Trade Policy Uncertainty, Offshoring, and the Environment: Evidence from US Manufacturing Establishments

Jaerim Choi¹ Jay Hyun² Gueyon Kim³ Ziho Park⁴

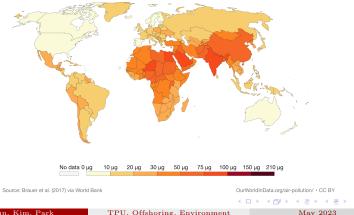
 $^1 \, {\rm University}$ of Hawai'i, Mānoa

²HEC Montréal - U Montreal Business School

³University of California, Santa Cruz

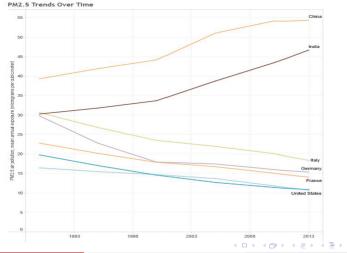
⁴National Taiwan University

Trade and Global Value Chains in Times of Insecurity May 2, 2023


Global divergence in pollution emissions in the 21st century (Copeland et al., 2021)

- Stark cross-sectional differences b/w high- vs. low- & middle-income countries

Exposure to air pollution with fine particulate matter, 2017 Population-weighted average level of exposure to concentrations of suspended particles measuring less than 2.5 microns in diameter (PM2.5). Exposure is measured in micrograms of PM2.5 per cubic metre (u/m³).



2/31

Global divergence in pollution emissions in the 21st century (Copeland et al., 2021)

- Stark cross-sectional differences b/w high- vs. low- & middle-income countries
- Growth in global emissions over time driven by low- & middle-income countries

Contemporaneously, a remarkable movement toward global integration

- Easier access to imported intermediate goods & better offshoring opportunities (Feenstra, 1998, Hummels et al., 2001)
- China's entry to the global trade

Contemporaneously, a remarkable movement toward global integration

- Easier access to imported intermediate goods & better offshoring opportunities (Feenstra, 1998, Hummels et al., 2001)
- China's entry to the global trade

Pollution haven/offshoring hypothesis provides a compelling explanation

- Progress toward trade liberalization leads to relocation of high-polluting activities from developed to developing countries with laxer environmental regulations (Copeland and Taylor, 2004, Copeland et al, 2022)
- Ample discussion in policy and media; Limited \boldsymbol{causal} evidence

Contemporaneously, a remarkable movement toward global integration

- Easier access to imported intermediate goods & better offshoring opportunities (Feenstra, 1998, Hummels et al., 2001)
- China's entry to the global trade

Pollution haven/offshoring hypothesis provides a compelling explanation

- Progress toward trade liberalization leads to relocation of high-polluting activities from developed to developing countries with laxer environmental regulations (Copeland and Taylor, 2004, Copeland et al, 2022)
- Ample discussion in policy and media; Limited *causal* evidence

Important aspect that has been often overlooked in empirical research on PHH/POH

- Offshoring is an *investment* decision (Bloom et al., 2007; Handley and Limao, 2015), influenced by institutional factors
- Possible cost advantages (factor price, tax, abatement cost) of offshoring become ambiguous under uncertainty in trading relationships
- \rightarrow A shock generating variations in trade policy uncertainty (TPU) is needed

We study long-run environmental consequences of trade liberalization (\Downarrow TPU) in US manufacturing and explore mechanisms through which firms adjust

 \Rightarrow A priori, ambiguous impact on pollution emissions

- Increase in import competition in final goods market \Rightarrow Emissions $\Uparrow \& \Downarrow$
- Easier access to purchase intermediate goods (or offshoring) \Rightarrow Emissions \Downarrow

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We study long-run environmental consequences of trade liberalization (\Downarrow TPU) in US manufacturing and explore mechanisms through which firms adjust

 \Rightarrow A priori, ambiguous impact on pollution emissions

- Increase in import competition in final goods market \Rightarrow Emissions $\Uparrow \& \Downarrow$
- Easier access to purchase intermediate goods (or offshoring) \Rightarrow Emissions \Downarrow

Using changes in US trade policy with China (granting Permanent Normal Trade Relations) in 2001 as a shock,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We study long-run environmental consequences of trade liberalization (\Downarrow TPU) in US manufacturing and explore mechanisms through which firms adjust

 \Rightarrow A priori, ambiguous impact on pollution emissions

- Increase in import competition in final goods market \Rightarrow Emissions $\uparrow \& \Downarrow$
- Easier access to purchase intermediate goods (or offshoring) \Rightarrow Emissions \Downarrow

Using changes in US trade policy with China (granting Permanent Normal Trade Relations) in 2001 as a shock,

- 1. Significant and persistent within-establishment declines in pollution emissions
- 2. More pronounced effects for establishments that,
 - face tough environmental regulations
 - operate in upstream industries
 - have within-firm global sourcing networks

We study long-run environmental consequences of trade liberalization (\Downarrow TPU) in US manufacturing and explore mechanisms through which firms adjust

 \Rightarrow A priori, ambiguous impact on pollution emissions

- Increase in import competition in final goods market \Rightarrow Emissions $\Uparrow \& \Downarrow$
- Easier access to purchase intermediate goods (or offshoring) \Rightarrow Emissions \Downarrow

Using changes in US trade policy with China (granting Permanent Normal Trade Relations) in 2001 as a shock,

- 1. Significant and persistent within-establishment declines in pollution emissions
- 2. More pronounced effects for establishments that,
 - face tough environmental regulations
 - operate in upstream industries
 - have within-firm global sourcing networks
- 3. Strong evidence supporting the pollution offshoring hypothesis
 - Significant increase in relocation of high-polluting production to China;
 - Increase in imports of high-polluting products from China

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2

4/31

Related Literature

Clean-up of US manufacturing

Copeland and Taylor 1994; Grossman and Krueger 1995; Levinson 2009; Shapiro and Walker 2018; Holladay and LaPlue III 2021

 \Rightarrow Use establishment-level data to examine the importance of international trade as adjustment channel

International trade and environmental outcomes

Holladay 2016: Cherniwchan 2017: Martin 2011: Gutiérrez and Teshima 2018: Bombardini and Li 2020; Rodrigue et al. 2020

Pollution haven/offshoring hypothesis

Greenstone 2002; List et al 2003; Levinson & Taylor 2008; Tanaka et al 2022; Bartram et al 2022 Eskeland & Harrison 03: Hanna 2010

 \Rightarrow Provide comprehensive & causal evidence of POH by leveraging rich data on establishment-level measures of offshoring and a trade policy uncertainty shock

Impact of the China trade shock on US economy

Autor et al. 2013; Pierce and Schott 2016; Choi and Xu 2020; Hyun et al. 2022; Kim 2022; Bloom et al. 2016; Autor et al. 2020; Che et al. 2016; Autor et al. 2020, Pierce and Schott 2020

 \Rightarrow First to establish causality on the environmental consequences

Outline

1 Data and Descriptives

2 Empirical Strategy

3 Main Results

Mechanisms

6 Conclusion

6/31

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Toxics Release Inventory (TRI), 1987-2020

Initiated in 1986 after disastrous toxic chemical leaks (India and US)

US facilities required to report (EPCRA, Section 313)

- 1. TRI-listed-chemical-specific production waste
 Institutional Change
 - List of TRI-covered chemicals expand;
 - Reporting threshold criteria change
- 2. Descriptions on pollution prevention measures

Toxics Release Inventory (TRI), 1987-2020

Initiated in 1986 after disastrous toxic chemical leaks (India and US)

US facilities required to report (EPCRA, Section 313)

- 1. TRI-listed-chemical-specific production waste
 Institutional Change
 - List of TRI-covered chemicals expand;
 - Reporting threshold criteria change
- 2. Descriptions on pollution prevention measures

Establishment-chemical-year-level data on,

✓ Production Waste = Released + Recycled + Treated + Energy Recovery

Waste Managed

 ✓ Measures to reduce pollutants at the source (e.g., substituting materials, modifying production methods)

(사례) (사용) (사용) (문)

Toxics Release Inventory (TRI), 1987-2020

Initiated in 1986 after disastrous toxic chemical leaks (India and US)

US facilities required to report (EPCRA, Section 313)

- 1. TRI-listed-chemical-specific production waste Institutional Change
 - List of TRI-covered chemicals expand;
 - Reporting threshold criteria change
- 2. Descriptions on pollution prevention measures

Establishment-chemical-year-level data on,

 \checkmark Production Waste = Released + Recycled + Treated + Energy Recovery

Waste Managed

Measures to reduce pollutants at the source (e.g., substituting materials, modifying production methods)

Our selection of chemicals (after extensive checks on institutional changes over 20 yrs)

- (i) covered by the TRI program
- (ii) with constant reporting criteria during 1997-2017

 \Rightarrow Primarily focus on PM₁₀ \bigcirc Summary statistics

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2023

7/31

National Establishment Time Series (NETS)

