitutes.

Consider historical existence of alternative supply chains:

- Alternative to EU for Russia's exports very limited.

Still, can use approximation as implied by measures of indirect trade to gauge availability of (historical) substitutes.

Consider historical existence of alternative supply chains:

- Alternative to EU for Russia's exports very limited.
- Alternative to Russian imports for large West European economies readily exist.

A B F A B F

Still, can use approximation as implied by measures of indirect trade to gauge availability of (historical) substitutes.

Consider historical existence of alternative supply chains:

- Alternative to EU for Russia's exports very limited.
- Alternative to Russian imports for large West European economies readily exist.
- Alternative to Russian imports for small ex-satellite East European countries virtually inexistent.

Still, can use approximation as implied by measures of indirect trade to gauge availability of (historical) substitutes.

Consider historical existence of alternative supply chains:

- Alternative to EU for Russia's exports very limited.
- Alternative to Russian imports for large West European economies readily exist.
- Alternative to Russian imports for small ex-satellite East European countries virtually inexistent.
- We show this happens because East European countries supply chains intimately interlinked with Russian economy. In particular pipelines are an important driving force.

1 Model

2 Approximation

3 Validation

④ Effects of Sanctions

5 Conclusion

Model

Production:

$$\mathsf{Y}_{i}^{r} = \mathsf{Z}_{i}^{r} \left[(\mathsf{H}_{i}^{r})^{\alpha^{r}} (\mathsf{K}_{i}^{r})^{1-\alpha^{r}} \right]^{\eta^{r}} (\mathsf{M}_{i}^{r})^{1-\eta^{r}}, \text{ where } \mathsf{M}_{i}^{r} = \left(\sum_{j} \sum_{s} (\mu_{ji}^{sr})^{\frac{1}{\epsilon}} (\mathsf{M}_{ji}^{sr})^{\frac{\epsilon-1}{\epsilon}} \right)^{\frac{\epsilon}{\epsilon-1}}$$

Households choose consumption to maximize:

$$\mathsf{U}\left(\mathsf{C}_{i}-\sum_{r}(\mathsf{H}_{i}^{r})^{1+\frac{1}{\psi}}\right) s.t. \mathsf{P}_{i}^{c}\mathsf{C}_{i}=\sum_{r}\mathsf{W}_{i}^{r}\mathsf{H}_{i}^{r}+\sum_{r}\mathsf{R}_{i}^{r}\mathsf{K}_{i}^{r},$$

where

$$\mathsf{C}_{i} = \left[\sum_{j}\sum_{s} (\nu_{ji}^{s})^{\frac{1}{\rho}} (\mathsf{C}_{jj}^{s})^{\frac{\rho-1}{\rho}}\right]^{\frac{\rho}{\rho-1}}.$$

ヘロアス 留 アメ 回 アメロア

а.

Model (continued)

Market Clearing:

$$\mathsf{P}_i^r \mathsf{Y}_i^r = \sum_j \mathsf{P}_j^c \mathsf{C}_j \pi_{ij}^r + \sum_j \sum_s (1 - \eta^s) \mathsf{P}_j^s \mathsf{Y}_j^s \xi_{ij}^{rs},$$

with expenditure shares

$$\xi_{ij}^{rs} = \frac{\mu_{ij}^{rs} (\tau_{ij}^{r} \mathsf{P}_{i}^{r})^{1-\epsilon}}{\sum_{k,l} \mu_{kj}^{ls} (\tau_{kj}^{l} \mathsf{P}_{k}^{l})^{1-\epsilon}} \\ \pi_{ij}^{r} = \frac{\nu_{ij}^{r} (\tau_{ij}^{r} \mathsf{P}_{i}^{r})^{1-\rho}}{\sum_{k,l} \nu_{kj}^{l} (\tau_{kj}^{l} \mathsf{P}_{k}^{l})^{1-\rho}}$$

With financial autarky:

$$\mathsf{P}_i^r \mathsf{Y}_i^r = \sum_j \sum_s \eta^s \mathsf{P}_j^s \mathsf{Y}_j^s \pi_{ij}^r + \sum_j \sum_s (1 - \eta^s) \mathsf{P}_j^s \mathsf{Y}_j^s \xi_{ij}^{rs}.$$

