Global Reallocations from the US-China Trade War

Amit Khandelwal Yale May 2023

A 21st Century Trade War

- In 2018-19, US and China collectively raised tariffs on about \$450b trade
 - US targeted 18% of imports (~2.5% of GDP)
 - China targeted 11% of imports (~3.6% of GDP)
 - 1930 Smoot-Hawley raised tariffs on ~1.4% of GDP Irwin
- Despite 2020 agreement, tariffs remain elevated
 - Magnified with US export controls on "national secruity" products
 - Compounded by a general deterioration in US-China political relationship
- What are the economic impacts? What have we learned so far?
 - ...on US and China?
 - …on "bystander" countries?

A 21st Century Trade War

- In 2018-19, US and China collectively raised tariffs on about \$450b trade
 - US targeted 18% of imports (~2.5% of GDP)
 - China targeted 11% of imports (~3.6% of GDP)
 - 1930 Smoot-Hawley raised tariffs on ~1.4% of GDP Irwin
- Despite 2020 agreement, tariffs remain elevated
 - Magnified with US export controls on "national security" products
 - Compounded by a general deterioration in US-China political relationship
- What are the economic impacts? What have we learned so far?
 - ...on US and China? Fajgelbaum et al 20, Fajgelbaum & Khandelwal 22
 - ...on "bystander" countries? Fajgelbaum et al 22

Visualizing Impacts

- What happened to trade?
 - US import and export data, by origin and month
 - Match tariff rates to product codes
 - variety = origin-product pair
- Event study

$$\ln y_{igt} = \alpha_{ig} + \alpha_{gt} + \alpha_{it} + \sum_{j} \beta_{0j} I(event_{igt} = j) + \sum_{j} \beta_{1j} I(event_{igt} = j) \times target_{ig} + \epsilon_{igt}$$

- i origin, g product, t month
- target: dummy if variety is targeted
- import values, quantities, unit values (before- and after-tariff)

Amiti et al 21

Figure 1: Import Price Indices, by China Tariff Wave

Cavallo et al 21

Panel B. Safeguard Tariffs 2018

Flaaen et al 21

Tariff Propagation

- Consumers
 - consumers should be worse off
 - magnitude depends on tariff pass-through
- Producers
 - producers should be better off
 - Magnitude depends on
 - **Substitutability**: if imports highly substitutable, gains ↑
 - Input costs: if producers use a lot of tariffed imports, gains \checkmark
 - **Retaliations**: dampen global demand, gains \checkmark
- Government Revenue

Calculating Aggregate Impacts

 $\mathsf{EV} = -m' \Delta \mathbf{p}^M + x' \Delta \mathbf{p}^X + \Delta \mathbf{R}$ Dixit & Norman 80

- With complete pass-through, 1st order impact: $EV = -m' \Delta p^M$
 - Import share of GDP: ~15%
 - Fraction of trade targeted: ~15%
 - Average increase in import prices = average increase in tariffs = ~15%
 - EV $\approx 0.15^3 = 0.34\%$ GDP

• 2nd-order impact:
$$EV = \frac{1}{2} (\Delta m)' \Delta \tau \approx 0.06\%$$
 GDP

- Full model:
 - Input-output structure
 - Retaliations
 - Terms-of-trade affects at the sector level (because of a fixed factor)
 - Demand and supply elasticities estimated from tariff changes

Calculating Aggregate Impacts

 Table 2: Aggregate Impacts

	EV^M	EV^X	ΔR	EV
	(1)	(2)	(3)	(4)
	2018-19 Trade War			
Change (\$ b)	-114.2	24.3	65.0	-24.8
	[-121.8, -106.5]	[15.4, 35.2]	[59.0, 70.2]	[-39.4, -8.8]
Change (% GDP)	-0.61	0.13	0.35	-0.13
	[-0.65, -0.57]	[0.08, 0.19]	$[0.32,\!0.38]$	[-0.21, -0.05]

ţ

Calculating Aggregate Impacts

 Table 2: Aggregate Impacts

	EV^M	EV^X	ΔR	EV
	(1)	(2)	(3)	(4)
	2018-19 Trade War			
Change (\$ b)	-114.2	24.3	65.0	-24.8
	[-121.8, -106.5]	[15.4, 35.2]	[59.0, 70.2]	[-39.4, -8.8]
Change (% GDP)	-0.61	0.13	0.35	-0.13
	[-0.65, -0.57]	[0.08, 0.19]	$[0.32,\!0.38]$	[-0.21, -0.05]
	2018-19 U.S. Tariffs and No Retaliation			
Change (\$ b)	-114.1	31.8	65.9	-16.4
	[-119.8, -108.4]	$[24.8,\!40.1]$	[59.9, 71.1]	[-28.5, -3.0]
Change ($\%$ GDP)	-0.61	0.17	0.35	-0.09
	[-0.64, -0.58]	$[0.13,\!0.22]$	$[0.32,\!0.38]$	[-0.15, -0.02]