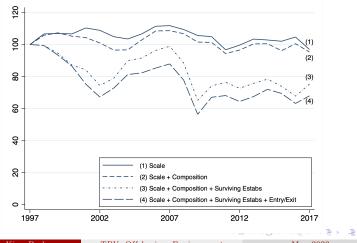
- Establishment identifiers matched to TRI facilities
- Establishment Characteristics (employment, sales, industry, location, trade)
- \Rightarrow TRI-NETS matched establishments in manufacturing (1997-2017)
 - (i) top industries in pollution emissions: SIC 28, 33 + shares + trends
 - (ii) substantial variation in pollution emissions

Wharton Research Data Services (WRDS)

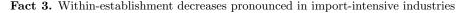
- Companies filing with the US SEC
- Subsidiary Data: Global parent and subsidiary information

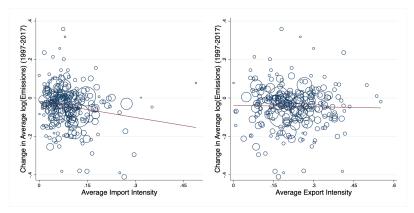
International Trade Data

- Historical Tariff Rates of U.S. trading partners (Pierce and Schott, 2016)
- UNComtrade (US Imports from China and other countries)


Stylized Facts

Decomposition Exercise


Scale + Composition + Surviving Establishments + Entry/Exit


Fact 2. Aggregate decline in emissions driven by surviving establishments

9/31

Stylized Facts

Trade status divided by value added

Choi, Hyun, Kim, Park

ъ

Outline

2 Empirical Strategy

6 Conclusion

Identification: Pierce and Schott (2016)

The US granted the Permanent Normal Trade Relations (PNTR) to China in 2001 \rightarrow China's access to low NTR tariff rates applied to WTO members with certainty

- US set non-NTR rates to imports from non-market economies
- China gained access to NTR rates based on annual renewals by Congress

Magnitude of the shock,

 $NTR \ Gap_i = Non \ NTR \ Rate_i - NTR \ Rate_i$

- $NTR \ Rate_i$: MFN tariff rate in industry *i* (average 4% in 1999)
- Non NTR Rate_i: Potential non-NTR rate in industry i (average 37% in 1999)

Identification: Pierce and Schott (2016)

The US granted the Permanent Normal Trade Relations (PNTR) to China in 2001 \rightarrow China's access to low NTR tariff rates applied to WTO members with certainty

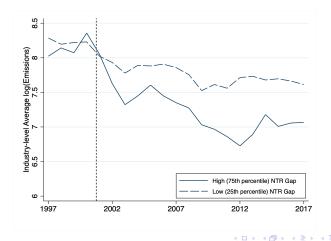
- US set non-NTR rates to imports from non-market economies
- China gained access to NTR rates based on annual renewals by Congress

Magnitude of the shock,

 $NTR \ Gap_i = Non \ NTR \ Rate_i - NTR \ Rate_i$

- $NTR \ Rate_i$: MFN tariff rate in industry *i* (average 4% in 1999)
- Non NTR Rate_i: Potential non-NTR rate in industry i (average 37% in 1999)

 \checkmark Higher NTR Gap \iff Greater \Downarrow of Trade Policy Uncertainty \iff Easier access to Chinese intermediate goods; Greater import competition from China


Variation in NTR Gap is mainly driven by rates set in 1930 (Smoot-Hawley Tariff Act) \Rightarrow Good for identification

Choi, Hyun, Kim, Park

Research Design

Difference-in-Differences

- First difference: establishments in high versus low-NTR Gap industries
- Second difference: years before and after 2001 (post-PNTR of China)

Empirical Specification

Baseline

 $\mathbf{y}_{p,t} = \beta_0 + \frac{\beta_1 NTR}{Gap_i} \times Post_t + \delta Z_i \times Post_t + \gamma X_{i,t} + \eta_p + \eta_{c,t} + \varepsilon_{p,t}$

- $y_{p,t}$: log of emissions from establishment p in industry i in year t
- NTR Gap_i: Non NTR Rate_i NTR Rate_i
- $Post_t$: indicator for post-PNTR

Empirical Specification

Baseline

 $\mathbf{y}_{p,t} = \beta_0 + \frac{\beta_1 NTR}{Gap_i} \times Post_t + \delta Z_i \times Post_t + \gamma X_{i,t} + \eta_p + \eta_{c,t} + \varepsilon_{p,t}$

- $y_{p,t}$: log of emissions from establishment p in industry i in year t
- NTR Gap_i: Non NTR Rate_i NTR Rate_i
- *Post_t*: indicator for post-PNTR
- Controls: industry-specific time-invariant (Z_i) and time-varying $(X_{i,t})$ characteristics
 - Industry characteristics (capital-, skill-intensities, NTR rate)
 - Chinese trade policy (import tariffs, production subsidies)
- Establishment fixed effects, county-by-year fixed effects
- Standard errors two-way clustered at the industry and the county level

Empirical Specification

Baseline

 $\mathbf{y}_{p,t} = \beta_0 + \frac{\beta_1 NTR}{Gap_i} \times Post_t + \delta Z_i \times Post_t + \gamma X_{i,t} + \eta_p + \eta_{c,t} + \varepsilon_{p,t}$

- $y_{p,t}$: log of emissions from establishment p in industry i in year t
- NTR Gap_i: Non NTR Rate_i NTR Rate_i
- *Post*_t: indicator for post-PNTR
- Controls: industry-specific time-invariant (Z_i) and time-varying $(X_{i,t})$ characteristics
 - Industry characteristics (capital-, skill-intensities, NTR rate)
 - Chinese trade policy (import tariffs, production subsidies)
- Establishment fixed effects, county-by-year fixed effects
- Standard errors two-way clustered at the industry and the county level

Identifying assumption

Industries do not show differential trends in emissions in the pre-shock period

 \rightarrow Assess parallel trends

Outline

Data and Descriptives

2 Empirical Strategy

Mechanisms

6 Conclusion

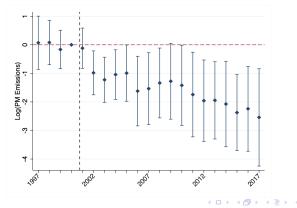
◆□▶ ◆□▶ ◆目≯ ◆日≯ 三日日 のへで

Results: Baseline

 \checkmark PNTR caused a within-establishment decrease in pollution emissions

	(1)	(2)	(3)	(4)			
	Log(PM Emissions)						
$\mathbf{Post}_t \!\times\! \mathbf{NTR} \operatorname{Gap}_{i,99}$	-1.161^{***} (0.428)	-1.049** (0.422)	-1.031^{**} (0.425)	-1.191^{***} (0.387)			
$\mathrm{NTR}_{i,t}$			-0.019 (0.034)	-0.008 (0.036)			
MFA $Exposure_{i,t}$			-0.011 (0.016)	-0.009 (0.016)			
$\text{Post}_t \times \text{Log}(\text{NP}_{i,95}/\text{Emp}_{i,95})$				0.305^{**} (0.118)			
$\text{Post}_t \times \text{Log}(\mathbf{K}_{i,95}/\text{Emp}_{i,95})$				$0.050 \\ (0.054)$			
$\text{Post}_t \times \Delta\text{Chinese } \text{Tariff}_i$				-0.740 (0.459)			
$\text{Post}_t \times \Delta \text{Chinese Subsidies}_i$				-33.097 (27.109)			
Establishment FE	\checkmark	~	\checkmark	~			
Year FE	\checkmark	-	-	-			
County x Year FE	-	\checkmark	\checkmark	\checkmark			
Observations	46753	46753	46753	46753			

Choi, Hyun, Kim, Park


Results: Dynamic Treatment Effects

$$\mathbf{y}_{p,t} = \beta_0 + \sum_t \frac{\beta_t}{\mathbbm{1}\{year = t\}} \times NTR \, Gap_i + \sum_t \delta_t \mathbbm{1}\{year = t\} \times Z_i + \gamma X_{i,t} + \eta_p + \eta_{c,t} + \varepsilon_{i,t}$$

Results: Dynamic Treatment Effects

$$\mathbf{y}_{p,t} = \beta_0 + \sum_t \frac{\beta_t}{\mathbbm{1}\{year = t\}} \times NTR \, Gap_i + \sum_t \delta_t \mathbbm{1}\{year = t\} \times Z_i + \gamma X_{i,t} + \eta_p + \eta_{c,t} + \varepsilon_{i,t}$$

- \checkmark PNTR caused a within-establishment decrease in pollution emissions
 - No evidence of pre-existing trends; Persistent and increasingly negative effects

Robustness Exercises

- Control for NAFTA
 Results: DID Results: Dynamic
- Focus on different sample periods ▶ Results: DID ▶ Results: 1995-2017 ▶ Results: 1995-2006 ▶ Results: 1997-2006
- Exclude outliers Results: DID
- Exclude dominant industries (SIC 28, 33)
 Results: DID ▶ Shares
- Apply various weighting schemes
 Results: DID
- and many others. Results

Choi, Hyun, Kim, Park

Results: Emission Intensity

- \checkmark PNTR caused a within-establishment decrease in pollution emissions
 - Is this driven by the extensive margin of establishment exits? No
 - (a) Continuing establishments
 Results
 - (b) Probability of establishment survivals doesn't respond to PNTR
 Results
 - Is this driven by the intensive margin of establishments reducing production scale, or by a reduction in pollution emission intensity? Emission intensity!
 - (a) Emission Intensity **Presults**