æ

Deviations from steady state created by shocks to transport costs τ_{ii}^{r} (embargoes):

$$\ln \mathbf{V}_t = \frac{\alpha \psi}{1 + \psi} \left[\ln \mathbf{P} \mathbf{Y}_t - \ln \mathbf{P}_t^c \right],$$

where

$$\ln \mathbf{P}\mathbf{Y}_t = (\mathcal{P} + \mathbf{I})\mathbf{\Lambda}^{-1} \ln \mathbf{T}_t,$$

$$\ln \mathbf{P}_t^c = [(\mathbf{A}^c)^\top \otimes \mathbf{1}_R]\mathcal{P}\mathbf{\Lambda}^{-1} \ln \mathbf{T}_t.$$

Exact solution from steady state and calibrated values for $\ln T_t$.

э.

► 4 3 4

ъ

$$\ln \mathbf{V}_t = \frac{\alpha \psi}{1 + \psi} \left[\ln \mathbf{P} \mathbf{Y}_t - \ln \mathbf{P}_t^c \right].$$

$$\ln \mathbf{V}_t = \frac{\alpha \psi}{1 + \psi} \bigg[\ln \mathbf{P} \mathbf{Y}_t - \ln \mathbf{P}_t^c \bigg].$$

Two steps:

$$\ln \mathbf{V}_t = \frac{\alpha \psi}{1 + \psi} \left[\ln \mathbf{P} \mathbf{Y}_t - \ln \mathbf{P}_t^c \right].$$

Two steps:

1. Negligible response of CPI to embargo.

2

$$\ln \mathbf{V}_t = \frac{\alpha \psi}{\mathbf{1} + \psi} \left[\ln \mathbf{P} \mathbf{Y}_t - \ln \mathbf{P}_t^c \right].$$

Two steps:

- 1. Negligible response of CPI to embargo.
- 2. Empirical approximation of (%) response of nominal output to embargo.

イロト イヨト イヨト

ъ

"Hypothetical Extraction" Los, Timmer, and de Vries (2016)

Imbs, Pauwels

Approximating the Effects of Sanctions

< □ ▶ < ⊡ ▶ < ⊡ ▶ < Ξ ▶
2 May 2023

11/33

æ

"Hypothetical Extraction" Los, Timmer, and de Vries (2016)

Two candidate approximations:

э

"Hypothetical Extraction" Los, Timmer, and de Vries (2016)

Two candidate approximations:

$$\ln \widetilde{\mathbf{PY}}_d = \left[(\mathbf{I} - \mathbf{A})^{-1} \ \mathbf{PC} - (\mathbf{I} - \widetilde{\mathbf{A}})^{-1} \ \widetilde{\mathbf{PC}} \right] \oslash \left[(\mathbf{I} - \mathbf{A})^{-1} \ \mathbf{PC} \right],$$

 $\tilde{\mathbf{A}}$ and $\widetilde{\mathbf{PC}}$ set to zero demand arising from embargoed countries k. Approximates $\frac{\ln P'_{i,t} Y'_{i,t}}{\ln \tau'_{k,t}}$. Call this HOT.
"Hypothetical Extraction" Los, Timmer, and de Vries (2016)

Two candidate approximations:

$$\ln \widetilde{\mathbf{PY}}_d = \left[(\mathbf{I} - \mathbf{A})^{-1} \ \mathbf{PC} - (\mathbf{I} - \widetilde{\mathbf{A}})^{-1} \ \widetilde{\mathbf{PC}} \right] \oslash \left[(\mathbf{I} - \mathbf{A})^{-1} \ \mathbf{PC} \right],$$

 $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{PC}}$ set to zero demand arising from embargoed countries k. Approximates $\frac{\ln P_{i,t}^r Y_{i,t}^r}{\ln \tau_{ik,t}^r}$. Call this HOT.

$$\ln \widetilde{\mathbf{PY}}_u = \left[(\mathbf{I} - \mathbf{B}^\top)^{-1} \ \mathbf{PVA} - (\mathbf{I} - \widetilde{\mathbf{B}}^\top)^{-1} \ \mathbf{PVA} \right] \oslash \left[(\mathbf{I} - \mathbf{B}^\top)^{-1} \ \mathbf{PVA} \right],$$

 $\tilde{\mathbf{B}}$ sets to zero intermediate inputs arising from embargoed countries k. Approximates $\frac{\ln P_{j,t}^s Y_{j,t}^s}{\ln \tau_{k,t}^r}$. Call this SHOT.