 \Rightarrow PNTR caused a within-establishment decrease in pollution emissions mainly through a decline in pollution emission intensity

Results: Heterogeneous Treatment Effects

- \checkmark PNTR caused a within-establishment decrease in pollution emissions
 - Any differential responses by establishment type? (\Rightarrow Triple Diff-in-Diffs)
 - Larger decline: (i) have higher import-intensity; (ii) face tough environmental regulations; (iii) operate in upstream industries; (iv) belong to multi-sector firms

	(1)	(2)	(3)	(4)	(5)	(6)		
	Log(PM Emissions)							
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i, {}^{99}}$	-0.221	-1.090***	0.350	-2.392	-1.252**	4.611		
	(0.969)	(0.393)	(0.887)	(1.751)	(0.629)	(5.360)		
$\text{Post}_t \times \text{NTR Gap}_{i,99}$	-4.452*					-10.944**		
\times Import Intensity $_{f,97}$	(2.365)					(3.081)		
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i,99}$		-2.316***				-3.995***		
$\times Nonattainment_{C,95-97}$		(0.772)				(0.986)		
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i, 99}$			-2.187**			-3.172**		
\times Upstream _{<i>i</i>,97}			(0.959)			(1.596)		
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i,99}$				-0.105		-2.934**		
$\times \text{Log}(\text{Num. 4-digit Sectors}_{f,97})$				(0.486)		(1.355)		
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i,99}$					-0.454	-5.922		
\times Export Intensity _{f,97}					(1.358)	(4.367)		
Establishment FE	~	~	~	~	~	~		
County x Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Controls Observations	17373	37763	37701	√ 37763	28347	15611		
Observations	1/3/3	37763	37701	37763	28347	15611		

Full Result

ults: Emission Intensity

esults: Environment Friendly Pra

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2023

20/31

Summary and Discussion

Main Results

PNTR caused a within-establishment decrease in pollution emissions

Disproportionately larger effects for establishments that,

- (a) have within-firm global sourcing networks;
- operate in upstream industries; (b)
- face tough environmental regulations; (c)
- (d) belong to multi-sector firms

Potential Mechanism

 $PNTR \implies Relocation$ (or offshoring) of high-polluting production to China?

✓ Pollution Offshoring Hypothesis

Outline

Data and Descriptives

2 Empirical Strategy

3 Main Results

6 Conclusion

◆□▶ ◆□▶ ◆目≯ ◆日≯ 三日日 のへで

Mechanisms

Testing the Pollution Offshoring Hypothesis (POH)

Trade-induced *relocation of high-polluting production* from developed to developing countries with laxer environmental regulations (Copeland and Taylor, 2004, Copeland et al., 2022)

 \checkmark PNTR \implies Relocation (or offshoring) of high-polluting production to China?

Mechanisms

Testing the Pollution Offshoring Hypothesis (POH)

Trade-induced relocation of high-polluting production from developed to developing countries with laxer environmental regulations (Copeland and Taylor, 2004, Copeland et al., 2022)

 \checkmark PNTR \implies Relocation (or offshoring) of high-polluting production to China?

Measurements

Challenges in constructing a comprehensive measure of relocating (or offshoring) production (Monarch et al. 2011)

 \checkmark Relocation of Tasks

Source task outputs from China

Perform tasks through subsidiaries in China

 \checkmark Relocation of *Dirty* Tasks

Inferred from pre-shock pollution intensities of establishments/industries

Mechanisms: Sourcing from China

- \checkmark PNTR caused a within-establishment increase in import activities
- \checkmark Larger effects on establishments that initially
 - faced tough environmental regulations
 - engaged in dirty production (high emission intensity)

	(1)	(2)	(3)
	Import	Import	Import
$Post_t \times NTR Gap_{i,99}$	0.288^{**}	0.154	1.183***
$03t_i \times 1011t \operatorname{Gap}_{i,99}$	(0.119)	(0.1154)	(0.444)
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i,99} imes \operatorname{Nonattainment}_{c,95-97}$		$0.731^{***} \\ (0.278)$	
$\text{ost}_t \times \text{NTR Gap}_{i,99} \times \text{Log}(\text{PM Emissions/Sales}_{p,97})$			0.090^{**} (0.040)
stablishment FE	~	\checkmark	~
ounty x Year FE	\checkmark	\checkmark	\checkmark
Controls	\checkmark	\checkmark	\checkmark
Iargin	Intensive	Intensive	Intensive
bservations	13760	13760	9164

Choi, Hyun, Kim, Park

Mechanisms: Subsidiaries (China)

 \checkmark PNTR caused an increase in the number of subsidiaries in China

▶ China vs. Other Countries

 \checkmark Larger effects on establishments that initially

- faced tough environmental regulations
- engaged in dirty production (high emission intensity)

	$^{(1)}_{Z = Num.}$	(2) Subsid. in China
	I(Z > 0)	Log(Z)
Post _t × NTR Gap _{i.99}	0.161	0.735
	(0.200)	(0.871)
$\operatorname{Post}_t \times \operatorname{NTR} \operatorname{Gap}_{i,99} \times \operatorname{Nonattainment}_{\mathcal{C},95-97}$	0.440	5.169***
1050 X X X X X Cup _{1,99} X X Curter C,95-97	(0.461)	(1.102)
Establishment FE	~	~
County x Year FE	~	\checkmark
Controls	~	\checkmark
Observations	8346	3067
	(3)	(4)
	I(Z > 0)	Log(Z)
$Post_t \times NTR Gap_{i,99}$	0.872	12.871***
<i>L</i> ////	(0.940)	(3.946)
Part XNTP Car XI (PM Emission /Salar)	0.057	0.938***
$\operatorname{Post}_t \times \operatorname{NTR} \operatorname{Gap}_{i,99} \times \operatorname{Log}(\operatorname{PM} \operatorname{Emissions/Sales}_{p,97})$		
	(0.080)	(0.323)
Establishment FE	~	~
County x Year FE	~	\checkmark
Controls	~	\checkmark
Observations	4399	1372

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2023

Mechanisms

Testing the Pollution Offshoring Hypothesis (POH)

Trade-induced *relocation of high-polluting production* from developed to developing countries with laxer environmental regulations (Copeland and Taylor, 2004, Copeland et al., 2022)

 \checkmark PNTR \implies Relocation (or offshoring) of high-polluting production to China!

Mechanisms

Testing the Pollution Offshoring Hypothesis (POH)

Trade-induced *relocation of high-polluting production* from developed to developing countries with laxer environmental regulations (Copeland and Taylor, 2004, Copeland et al., 2022)

 \checkmark PNTR \implies Relocation (or offshoring) of high-polluting production to China!

Do we observe consistent patterns at the aggregate level?

 \checkmark PNTR \implies Increase in imports of high-polluting production from China?

Mechanisms

Testing the Pollution Offshoring Hypothesis (POH)

Trade-induced *relocation of high-polluting production* from developed to developing countries with laxer environmental regulations (Copeland and Taylor, 2004, Copeland et al., 2022)

 \checkmark PNTR \implies Relocation (or offshoring) of high-polluting production to China!

Do we observe consistent patterns at the aggregate level? \checkmark PNTR \Longrightarrow Increase in imports of high-polluting production from China?

Measurements

 \checkmark Imports

Product-level US imports from China and other trading partners

 \checkmark Imports of *Dirty* Goods

Inferred from pre-shock pollution intensities of industries

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mechanisms: High-Polluting Product Imports (China)

- \checkmark PNTR caused an increase in the share of imports from China
- \checkmark Larger effects on products with initially high-pollution intensities

	(1) Share of	(2) US Imports	(3) from China
$Post_t \!\times\! NTR \operatorname{Gap}_{i,99}$	0.092^{**} (0.043)	0.090^{**} (0.040)	0.048 (0.052)
$\textbf{Post}_t {\times} \textbf{NTR } \textbf{Gap}_{i,99} {\times} \textbf{Log}(\textbf{PM EmissionsPM}/\textbf{Sales}_{i,97})$		0.074^{**} (0.036)	
$\textbf{Post}_t {\times} \textbf{NTR } \textbf{Gap}_{i,99} {\times} \textbf{Upstream}_{i,97}$			$0.078 \\ (0.069)$
Product FE	\checkmark	\checkmark	\checkmark
Year FE	\checkmark	\checkmark	\checkmark
Controls	\checkmark	\checkmark	\checkmark
Observations	198716	170020	197905

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Other Mechanisms

Clean Technology Adoption

Clean-up of manufacturing (1987-2001) explained by technology adoption (Levinson, 2009) Trade-induced technology adoption or innovation (Bloom et al. 2016)

 \checkmark PNTR \implies Clean technology adoption?

Measurements

 \checkmark Implementation of Pollution Prevention efforts \bigcirc More on P2

- material substitutions and modifications
- product modifications, process and equipment modifications

Other Mechanisms

Clean Technology Adoption

Clean-up of manufacturing (1987-2001) explained by technology adoption (Levinson, 2009) Trade-induced technology adoption or innovation (Bloom et al. 2016)

 \checkmark PNTR \implies Clean technology adoption?

Measurements

- \checkmark Implementation of Pollution Prevention efforts \bigcirc More on P2
 - material substitutions and modifications
 - product modifications, process and equipment modifications

Results

 \checkmark No significant effect on the PNTR-induced clean tech adoption \bigcirc Results

Outline

Data and Descriptives

2 Empirical Strategy

3 Main Results

4 Mechanisms

◆□▶ ◆□▶ ◆目≯ ◆日≯ 三日日 のへで

Conclusion

We study long-run environmental consequences of trade shocks in US manufacturing and explore mechanisms through which firms adjust

Using the US granting PNTR to China in early 2000s as a shock,

- 1. Significant and persistent within-establishment declines in pollution emissions
- 2. Strong evidence supporting the pollution offshoring hypothesis

Conclusion

We study long-run environmental consequences of trade shocks in US manufacturing and explore mechanisms through which firms adjust

Using the US granting PNTR to China in early 2000s as a shock,

- 1. Significant and persistent within-establishment declines in pollution emissions
- 2. Strong evidence supporting the pollution offshoring hypothesis

Implications of our work

- What happens to emissions in China? Can go either way.
- Concerning if improvements in environment in the US through the trade channel are at the expense of increasing pollution in other countries
- New waves of MFNs implementing ESG policies to subsidiaries, sourcing partners \Rightarrow Trade can contribute to bridging the cross-country gaps in emissions

Thank you!

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2023

Appendix

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2023

Appendix

Changes in TRI Program

Time	Changes
Dec 1993	21 Chemicals and 2 Chemical Categories added
Nov 1994	286 Chemicals added
May 1997	Seven Industry Sectors (metal and coal mining facilities, electric power genera- tors, commercial hazardous waste treatment operations, solvent recovery facili- ties, petroleum bulk terminals, and wholesale chemical distributors) added
Oct 1999	7 PBT Chemicals and 2 chemical categories added
Jan 2001	Lead and Lead Compounds designated as PBT chemicals
Dec 2006	TRI Burden Reduction Rule allowed the expansion of eligibility for using Form A
May 2007	TRI Dioxin Toxic Equivalency Rule
April 2009	Omnibus Appropriations Act restored the TRI reporting requirements that were effective before 2006
Nov 2010	National Toxicology Program Chemicals added
April 2012	Increasing Tribal Participation in the TRI Program
Nov 2015	1-Bromopropane added
Nov 2016	Hexabromocyclododecane (HBCD) Category added

▲ Back

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Summary Statistics

Establishment-Year Level						
Variable	Obs.	Mean	Std. Dev.	P10	P50	P90
PM Emissions _{p,t} (lb)	46753	50838	450609	10	719	36605
NTR Gap _{1,99}	46753	0.294	0.119	0.138	0.304	0.424
NTR _{i,t}	46753	2.480	2.037	0.000	2.342	5.162
MFA Exposure _{i.t}	46753	0.098	1.493	0.000	0.000	0.000
$NP_{i,95}/Emp_{i,95}$	46753	0.281	0.096	0.176	0.259	0.435
$K_{i,95} / Emp_{i,95}$	46753	137	150	37	81	324
Δ Chinese Tariff _i	46753	-0.097	0.083	-0.175	-0.077	-0.029
Δ Chinese Subsidies _i	46753	-0.000	0.002	-0.002	-0.000	0.001
Import Intensity (Unconditional) f.97	37763	0.135	0.203	0.000	0.028	0.404
Import Intensity f,97	17373	0.250	0.218	0.034	0.196	0.514
Export Intensity (Unconditional) f.97	37763	0.276	0.331	0.000	0.132	0.965
Export Intensity f,97	28347	0.346	0.337	0.033	0.202	1.000
Firm Employment f.97	37763	21655	76745	82	1870	41640
Num. Establishment f. 97	37763	164	472	1	19	402
Num. 4-digit Sectors f, 97	37763	24	37	1	8	73
Age _{p,97}	37763	57	42	9	52	110
PM Emissions _{p,97}	37763	59213	514114	0	254	38195
PM Emissions $p_{,97}$ /Sales $p_{,97}$ (lb/million dollar)	37763	3145.4	38071.1	0.0	5.1	960.4
I(Num. P2 _{p,95-97} >0)	37763	0.282	0.450	0	0	1
I(Num. P2 Clean-Tech _{p,95-97} >0)	37763	0.146	0.353	0	0	1
Establishment Employment $p_{,97}$	37763	477	1050	34	185	1000
Establishment Sales _{p,97} (million dollar)	37763	113	286	4	29	239
CAA Nonattainment $c_{,95-97}$	37763	0.118	0.323	0	0	1

▲ Back

Choi, Hyun, Kim, Park

May 2023

Additional Summary Statistics

(A) Indust	ry-Yea	Level				
Variable	Obs.	Mean	Std. Dev.	P10	P50	P90
NTR Gap _{1,99}	5008	0.319	0.131	0.138	0.336	0.450
NTR; +	5008	2.457	2.658	0.000	2.122	5.067
MFA Exposure i,t	5008	0.432	3.349	0.000	0.000	0.000
(B) Ind	ustry L	evel				
Variable	Obs.	Mean	Std. Dev.	P10	P50	P90
NTR Gap _{1,99}	287	0.329	0.142	0.135	0.339	0.473
NP _{1,95} /Emp _{1,95}	287	0.295	0.115	0.173	0.266	0.452
$K_{i,95}/Emp_{i,95}$	287	94	102	27	60	218
∆Chinese Tariff;	287	-0.122	0.105	-0.264	-0.092	-0.020
Δ Chinese Subsidies _i	287	-0.000	0.002	-0.002	-0.000	0.001
(C) Firm Level: A Tota	l of 366	6 Unbala	nced Firms			
Variable	Obs.	Mean	Std. Dev.	P10	P50	P90
Import Intensity (Unconditional) f.97	2294	0.096	0.211	0.000	0.000	0.346
Import Intensity f or	703	0.289	0.275	0.029	0.200	0.762
Export Intensity (Unconditional) f,97	2294	0.337	0.387	0.000	0.144	1.000
Export Intensity f, 97	1485	0.501	0.374	0.049	0.422	1.000
Firm Employment f.97	2294	5566	70366	40	388	8636
Num. Establishment f, 97	2294	50	407	1	4	84
Num. 4-digit Sectors f,97	2294	9	17	1	2	24
(D) Establishment Level: A Tota	l of 494	6 Unbala	nced Establ	ishments		
Variable	Obs.	Mean	Std. Dev.	P10	P50	P90
PM Emissions _{p,97}	3858	41262	472714	0	15	17422
PM Emissions $p'_{,97}$ /Sales $p_{,97}$ (lb/million dollar)	3858	2354.7	33172.9	0.0	0.6	577.9
$I(Num. P2_{70.05-07}>0)$	3858	0.260	0.439	0	0	1
I(Num. P2 Clean-Tech $p_{,95}$ — $_{97}$ >0) Establishment Employment $p_{,97}$	3858	0.130	0.336	0	0	1
Establishment Employment p,97	3858	410	916	28	160	900
Establishment Sales _{p,97}	3858	91	245	4	25	189
$Age_{p,97}$	3858	55	42	9	50	109
	unty Le	vel				
Variable	Obs.	Mean	Std. Dev.	P10	P50	P90
CAA Nonattainment _{C,95} -97	841	0.045	0.208	0	0	0

Choi, Hyun, Kim, Park

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Additional Summary Statistics

Compare Final Sample with NETS Manufacturing

(.	A) Est		ent Level (1	.997)				
	1. Final Sample			2. NETS (Manufacturing			ng)	
Variable	Obs.	Mean	Std. Dev.	P50	Obs.	Mean	Std. Dev.	P50
Establishment Employment _{p,97}	3858	410	916	160	748519	31	174	5
Establishment $Sales_{p,97}$	3858	91	245	25	748519	5	47	0.4
(B) Firm Level (1997)								
	1. Final Sample			1. Final Sample 2. NETS (Manufacturin)			ng)	
Variable	Obs.	Mean	Std. Dev.	P50	Obs.	Mean	Std. Dev.	P50
Import Intensity (Unconditional) f.97	2294	0.096	0.211	0.000	649439	0.008	0.086	0.000
Import Intensity f.97	703	0.289	0.275	0.200	8496	0.648	0.387	0.857
Export Intensity (Unconditional) f.97	2294	0.337	0.387	0.144	649439	0.079	0.262	0.000
Export Intensity f.97	1485	0.501	0.374	0.422	58484	0.874	0.261	1.000
Firm Employment f.97	2294	5566	70366	388	649439	74	4551	5
Num. Establishment $f_{,97}$	2294	50	407	4	649439	2	47	1
Num. 4-digit Sectors f.97	2294	9	17	2	649439	1	2	1