Imbs, Pauwels

2

- Effect on EU value added is $\frac{\ln V_{EUR,t}^s}{\ln \tau_{RUS,EUR}^r}$, approximated as SHOT'

- Effect on EU value added is $\frac{\ln V_{EUR,t}^{s}}{\ln \tau_{RUS,EUR}^{r}}$, approximated as SHOT^{rs}_{RUS,EUR}.
- Effect on Russia's value added is $\frac{\ln V_{RUS,t}^{r}}{\ln \tau_{RUS,EUR}^{r}}$, approximated as HOT^r_{RUS,EUR}.

- Effect on EU value added is $\frac{\ln V_{EUR,t}^{s}}{\ln \tau_{RUS,EUR}^{r}}$, approximated as SHOT^{rs}_{RUS,EUR}.
- Effect on Russia's value added is $\frac{\ln V_{RUS,t}^{r}}{\ln \tau_{RUS,EUR}^{r}}$, approximated as HOT_{RUS,EUR}.

Consider embargo on European exports to Russia:

- Effect on EU value added is $\frac{\ln V_{EUR,t}^{s}}{\ln \tau_{RUS,EUR}^{r}}$, approximated as SHOT^{rs}_{RUS,EUR}.
- Effect on Russia's value added is $\frac{\ln V'_{RUS,t}}{\ln \tau'_{RUS,EUR}}$, approximated as HOT'_{RUS,EUR}.

Consider embargo on European exports to Russia:

- Effect on EU value added is $\frac{\ln V'_{\text{EUR},t}}{\ln \tau'_{\text{EUR,RUS}}}$, approximated as HOT'_{EUR,RUS}.

- Effect on EU value added is $\frac{\ln V_{EUR,t}^{s}}{\ln \tau_{RUS,EUR}^{r}}$, approximated as SHOT^{rs}_{RUS,EUR}.
- Effect on Russia's value added is $\frac{\ln V'_{RUS,t}}{\ln \tau'_{DUS,EUR}}$, approximated as HOT'_{RUS,EUR}.

Consider embargo on European exports to Russia:

- Effect on EU value added is $\frac{\ln V'_{\text{EUR},t}}{\ln \tau'_{\text{FUR,RUS}}}$, approximated as HOT'_{EUR,RUS}.
- Effect on Russia's value added is $\frac{\ln V_{RUS,t}^s}{\ln \tau_{EUR,RUS}^r}$, approximated as SHOT^{*ts*}_{EUR,RUS}.

- Effect on EU value added is $\frac{\ln V_{EUR,t}^s}{\ln \tau_{RUS,EUR}^r}$, approximated as SHOT^{rs}_{RUS,EUR}.
- Effect on Russia's value added is $\frac{\ln V_{RUS,t}^{\prime}}{\ln \tau_{DUS,EUR}^{\prime}}$, approximated as HOT[']_{RUS,EUR}.

Consider embargo on European exports to Russia:

- Effect on EU value added is $\frac{\ln V'_{\text{EUR},t}}{\ln \tau'_{\text{EUR,RUS}}}$, approximated as HOT'_{EUR,RUS}.
- Effect on Russia's value added is $\frac{\ln V_{RUS,t}^s}{\ln \tau_{EUR,RUS}^r}$, approximated as SHOT^{*ts*}_{EUR,RUS}.

HOT and SHOT computed using OECD's ICIO in 2018. Later using EXIOBASE 2021 for detailed energy data.