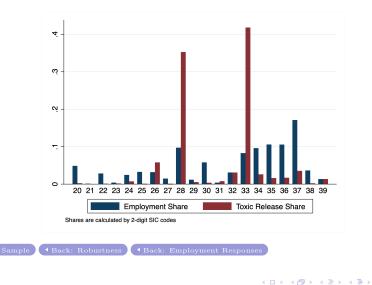
▲ Back

Choi, Hyun, Kim, Park

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Appendi

Top and Bottom 5 Industries in PM_{10} Emissions

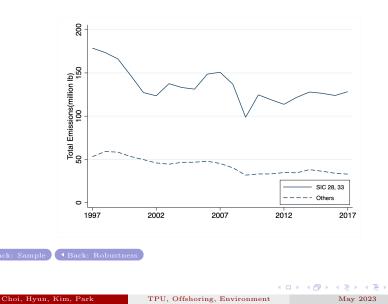

	Top 5 Industries in PM_{10} Emissions	Bottom 5 Industries in PM_{10} Emissions				
3313	Electrometallurgical Products, except Steel	2254	Knit Underwear and Nightwear Mills			
3321	Gray and Ductile Iron Foundries	2591	Household Furniture, N.E.C.			
2816	Inorganic Pigments	2047	Dog and Cat Food			
2819	Industrial Inorganic Chemicals, N.E.C.	3489	Ordnance and Accessories, N.E.C.			
3312	Steel Works, Blast Furnaces, and Rolling Mills	2043	Cereal Breakfast Foods			

▲ Back

◆□▶ ◆□▶ ◆目≯ ◆日≯ 三日日 のへで

Appendix

Employment and PM_{10} Emissions Shares by SIC Industry


Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2023

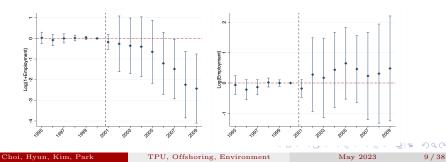
Appendi

PM_{10} Emissions Trends

8 / 38

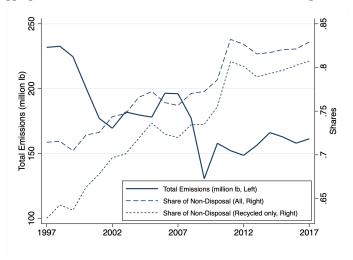
Appendix

Results: PNTR and Employment Responses


 \checkmark Results not driven by the selection of sample to those that satisfy the

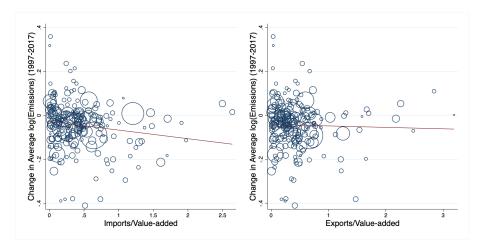
TRI-reporting criteria
Back: Emission Intensity

- Establishments that satisfy TRI-reporting criteria (>10 workers) exhibit employment decline w.r.t. PNTR in general.
- No employment effect once we restrict establishments to those with positive emissions in the initial period.
- Establishments that generate positive emissions are fundamentally different from those with \Rightarrow zero emission.


Figure: Dynamic Treatment Effects of Employment at the Establishment Level: (i) Full NETS-TRI Matched Establishments (Left);

(ii) NETS-TRI Matched Establishments with Positive Initial Emissions (Right)

Stylized Facts


Fact 1. Aggregate decline in emissions with increased waste management efforts

ъ

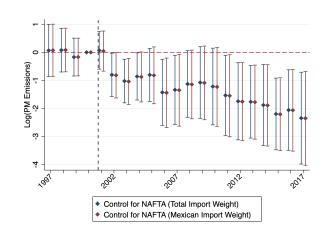
Appendix

Stylized Fact 3 with Industry Trade Intensity

▲ Back

Control for NAFTA Back

	(1)	(2)
		Emissions)
$Post_t \times NTR Gap_{i,99}$	-1.016***	-1.024***
-,	(0.356)	(0.379)
NTR _{i,t}	-0.027	-0.026
-,-	(0.036)	(0.035)
MFA Exposure _{i.t}	-0.003	-0.005
-,-	(0.016)	(0.016)
$Post_t \times Log(NP_{i,95}/Emp_{i,95})$	0.235**	0.266**
· · · · · · · · · · · · · · · · · · ·	(0.115)	(0.116)
$\text{Post}_t \times \text{Log}(K_{i,95}/\text{Emp}_{i,95})$	0.080	0.073
-,,	(0.055)	(0.057)
Post _{t} × Δ Chinese Tariff _{i}	-0.995**	-0.883*
υ v	(0.469)	(0.463)
$Post_t \times \Delta Chinese Subsidies_i$	-31.365	-31.691
	(27.075)	(27.074)
Post _t × Δ NAFTA Tariff _i (Tot.Imp.Wt)	5.205**	
	(2.537)	
$Post_t \times \Delta NAFTA Tariff_i (MEX.Imp.Wt)$		3.074 (2.191)
Establishment FE	~	(1001)
County x Year FE	\checkmark	\checkmark
Observations	46644	46644


Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで May 2023

Robustness Exercises

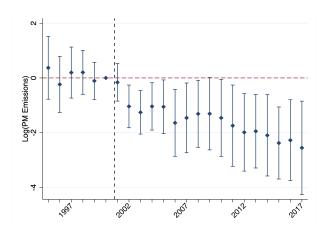
Control for NAFTA

Choi, Hyun, Kim, Park

з

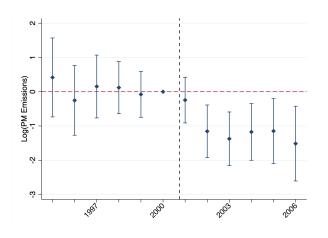
Robustness Exercises

Alternative Sample Periods Back


	(1)	(2)	(3)	(4)
		Log(1	PM Emissio	ns)
$Post_t \times NTR Gap_{i,99}$	-1.321***	-0.979***	-1.092^{***}	-1.222***
	(0.375)	(0.339)	(0.343)	(0.382)
NTR _{i,t}	-0.012	-0.014	-0.017	-0.008
, ,	(0.030)	(0.033)	(0.030)	(0.036)
MFA $Exposure_{i,t}$	-0.005	-0.005	-0.003	-0.009
	(0.016)	(0.011)	(0.011)	(0.016)
$\text{Post}_t \times \text{Log}(\text{NP}_{i,95}/\text{Emp}_{i,95})$	0.314***	0.087	0.064	0.306***
1,557 11,557	(0.110)	(0.121)	(0.116)	(0.114)
$Post_t \times Log(K_{i,95}/Emp_{i,95})$	0.043	0.027	0.023	0.043
5 - 1,50, - 1,50,	(0.058)	(0.042)	(0.048)	(0.052)
$\operatorname{Post}_t \times \Delta \operatorname{Chinese} \operatorname{Tariff}_i$	-0.629	-0.552	-0.436	-0.756*
5 6	(0.476)	(0.428)	(0.449)	(0.457)
$\operatorname{Post}_t \times \Delta \operatorname{Chinese} \operatorname{Subsidies}_i$	-37.084	-10.981	-11.668	-29.125
υ <i>μ</i>	(30.062)	(22.370)	(24.058)	(27.151)
Establishment FE	~	~	~	\checkmark
County x Year FE	\checkmark	\checkmark	\checkmark	\checkmark
Period	95 - 17	97-06	95-06	97-17 (drop 07-09)
Observations	51187	23071	27498	39913

Choi, Hyun, Kim, Park

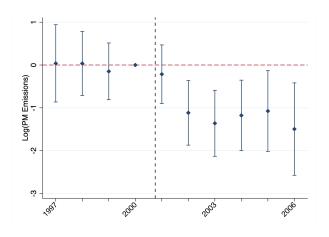
TPU, Offshoring, Environment


◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで May 2023

Alternative Sample Periods
Back

з

Alternative Sample Periods (Back)



< E

・ロト ・回ト ・ヨト

포네님

Alternative Sample Periods (Back)

Robustness Exercises

Exclude Outliers Back

	(1)	(2)	(3)
		g(PM Emiss	ions)
$Post_t \times NTR Gap_{i,99}$	-1.152***	-1.044***	-1.102***
-,	(0.371)	(0.400)	(0.401)
NTR _{i,t}	0.012	0.008	-0.008
.,.	(0.033)	(0.036)	(0.036)
MFA Exposure _{i.t}	-0.010	-0.009	-0.006
	(0.014)	(0.017)	(0.017)
$Post_t \times Log(NP_{i,95}/Emp_{i,95})$	0.222*	0.359***	0.294**
	(0.116)	(0.128)	(0.128)
$Post_t \times Log(K_{i,95}/Emp_{i,95})$	0.041	0.057	0.056
1 1,001 1,001	(0.053)	(0.058)	(0.058)
$\operatorname{Post}_t \times \Delta \operatorname{Chinese} \operatorname{Tariff}_i$	-0.489	-0.705	-0.915
с <u></u>	(0.498)	(0.584)	(0.573)
$\operatorname{Post}_t \times \Delta \operatorname{Chinese} \operatorname{Subsidies}_i$	-45.713*	-32.888	-34.000
	(26.913)	(27.369)	(26.585)
Establishment FE	\checkmark	~	~
County x Year FE	\checkmark	\checkmark	\checkmark
Drop Extreme	Emissions	Firm Size	Estab. Size
Observations	43925	44012	44260

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで May 2023

Appendi

Robustness Exercises

Exclude SIC 28, 33

	(1)	(2)
	Log(PM	Emissions)
$Post_t \times NTR Gap_{i,99}$	-3.379**	-1.334***
	(1.397)	(0.441)
NTR _{i,t}	-0.099	-0.017
-,-	(0.146)	(0.039)
MFA $Exposure_{i,t}$	0.198	-0.019
- , -	(0.475)	(0.015)
$Post_t \times Log(NP_{i,95}/Emp_{i,95})$	0.576***	0.116
	(0.191)	(0.150)
$\text{Post}_t \times \text{Log}(K_{i,95}/\text{Emp}_{i,95})$	0.161	0.010
2,001 2,001	(0.204)	(0.066)
$\operatorname{Post}_t \times \Delta \operatorname{Chinese} \operatorname{Tariff}_i$	-3.547*	-0.448
- v	(1.891)	(0.557)
$\operatorname{Post}_t \times \Delta \operatorname{Chinese} \operatorname{Subsidies}_i$	45.575	-17.617
· · ·	(196.566)	(22.921)
Establishment FE	~	~
County x Year FE	\checkmark	\checkmark
Sample	SIC2: 28,33	SIC2: Other
Observations	9882	31414

May 2023

Appendix

Robustness Exercises

Apply Various Weighting Schemes Back

	(1)	(2)	(3)	
	Log(PM Emissions)		Log(Toxic-Wt. PM)	
$Post_t \times NTR Gap_{i,99}$	-2.347***	-1.652***	-3.582**	
,	(0.558)	(0.589)	(1.566)	
NTR _{i.t}	-0.047	-0.009	0.259**	
0,0	(0.063)	(0.064)	(0.105)	
MFA $Exposure_{i,t}$	-0.054***	-0.012	-0.014	
- 0,0	(0.011)	(0.021)	(0.018)	
$Post_t \times Log(NP_{i.95}/Emp_{i.95})$	0.670^{**}	0.232	0.049	
<i>i i</i> (<i>i</i> , <i>i</i> , <i>i</i>), <i>i</i> (<i>i</i> , <i>i</i>),	(0.328)	(0.172)	(0.324)	
$\operatorname{Post}_t \times \operatorname{Log}(K_{i,95}/\operatorname{Emp}_{i,95})$	0.180*	0.064	0.197	
	(0.104)	(0.081)	(0.169)	
$\operatorname{Post}_t \times \Delta \operatorname{Chinese} \operatorname{Tariff}_i$	-1.293	-0.836	2.170	
t t	(1.135)	(0.534)	(2.025)	
$Post_t \times \Delta Chinese Subsidies_i$	-99.705	-49.568	-134.935**	
5	(79.902)	(34.185)	(63.394)	
Establishment FE	\checkmark	\checkmark	\checkmark	
County x Year FE	\checkmark	\checkmark	\checkmark	
Weights	Init. Release	Init. Employment	Init. Release	
Observations	21783	37763	21573	

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2023

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Robustness Exercises

Control Upstream-Specific Time Trends

	(1)	(2)	(3)	(4)
	Log(PM Emissions)			
$Post_t \times NTR Gap_{i,99}$	-1.232***	-1.245***	-1.221***	-1.407***
	(0.431)	(0.437)	(0.439)	(0.395)
$\mathrm{NTR}_{i,t}$			-0.025	-0.012
			(0.035)	(0.036)
MFA Exposure _{i.t}			-0.015	-0.013
· · · · ·			(0.017)	(0.017)
$Post_t \times Log(NP_{i,95}/Emp_{i,95})$				0.281**
1,557 11,557				(0.124)
$\mathrm{Post}_t \times \mathrm{Log}(\mathrm{K}_{i,95}/\mathrm{Emp}_{i,95})$				0.051
				(0.058)
$\text{Post}_t \times \Delta\text{Chinese } \text{Tariff}_i$				-0.600
				(0.512)
$\text{Post}_t \times \Delta \text{Chinese Subsidies}_i$				-46.052^{*}
				(27.890)
Establishment FE	\checkmark	\checkmark	\checkmark	\checkmark
Year FE	\checkmark	-	-	-
County x Year FE	-	\checkmark	\checkmark	\checkmark
Upstream x Year FE	\checkmark	\checkmark	\checkmark	\checkmark
Observations	39219	37701	37701	37701

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで May 2023

Robustness Exercises

Accommodate Obs. with Zero Emissions using PPML (Back)

	(1)	(2)	(3)
	PM Emissions		
$Post_t \times NTR Gap_{i,99}$	-2.025**	-2.319***	-2.080***
	(0.830)	(0.701)	(0.753)
NTR _{i,t}	-0.317	-0.052	-0.029
	(0.200)	(0.049)	(0.041)
MFA $Exposure_{i,t}$	-0.009	-0.012	-0.031**
	(0.020)	(0.010)	(0.014)
$\text{Post}_t \times \text{Log}(\text{NP}_{i,95}/\text{Emp}_{i,95})$	-0.677	-0.016	0.474^{*}
<i>t</i> 0, <i>i</i> ,50, <i>i</i> ,50,	(0.763)	(0.236)	(0.254)
$\text{Post}_t \times \text{Log}(K_{i,95}/\text{Emp}_{i,95})$	-0.105	0.048	0.024
t 0(1,93, 11,93)	(0.125)	(0.090)	(0.090)
$Post_t \times \Delta Chinese Tariff_i$	-1.993	-1.349	-1.590
L L L L	(2.300)	(1.344)	(1.001)
$\operatorname{Post}_t \times \Delta \operatorname{Chinese} \operatorname{Subsidies}_i$	-60.606	-64.132*	-73.524***
ι i	(59.351)	(33.692)	(23.867)
Establishment FE	\checkmark	~	~
County x Year FE	\checkmark	\checkmark	\checkmark
Sample	A11	Surviving Estab.	Emission > 0
Observations	118258	94431	46753

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2023

Appendiz

Other Chemicals

Other Chemicals: SO2 and VOC Back

	(1)		
	(1) Log(SO2 Emissions)	(2) Log(VOC Emissions)	
D ()(NED C	-0.388		
$\operatorname{Post}_t \times \operatorname{NTR} \operatorname{Gap}_{i,99}$		-0.151	
	(0.580)	(0.375)	
NTR _{i,t}	0.010	0.008	
	(0.025)	(0.036)	
MFA Exposure _{i.t}	0.009	0.012	
- 0,0	(0.028)	(0.026)	
$Post_t \times Log(NP_{i,95}/Emp_{i,95})$	-0.278	0.282**	
	(0.187)	(0.140)	
$Post_t \times Log(K_{i,95}/Emp_{i,95})$	-0.061	0.087	
$103t_t \times \text{Log}(\mathbf{R}_{i}, 95) \times \text{Linp}_{i}, 95)$	(0.113)	(0.061)	
$Post_t \times \Delta Chinese Tariff_i$	1.990	0.681	
	(1.221)	(0.595)	
$Post_f \times \Delta Chinese Subsidies_i$	46.444	-3.514	
	(36.400)	(18.700)	
Establishment FE	\checkmark	\checkmark	
County x Year FE	\checkmark	\checkmark	
Observations	10567	22036	

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

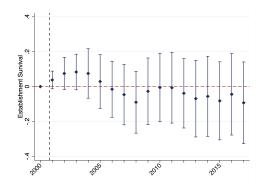
May 2023

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Results: Continuing Establishments

Continuing Establishments

	(1)	(2)	(3)	(4)
	Log(PM Emissions)			
$Post_t \times NTR Gap_{i,99}$	-1.430***	-1.478***	-1.440***	-1.569***
	(0.442)	(0.487)	(0.491)	(0.520)
$NTR_{i,t}$			-0.012	0.003
			(0.041)	(0.044)
MFA Exposure _{i,t}			-0.017	-0.015
			(0.019)	(0.019)
$Post_t \!\times\! \mathrm{Log}(NP_{i,95}/\mathrm{Emp}_{i,95})$				0.196
				(0.157)
$\text{Post}_t \times \text{Log}(\mathbf{K}_{i,95}/\text{Emp}_{i,95})$				0.070
				(0.067)
$\text{Post}_t \times \Delta \text{Chinese } \text{Tariff}_i$				-0.342
				(0.574)
$\text{Post}_t \times \Delta \text{Chinese Subsidies}_i$				-49.783**
				(25.214)
Establishment FE	~	~	~	~
Year FE	\checkmark	-	-	-
County x Year FE	-	\checkmark	\checkmark	\checkmark
Observations	29049	29049	29049	29049


Choi, Hyun, Kim, Park

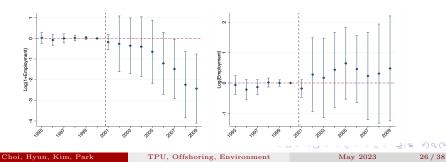
TPU, Offshoring, Environment

May 2023

Results: Establishment Survival

- \checkmark PNTR caused a within-establishment decrease in pollution emissions \bigcirc Back
 - Is this driven by the extensive margin of establishment exits?
 - (b) Probability of establishment survivals doesn't respond to PNTR

Results: PNTR and Employment Responses


 \checkmark Results not driven by the selection of sample to those that satisfy the

TRI-reporting criteria
Back: Emission Intensity

- Establishments that satisfy TRI-reporting criteria (${\geq}10$ workers) exhibit employment decline w.r.t. PNTR in general.
- No employment effect once we restrict establishments to those with positive emissions in the initial period.
- ⇒ Establishments that generate positive emissions are fundamentally different from those with zero emission. ◆ Share of SIC 28, 33

Figure: Dynamic Treatment Effects of Employment at the Establishment Level: (i) Full NETS-TRI Matched Establishments (Left);

(ii) NETS-TRI Matched Establishments with Positive Initial Emissions (Right)

Results: Emission Intensity

- \checkmark PNTR caused a within-establishment decrease in pollution emissions \bigcirc Back
 - Is this driven by the intensive margin of firms reducing production scale?