Validation: Embargo on Russia's Oil Exports to EU

Approx. resp. \downarrow 0.08% Avg. simul. resp. \downarrow 0.01%

Imbs, Pauwels

Approximating the Effects of Sanctions

2 May 2023

13/33

э

Validation: Embargo on all European exports to Russia

Approx. resp. $\downarrow 0.97\%$ Avg simul. resp. $\downarrow 0.6\%$ Approx. resp. $\downarrow 0.5\%$ Avg. simul. resp. $\downarrow 0.9\%$

э

By definition,

$$\ln \mathbf{V}_t \simeq \frac{\alpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

2

By definition,

$$\ln \mathbf{V}_t \simeq rac{lpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

Responses to upstream shocks:

By definition,

$$\ln \mathbf{V}_t \simeq rac{lpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

Responses to upstream shocks:

- Country:
$$\ln V_{j,t} / \ln \tau_{ij}^r \simeq \sum_s \left(\frac{VA_{j,t}^s}{\sum_s VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1+\psi} \operatorname{SHOT}_{ij}^{rs}$$

・ロト ・四ト ・ヨト ・ヨト

By definition,

$$\ln \mathbf{V}_t \simeq rac{lpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

Responses to upstream shocks:

- Country:
$$\ln V_{j,t} / \ln \tau_{ij}^r \simeq \sum_s \left(\frac{VA_{j,t}^s}{\sum_s VA_{j,t}^s}\right) \frac{\alpha'\psi}{1+\psi} \text{SHOT}_{ij}^{rs}$$

- Sector: $\ln V_t^s / \ln \tau_{ij}^r \simeq \sum_j \left(\frac{VA_{j,t}^s}{\sum_j VA_{j,t}^s}\right) \frac{\alpha'\psi}{1+\psi} \text{SHOT}_{ij}^{rs}$

イロト イヨト イヨト

æ

By definition,

$$\ln \mathbf{V}_t \simeq \frac{\alpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

Responses to upstream shocks:

- Country:
$$\ln V_{j,t} / \ln \tau_{ij}^r \simeq \sum_s \left(\frac{VA_{j,t}^s}{\sum_s VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1+\psi} \operatorname{SHOT}_{ij}^{rs}$$

- Sector: $\ln V_t^s / \ln \tau_{ij}^r \simeq \sum_j \left(\frac{VA_{j,t}^s}{\sum_j VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1+\psi} \operatorname{SHOT}_{ij}^{rs}$

Response to downstream shocks:

・ロット (雪) () () () ()

By definition,

$$\ln \mathbf{V}_t \simeq \frac{\alpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

Responses to upstream shocks:

- Country:
$$\ln V_{j,t} / \ln \tau_{ij}^r \simeq \sum_s \left(\frac{VA_{j,t}^s}{\sum_s VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1 + \psi} \text{SHOT}_{ij}^{rs}$$

- Sector:
$$\ln V_t^s / \ln \tau_{ij}^r \simeq \sum_j \left(\frac{VA_{j,t}^s}{\sum_j VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1+\psi} \operatorname{SHOT}_{ij}^{rs}$$

Response to downstream shocks:

- Country:
$$\ln V_{i,t} / \ln \tau_{ij}^r \simeq \sum_r \left(\frac{VA_{i,t}^r}{\sum_r VA_{i,t}^r} \right) \frac{\alpha^r \psi}{1+\psi} \operatorname{HOT}_{ij}^r$$

< □ > < 同

By definition,

$$\ln \mathbf{V}_t \simeq \frac{\alpha \psi}{\mathbf{1} + \psi} \ln \mathbf{P} \mathbf{Y}_t.$$

Responses to upstream shocks:

- Country:
$$\ln V_{j,t} / \ln \tau_{ij}^r \simeq \sum_s \left(\frac{VA_{j,t}^s}{\sum_s VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1+\psi} \operatorname{SHOT}_{ij}^{rs}$$

- Sector:
$$\ln V_t^s / \ln \tau_{ij}^r \simeq \sum_j \left(\frac{VA_{j,t}^s}{\sum_j VA_{j,t}^s} \right) \frac{\alpha^r \psi}{1+\psi} \operatorname{SHOT}_{ij}^{rs}$$

Response to downstream shocks:

- Country:
$$\ln V_{i,t} / \ln \tau_{ij}^{r} \simeq \sum_{r} \left(\frac{VA_{i,t}^{r}}{\sum_{r} VA_{i,t}^{r}} \right) \frac{\alpha^{r}\psi}{1+\psi} HOT_{ij}^{r}$$

- Sector: $\ln V_{t} / \ln \tau_{ij}^{r} \simeq \sum_{i} \left(\frac{\sum_{r} VA_{i,t}^{r}}{\sum_{i} \sum_{r} VA_{i,t}^{r}} \right) \left[\sum_{r} \left(\frac{VA_{i,t}^{r}}{\sum_{r} VA_{i,t}^{r}} \right) \frac{\alpha^{r}\psi}{1+\psi} HOT_{ij}^{r} \right]$

< □ > < 同

Approximate effects of an embargo on Russian Energy Exports (incl. Natural Gas)

Effects on Russia	Effects on European countries					
Energy producing products	10.46	Refined petroleum products	1.47	BGR	1.09	
Mining support service activities	2.42	Basic metals	0.50	LTU	0.50	
Transport by land & pipelines	1.20	Electricity, gas, steam	0.42	SVK	0.43	
Administrative services	1.00	Air transport	0.40	HUN	0.40	
Manufacturing nec	0.82	Other non-metallic minerals	0.31	LVA	0.33	
Warehouse & transport services	0.78	Non-energy producing products	0.31	CZE	0.30	
Water transport	0.71	Chemical products	0.27	POL	0.29	
Non-energy producing products	0.64	Transport by land & pipelines	0.25	FIN	0.20	
Machinery & equipment, nec	0.45	Water transport	0.23	ROU	0.17	
Rubber & plastics products	0.39	Energy producing products	0.20	SVN	0.13	
Total Effect	1.37		Total	effect	0.08	

э

Approximate effects of an embargo on Russian Energy Exports (incl. Natural Gas)

Effects on Russia	Effects on European countries					
Energy producing products	10.46	Refined petroleum products	1.47	BGR	1.09	
Mining support service activities	2.42	Basic metals	0.50	LTU	0.50	
Transport by land & pipelines	1.20	Electricity, gas, steam	0.42	SVK	0.43	
Administrative services	1.00	Air transport	0.40	HUN	0.40	
Manufacturing nec	0.82	Other non-metallic minerals	0.31	LVA	0.33	
Warehouse & transport services	0.78	Non-energy producing products	0.31	CZE	0.30	
Water transport	0.71	Chemical products	0.27	POL	0.29	
Non-energy producing products	0.64	Transport by land & pipelines	0.25	FIN	0.20	
Machinery & equipment, nec	0.45	Water transport	0.23	ROU	0.17	
Rubber & plastics products	0.39	Energy producing products	0.20	SVN	0.13	
Total Effect	1.37		Total	effect	0.08	

Evenett-Muendler (2022): -0.58% long run effect of ban on Russian oil and gas.

16/33

< □ > < □ > < □ > < □ > < □ >

Approximate effects of an embargo on all Russian Exports

Effects on Russia	ountrie	es			
Energy producing products	12.30	Refined petroleum products	2.25	BGR	1.82
Air transport	9.21	Basic metals	1.49	LTU	1.22
Mining support service activities	7.63	Air transport	1.19	LVA	1.03
Postal & courier activities	6.40	Water transport	0.80	EST	0.99
Basic metals	6.18	Other non-metallic minerals	0.68	CYP	0.89
Refined petroleum products	6.01	Chemical products	0.66	SVK	0.83
Water transport	5.96	Non-energy producing products	0.66	HUN	0.79
Warehouse & transport services	5.95	Electricity, gas, steam	0.65	POL	0.68
IT	5.65	Fabricated metal products	0.62	FIN	0.68
Transport by land & pipelines	5.65	Transport by land & pipelines	0.62	CZE	0.65
Total effect	3.62		Total	effect	0.23