	(1)	(2)	(3)	(4)
	I	Log(PM Emi	issions/Sale	s)
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i,99}$	-1.743***	-1.621***	-1.595***	-1.635***
,55	(0.514)	(0.597)	(0.544)	(0.535)
NTR _{i,t}			0.013	0.041
0,0			(0.042)	(0.045)
MFA $Exposure_{i,t}$			-0.010	-0.008
			(0.018)	(0.018)
$Post_t \times Log(NP_{i,95}/Emp_{i,95})$				0.312**
2 0 2,507 12,507				(0.155)
$Post_t \times Log(K_{i,95}/Emp_{i,95})$				0.172***
<i>t</i> = (1,55, 11,55)				(0.062)
$ost_{t} \times \Delta Chinese Tariff_{d}$				-0.855
ı i				(0.572)
$Post_t \times \Delta Chinese Subsidies_i$				-74.688**
ι ·				(30.637)
Establishment FE	~	~	~	~
ear FE	\checkmark	-	-	-
ounty x Year FE	-	\checkmark	\checkmark	\checkmark
bservations	46751	46751	46751	46751

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2023

27/38

ELE OQO

Heterogeneous Treatment Effects

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Log(PM Emissions)									
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i,99}$	-0.221 (0.969)	-1.090*** (0.393)	0.350 (0.887)	-2.392 (1.751)	-1.252** (0.629)	-1.588** (0.676)	-1.986 (1.340)	-1.274* (0.688)	-1.664*** (0.421)	4.611 (5.360)
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i,99} imes \operatorname{Import\ Intensity} f_{,97}$	-4.452* (2.365)									-10.944 ^{***} (3.081)
$\operatorname{Post}_t imes$ NTR $\operatorname{Gap}_{i,99}$		-2.316 ^{***} (0.772)								-3.995 ^{***} (0.986)
$\operatorname{Post}_t imes$ NTR $\operatorname{Gap}_{i,99}$			-2.187 ^{**} (0.959)							-3.172 ^{**} (1.596)
$\begin{array}{l} \operatorname{Post}_t \times \operatorname{NTR} \operatorname{Gap}_{i, 99} \\ \times \operatorname{Log}(\operatorname{Num. 4-digit Sectors}_{f, 97}) \end{array}$				-0.105 (0.486)						-2.934 ^{**} (1.355)
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i,99} imes \operatorname{Export Intensity}_{f,97}$					-0.454 (1.358)					-5.922 (4.367)
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i,99} imes \operatorname{Log}(\operatorname{Num. Establishment}_{f,97})$						0.057 (0.179)				0.397 (1.125)
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i,99} imes \operatorname{Log}(\operatorname{Firm} \operatorname{Employment}_{f,97})$							0.076 (0.170)			0.786 (0.860)
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i,99} imes \operatorname{Age}_{p,97}$								-0.002 (0.009)		0.007 (0.010)
$\begin{array}{l} \operatorname{Post}_t\times\operatorname{NTR}\operatorname{Gap}_{i,99}\\ \times\operatorname{I(Num.}\operatorname{P2}_{p,95-97}>0) \end{array}$									0.532 (0.663)	0.977 (0.952)
Establishment FE County x Year FE Controls Observations	17373	37763	37701	37763	28347	37763	37763	37763	37763	15611

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2023

Heterogeneous Treatment Effects: Log(PM Emissions/Sales)

I Back

Post _t ×NTR Gap _{i,99}	Log(PM Emissions/Sales) -0.895
obel Allie Cupi,99	
	(7.233)
Post _t × NTR Gap _{1,99} × Import Intensity $f_{1,97}$	-14.448***
	(4.649)
$\operatorname{Cost}_t \times \operatorname{NTR} \operatorname{Gap}_{i,99} \times \operatorname{Nonattainment}_{c,95-97}$	-3.801**
L	(1.706)
\mathbf{D} St $_t imes$ NTR $\mathbf{Gap}_{i,99} imes$ Upstream $_{i,97}$	-3.841*
ost t XIIII Cup _{1,99} X opsetcum _{1,97}	(2.301)
$\operatorname{Cost}_t \times \operatorname{NTR} \operatorname{Gap}_{i,99} \times \operatorname{Log}(\operatorname{Num. 4-digit Sectors}_{f,97})$	-2.801
	(2.127)
$ost_t \times NTR Gap_{i,99} \times Export Intensity f_{,97}$	-6.305
	(5.472)
$ost_t \times NTR \operatorname{Gap}_{i,99} \times \operatorname{Log}(Num. Establishment_{f,97})$	-1.289
J. J. J.	(1.509)
$\text{Post}_t \times \text{NTR Gap}_{i,99} \times \text{Log}(\text{Firm Employment}_{f,97})$	2.271*
$ost_t \land N \cap Cosp_{i,99} \land Log(F \cap I \cap Enployment_{f,97})$	(1.207)
	(1.201)
$Post_t \times NTR Gap_{i,99} \times Age_{p,97}$	-0.001
	(0.013)
$ost_t \times NTR \operatorname{Gap}_{i,99} \times I(Num. P2_{p,95-97} > 0)$	2.434**
$p_{,95}=97$	(1.162)
stablishment FE	✓
ounty x Year FE	×
Controls Observations	v.
Diservations	15611
	< □ > < 同 > <

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2023

Heterogeneous Treatment Effects

	(1)
	Log(PM Emissions)
$Post_t \times NTR Gap_{i,99}$	-1.147***
	(0.427)
$\text{Post}_t \times \text{NTR Gap}_{i,99} \times \text{Import Intensity (Unconditional)}_{f,97}$	-1.732
	(1.767)
Establishment FE	\checkmark
County x Year FE	\checkmark
Controls	\checkmark
Observations	37763

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2023

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Other Mechanisms: Environment-Friendly Practices

$PNTR \Rightarrow Environment$ -Friendly Practices?

- \checkmark Increase in waste management for those with within-firm global sourcing networks
- \checkmark Possible complementarity effects with offshoring

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
		Lo	g(Off-Site	Non-Dis	posal of P	M)	
$Post_t \times NTR Gap_{i,99}$	-0.136	-2.571	-0.129	-1.559	0.139	-0.244	16.563
	(0.720)	(2.029)	(0.682)	(0.999)	(3.837)	(1.194)	(10.278
Post _t × NTR Gap _{i.99} × Import Intensity $f_{.97}$		10.484**					14.160**
J,97		(5.106)					(6.850)
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i,99} imes \operatorname{Nonattainment}_{C,95-97}$			1.003				2.778
C,95-97			(2.039)				(3.099)
			()				(0.000)
$Post_t \times NTR Gap_{i.99} \times Upstream_{i.97}$				2.143			-1.696
				(1.348)			(2.704)
Dest. VNTD Conc. VI (Num 4 disit Contons)					0.136		4.180*
$\operatorname{Post}_t \times \operatorname{NTR} \operatorname{Gap}_{i,99} \times \operatorname{Log}(\operatorname{Num. 4-digit Sectors}_{f,97})$							
					(0.697)		(2.171)
Post _t × NTR Gap _{1.99} × Export Intensity $f_{.97}$						0.398	6.454
						(2.067)	(6.732)
Establishment FE	~	~	~	~	~	~	~
County x Year FE	\checkmark						
Controls	\checkmark						
Observations	26301	8949	20928	20892	20928	15787	7992

Mechanisms: Sourcing from China

Extensive vs. Intensive Margins of Trade Status

	(1)	(2)	(3)
	Import	Export	Export
$Post_t \times NTR Gap_{i,99}$	-0.027	-0.022	-0.028
	(0.131)	(0.170)	(0.085)
Establishment FE	\checkmark	\checkmark	\checkmark
County x Year FE	\checkmark	\checkmark	\checkmark
Controls	\checkmark	\checkmark	\checkmark
Margin	Extensive	Extensive	Intensive
Observations	15525	8206	20189

◆□▶ ◆□▶ ◆目≯ ◆日≯ 三日日 のへで

Mechanisms: Subsidiaries (China vs. Others)

 \checkmark PNTR caused an within-establishment increase in the available within-firm number of subsidiaries in China (not in other countries)

	(1)	(2)	(3)	(4)		
	Z =	Num. Su	bsid. in C	hina		
	I(Z)	> 0)	Log(Z)			
$Post_t \times NTR Gap_{i,99}$	0.265	0.188	1.073*	1.173		
1 000 ₁ ×11111 042 ₁ ,99	(0.260)	(0.193)	(0.611)	(0.920)		
Establishment FE	<i>√</i>	~		<i>√</i>		
County FE		-		-		
Year FE	1	-	1	-		
County x Year FE	-	\checkmark	-	\checkmark		
Controls	\checkmark	\checkmark	\checkmark	\checkmark		
Observations	12608	8346	6384	3067		
	(5)	(6)	(7)	(8)		
	Z =	Num. Su	bsid. in C	ther		
	I(Z)	> 0)	Log	g(Z)		
$Post_t \times NTR Gap_{i,99}$	0.126	0.090	-0.124	-0.005		
	(0.215)	(0.148)	(0.682)	(0.654)		
Establishment FE	×.	\checkmark	×.	\checkmark		
County FE	×.	-	 ✓ 	-		
Year FE	\checkmark	-	\checkmark	-		
County x Year FE	-	~	-	Ý		
Controls	10000	~	11140	√ 7000		
Observations	12608	8346	11442	7298		

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三日日 のへで May 2023

Results: Overall Pollution Prevention

 \checkmark We do not find support for the PNTR-induced clean tech adoption \checkmark Main

	${\rm Z}^{(1)}_{\rm Z} = {\rm N}$	(2) um. P2
	I(Z > 0)	Log(Z)
$Post_t \times NTR Gap_{i,99}$	-0.118	-0.047
	(0.080)	(0.481)
$NTR_{i,t}$	-0.009	-0.014
5,5	(0.006)	(0.025)
MFA $Exposure_{i,t}$	0.005**	0.027***
	(0.002)	(0.006)
$\operatorname{Post}_t \times \operatorname{Log}(\operatorname{NP}_{i,95}/\operatorname{Emp}_{i,95})$	-0.019	-0.138
2,507 F1,507	(0.028)	(0.107)
$\text{Post}_t \times \text{Log}(\mathbf{K}_{i,95}/\text{Emp}_{i,95})$	-0.028**	0.005
	(0.011)	(0.068)
$\operatorname{Post}_t \times \Delta \operatorname{Chinese} \operatorname{Tariff}_i$	0.069	0.103
	(0.091)	(0.768)
$\operatorname{Post}_t \times \Delta \operatorname{Chinese Subsidies}_i$	1.033	-11.791
	(4.241)	(21.659)
Establishment FE	 	 ✓
County x Year FE	46752	2727
Observations	46753	2727

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Heterogeneous Treatment Effects: Log of Off-Site Non-Disposal

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
				L	og(Off-Sit	e Non-Dis	posal of I	PM)			
Post $t \times NTR Gap_{i,99}$	-0.136	-2.571	-0.129	-1.559	0.139	-0.244	-0.003	-0.232	-0.815	0.349	16.563
	(0.720)	(2.029)	(0.682)	(0.999)	(3.837)	(1.194)	(1.164)	(2.644)	(1.304)	(1.018)	(10.278)
Post $t \times \text{NTR Gap}_{i,99} \times \text{Import Intensity} f_{,97}$		10.484 **									14.160*
J,97		(5.106)									(6.850)
Post $t \times NTR \operatorname{Gap}_{i,99} \times \operatorname{Nonattainment}_{C,95-97}$			1.003								2.778
2			(2.039)								(3.099)
$T_{ost} \times NTR Gap_{i,99} \times Upstream_{i,97}$				2.143							-1.696
2,59 2,99 2,97				(1.348)							(2.704)
Post $t \times \text{NTR Gap}_{i,99} \times \text{Log(Num. 4-digit Sectors } f_{,97})$					0.136						4.180*
J,97					(0.697)						(2.171
$t_{ost} t \times \text{NTR Gap}_{i,99} \times \text{Export Intensity}_{f,97}$						0.398					6.454
J,97						(2.067)					(6.732
$t \times NTR \operatorname{Gap}_{i.99} \times \operatorname{Log(Num. Establishment} f_{.97})$							-0.001				1.286
L							(0.296)				(2.009
$t_{t,97} \times t_{t,99} \times Log(Firm Employment f_{1,97})$								0.028			-4.346 **
$cost \tau \wedge \text{WIR} Cosp_{1,99} \wedge \text{Log(Firm Employment } f, 97)$								(0.327)			-4.340 (1.553
$t_t \times \text{NTR Gap}_{i,99} \times \text{Age}_{p,97}$									0.013		0.030
(1,2)									(0.016)		(0.026
$t \times NTR \operatorname{Gap}_{i,99} \times I(Num. P2p, 95-97) > 0)$										-1.044	-1.387
, , ,										(1.453)	(1.851
stablishment FE	~	~	~	~	~	~	~	~	~	~	~
County x Year FE	~	~	~	~	~	~	~	~	~	~	~
Controls	~	~	~	~	~	~	~	~	~	~	~
Observations	26301	8949	20928	20892	20928	15787	20928	20928	20928	20928	7992

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで May 2023

Heterogeneous Treatment Effects: Log of On-Site Non-Disposal

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
					Log(On-S	ite Non-D	isposal of	PM)			
Post t X NTR Gap i, 99	1.284	-1.716	2.602*	12.451	2.596	0.946	1.551	2.675	3.730	-0.689	-80.852***
,	(1.137)	(2.999)	(1.526)	(14.238)	(4.424)	(1.887)	(2.471)	(4.545)	(2.336)	(1.894)	(23.823)
Post $t \times \text{NTR Gap}_{i,99} \times \text{Import Intensity} f_{,97}$		3.443									-15.593
J.;		(8.827)									(13.842)
$P_{\text{ost}t} \times_{\text{NTR Gap}_{i,99}} \times_{\text{Nonattainment}_{c,95-97}}$			-3.353*								1.205
c - 1,99 C,95-97			(1.934)								(2.949)
Post $t \times \text{NTR Gap}_{i,99} \times \text{Upstream}_{i,97}$				-11.153							30.158 * *
t A HT Gup 2,99 A Opticum 2,97				(14.343)							(12.293)
Post $t \times \text{NTR Gap}_{i,99} \times \text{Log(Num. 4-digit Sectors } f_{,97})$					-0.419						5.085
ost t ~ NTR Gapi, 99 ~ Log(Num: 4-mgrt Sectors f, 97)					(1.291)						(4.501)
Post $t \times \text{NTR Gap}_{i,99} \times \text{Export Intensity}_{f,97}$						-0.801					-11.867
tost t A true Gap t, 99 A haport meaning f, 97						(4.664)					(9.257)
							-0.098				-24.475**
$P_{ost} t \times NTR \operatorname{Gap}_{i,99} \times \operatorname{Log(Num. Establishment} f, 97)$							-0.098 (0.912)				-24.475 (3.768)
							(0.312)				
$P_{ost}t \times NTR Gap_{i,99} \times Log(Firm Employment f, 97)$								-0.172			16.423 **
								(0.651)			(3.790)
Post $t \times \text{NTR Gap}_{i,99} \times \text{Age}_{p,97}$									-0.054		-0.097*
									(0.044)		(0.057)
$P_{\text{ost}} t \times \text{NTR Gap}_{i,99} \times I(\text{Num. P2}_{p,95-97} > 0)$										4.100	12.221 **
, , ,	,		,	,			,	,	,	(2.654)	(3.126)
Establishment FE County x Year FE	1	1	2	5	1	1	2	1	1	1	1
Controls Observations	√ 2754	1032	√ 2358	2345	2358	1559	2358	2358	2358	2358	819


Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで May 2023

Pollution Prevention

▲ Main

Choi, Hyun, Kim, Park

TPU, Offshoring, Environment

May 2023

Other Mechanisms: Clean Technology Adoption

effect on	the	PNTR-	induced	clean	tech	adoption

	(1) Z = Num. 1	(2) P2 Clean-Tech
	I(Z > 0)	Log(Z)
$\operatorname{Post}_t imes \operatorname{NTR} \operatorname{Gap}_{i,99}$	-0.060 (0.071)	$0.453 \\ (0.518)$
$\mathrm{NTR}_{i,t}$	-0.011** (0.005)	0.002 (0.019)
MFA $\operatorname{Exposure}_{i,t}$	-0.000 (0.004)	-0.003 (0.003)
$\mathrm{Post}_t \!\times\! \mathrm{Log}(\mathrm{NP}_{i,95}/\mathrm{Emp}_{i,95})$	-0.041** (0.019)	0.078 (0.188)
$\text{Post}_t \!\times\! \text{Log}(\mathbf{K}_{i,95}/\text{Emp}_{i,95})$	-0.020^{*} (0.010)	0.128^{*} (0.066)
$\text{Post}_t \times \Delta\text{Chinese } \text{Tariff}_i$	0.117^{*} (0.068)	-0.026 (0.881)
$\text{Post}_t \times \Delta \text{Chinese Subsidies}_i$	-2.386 (2.917)	-17.978 (36.547)
Establishment FE County x Year FE Observations	46753	√ √ 605

Choi, Hyun, Kim, Park

 \checkmark No significant

TPU, Offshoring, Environment

May 2023

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

38 / 38

▶ Main