・ロト ・四ト ・ヨト ・ヨト

æ

Approximate effects of an embargo on all Russian Exports

Effects on Russia	ountrie	es			
Energy producing products	12.30	Refined petroleum products	2.25	BGR	1.82
Air transport	9.21	Basic metals	1.49	LTU	1.22
Mining support service activities	7.63	Air transport	1.19	LVA	1.03
Postal & courier activities	6.40	Water transport	0.80	EST	0.99
Basic metals	6.18	Other non-metallic minerals	0.68	CYP	0.89
Refined petroleum products	6.01	Chemical products	0.66	SVK	0.83
Water transport	5.96	Non-energy producing products	0.66	HUN	0.79
Warehouse & transport services	5.95	Electricity, gas, steam	0.65	POL	0.68
IT	5.65	Fabricated metal products	0.62	FIN	0.68
Transport by land & pipelines	5.65	Transport by land & pipelines	0.62	CZE	0.65
Total effect	3.62		Total	effect	0.23

- Evenett-Muendler (2022): ban on Russian oil and gas and 35% tariff increase on the rest reduces Russian GDP by 1.06% in the long run.

- Bachmann et al (2022): ban on Russian coal, oil, and gas reduces German GDP by 0.2-0.3%. Here effect on Germany is 0.23%.

イロト イボト イヨト イヨ

Approximate effects of an embargo on all EU Exports

Effects on European countries		Effects on Russia	
СҮР	0.12	Motor vehicles	6.32
LTU	0.06	Rubber & plastics products	5.23
EST	0.06	Machinery & equipment, nec	4.53
LVA	0.04	Other transport equipment	4.33
IRL	0.04	Electrical equipment	3.96
FIN	0.03	Manufacturing nec	3.53
SVK	0.02	Paper products & printing	3.22
CZE	0.02	Air transport	3.05
SVN	0.02	Fabricated metal products	2.96
BGR	0.02	Pharmaceutical products	2.89
Total effect	0.01	Total effect	0.48

Substitution is assumed away in empirical approximation of $\ln V_{i,t}$.

Propose an approximation to availability of substitute markets.

Compute shares of production that historically served alternative markets (HOT) / used alternative inputs (SHOT).

Compare with shares of output lost because of embargo.

Do it for sectors most affected by European embargo on Russian energy / total exports.

イロト イボト イヨト イヨト

= nar

Substitute downstream markets for Russia exports (HOT)

European embargo on Russia's Petroleum						
		Substit	ute cou	ntries		
Most affected Russian sectors	EUR	USA	CHN	TUR		
Refined petroleum products	25.39	4.51	4.30	3.53		
Mining support service activities	12.27	2.18	2.08	1.71		
Energy producing products	4.35	0.77	0.74	0.60		
European embargo on R	ussia's Ei	nergy sea	ctors			
		Substit	ute cou	ntries		
Most affected Russian sectors	EUR	CHN	ISR	KOR		
Energy producing products	34.02	17.07	2.77	2.75		
Mining support services	7.88	3.96	0.64	0.64		
Transport by land & pipelines	3.47	1.74	0.28	0.28		

European embargo on all Russian sectors

		Substit	ute cou	Intries
Most affected Russian sectors	EUR	CHN	KOR	ISR
Energy producing products	39.98	18.39	3.44	3.05
Refined petroleum products	29.56	5.98	3.63	1.56
Mining support services	24.80	6.85	2.39	1.39

2 May 2023

▶ < ∃ >

ъ

Substitute upstream markets for Europe imports (SHOT)

European embargo on Russia	ropean embargo on Russia's Energy			Substitute countries				
	FRA	SAU	KAZ	NOR				
Refined petroleum products	6.59	8.86	4.87	3.23				
Electricity, gas, steam	1.82	2.25	1.24	0.82				
Basic metals	0.64	0.56	0.31	0.21				
	DEU	NOR	KAZ	USA	GBR			
Refined petroleum products	6.80	9.48	2.31		2.00			
Energy producing products	3.67	5.24	1.28		1.11			
Electricity, gas, steam	1.74	1.63	0.40	0.57				
	LVA	GBR	USA	NOR				
Refined petroleum products	32.64	0.03	< 0.01	< 0.01				
Electricity, gas, steam	13.20	0.02	< 0.01	< 0.01				
Other non-metallic minerals	12.58	<0.01	< 0.01	< 0.01				
	BGR	ZAF	TUR	USA				
Refined petroleum products	44.80	0.02	0.02	<0.01				
Electricity, gas, steam	25.69	0.26	0.16	< 0.01				
Other non-metallic minerals	23.27	0.06	0.05	<0.01	▶ ◆ □ ▶ ◆ ■ ▶			
auwels Approxi	mating the Effe	ects of Sancti	ons		2 May 2023			

Approximating the Effects of Sanctions

Direct vs indirect trade - embargo on Russian Petroleum (in %)

Country	HOT	Direct Exports	Ratio	Country	HOT	Direct Exports	Ratio
CZE	0.35	0.01	40.63	HRV	0.05	0.01	4.05
SVK	0.36	0.03	14.32	BEL	0.64	0.16	4.02
LTU	0.29	0.03	9.00	AUT	0.06	0.02	3.93
BGR	0.70	0.08	8.72	DNK	0.96	0.27	3.56
MLT	0.01	< 0.01	7.68	IRL	0.24	0.07	3.50
LUX	< 0.01	< 0.01	6.35	GRC	1.55	0.48	3.23
FIN	0.79	0.15	5.36	EST	0.13	0.04	3.18
POL	2.09	0.40	5.27	ROU	0.38	0.12	3.08
HUN	0.66	0.13	4.96	SVN	0.07	0.03	2.79
SWE	0.84	0.17	4.87	FRA	2.21	0.80	2.76
NLD	1.02	0.24	4.20	DEU	5.79	2.27	2.55
ITA	1.97	0.47	4.19	ESP	0.70	0.28	2.52
PRT	0.25	0.06	4.19	GBR	3.19	1.39	2.30
LVA	0.09	0.02	4.10	CYP	0.01	<0.01	2.10

▲□▶▲□▶▲目▶▲目▶ 目 のへで

The ratio of indirect to direct trade reflects the intensity of value chains.

Small Eastern European countries are much more integrated with Russia through value chains.

And therefore much more dependent.

글 제 제 글 제

We explore the importance of transport infrastructure to account for these enormous asymmetries.

Compute SHOT^{r,s} for (i,r) = (Russia, Transport via Pipelines) (j,s) = (EU country, Production of Electricity using gas).

Estimates how much production of electricity using gas in country j depends on Russian pipelines.

Data comes from EXIOBASE in 2021: 163 industries for 44 countries. Sectors such as "Poultry Farming" or "Reprocessing of secondary wood material".

= 900

Dependence on Russian pipelines (Electricity Production)

Country	SHOT	Country	SHOT
SWE	0.023	LUX	0.003
LTU	0.019	SVK	0.002
CZE	0.019	EST	0.002
ROU	0.018	DEU	0.002
HUN	0.015	BGR	0.002
FRA	0.014	ESP	0.002
ITA	0.007	FIN	0.001
HRV	0.005	BEL	0.001
SVN	0.005	GRC	0.001
PRT	0.004	IRL	0.001
DNK	0.004	GBR	0.001
LVA	0.003	NLD	0.001
POL	0.003		
AUT	0.003		

æ

Data-based approximation to effects of trade embargoes. No substitution, and therefore no elasticity calibration.

Not a replacement to precise estimates from GE models - but practical to conduct simple and relevant experiments without a need for calibration.

Document small effects of trade embargoes involving Russia - though enormously asymmetric, especially within the EU.

Show that most affected countries by embargoes (East Europe) are also most dependent on Russia, esp. as far as transport infrastructure.

Illustration of approximation's potential. HOT and SHOT to be made available online.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○

Thank you

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタぐ

Validation: Embargo on Russia's Oil Exports to EU

Validation: Embargo on all European exports to Russia

Response of value added to a Russian Oil shock


```
Imbs, Pauwels
```

Approximating the Effects of Sanctions

2 May 2023 30 / 33

Response of value added to a Russian Oil shock


```
Imbs, Pauwels
```

Approximating the Effects of Sanctions

2 May 2023 31 / 33
Response of value added to a Russian Oil shock

2 May 2023 32 / 33