Calculating Aggregate Impacts, China

	EV^X	EV^M	ΔR	EV
	(1)	(2)	(3)	(4)
2018–2019 trade	war			
change (b)	-32.968	-6.906	1.976	-37.898
	[-45.159, 0.786]	[-15.524, 0.874]	[1.360, 3.708]	[-52.282, -3.153]
change ($\%$ GDP)	-0.272	-0.057	0.016	-0.312
	[-0.372, 0.006]	[-0.128, 0.007]	$[0.011,\!0.031]$	[-0.431, -0.026]

 Table 8: Aggregate Impacts

Import Tariffs

Tariff Increase on US Imports, 2017-2018

Weighted by Variety-Level US Import Share and County-Level 2016 Tradeable Sector Employee Wage Bill

Retaliatory Tariffs

Tariff Increase on US Exports, 2017-2018

Weighted by Variety-Level US Export Share and County-Level 2016 Tradeable Sector Employee Wage Bill

What about Bystander Countries?

- How did the trade war affect global trade of "bystander" countries?
- Opportunity to explore potential forces driving global trade:
 - Specialization
 - Substitutability/complementarity
 - Scale
- Findings:
 - Bystanders increased exports to USA, no change to CHN, increased to RW
 - Large heterogeneity in growth of tariffed products (related to untaxed)
 - Heterogeneous responses driven by a country component, not sector or size
 - Different forces at work: Eg, MEX, TWN, COL, UKR all operate on downward-sloping supply
 - MEX, TWN benefit: substitute USA/CHN
 - COL, UKR don't benefit: complement USA/CHN

What about Bystander Countries?

- For top 50 exporters, examine product-level exports to USA, CHN, RW
 - 2018-19 exports in HS6 products
 - Four sets of trade war tariffs
 - USA tariffs on CHN
 - CHN tariff on USA
 - USA tariffs on RW
 - CHN tariffs on RW
- Basic idea:
 - For each country, compare export growth in taxed relative to untaxed products
 - Model guides interpreting of responses:
 - Exports patterns to USA/CHN isolates substitute/complementarity
 - Exports patterns to RW isolates upward/downward supply patterns

- Bystanders export products that either substitute or complement USA and CHN
- Bystanders' supply curves could be (standard) upward sloping or downward sloping (eg, scale)
- Each bystander country will respond to the trade war tariffs **differently**
 - how substitutable (or complementary) its exports are with USA/CHN?
 - Are its supply curves upward or downward sloping

• When the USA imposes a tariff on CHN, four possible outcomes for MYS's exports

	Decrease to USA	Increase to USA
Increase to RW		
Decrease to RW		substitutes with CHN upward-sloping supply

• When the USA imposes a tariff on CHN, four possible outcomes for MYS's exports

	Decrease to USA	Increase to USA
Increase to RW		substitutes with CHN downward-sloping supply
Decrease to RW		substitutes with CHN upward-sloping supply

• When the USA imposes a tariff on CHN, four possible outcomes for MYS's exports

	Decrease to USA	Increase to USA
Increase to RW	complements with CHN upward-sloping supply	substitutes with CHN downward-sloping supply
Decrease to RW		substitutes with CHN upward-sloping supply

• When the USA imposes a tariff on CHN, four possible outcomes for MYS's exports

1

	Decrease to USA	Increase to USA	
Increase to RW	complements with CHN upward-sloping supply	substitutes with CHN downward-sloping supply	
Decrease to RW	complements with CHN downward-sloping supply	substitutes with CHN upward-sloping supply	

Pre-period: β =-0.19 (0.10). Post-period: β =0.31 (0.10).

Pre-period: β =-0.19 (0.10). Post-period: β =0.31 (0.10).

Pre-period: β =0.07 (0.18). Post-period: β =0.01 (0.19).

Pre-period: β =-0.14 (0.08). Post-period: β =0.20 (0.08).

Pre-period: β =-0.14 (0.08). Post-period: β =0.20 (0.08).

Pre-period: β =0.11 (0.08). Post-period: β =0.29 (0.08).

Heterogenous Tariff Responses

 $\Delta \ln X_{ig}^n = \beta_{1ig}^n \Delta \ln T_{CH}^{US} + \beta_{2ig}^n \Delta \ln T_{US}^{CH} + \beta_{3ig}^n \Delta \ln T_i^{US} + \beta_{4ig}^n \Delta \ln T_i^{CH} + controls + \epsilon_{ig}$

- X_{ig}^n exports of product **g** from **i** to **n**
- Four tariffs:
 - $\Delta \ln T_{CH}^{US}$: USA tariff on CHN
 - $\Delta \ln T_{US}^{CH}$: CHN tariff on USA
 - $\Delta \ln T_i^{US}$: USA tariff on **i**
 - $\Delta \ln T_i^{CH}$: CHN tariff on I
- Tariff responses $(\beta_1, \beta_2, \beta_3, \beta_4)$ depend on:
 - country fixed effect
 - sector fixed effect
 - variety size

- Estimate this regression separately to USA, CHN, RW
- Aggregate predicted responses to world exports

$$\Delta \ln \widehat{X_i^{WD}} = \sum_g \sum_n \lambda_{ig}^n \left(\frac{\widehat{\beta_{1ig}} \Delta \ln T_{CH}^{US} + \widehat{\beta_{2ig}} \Delta \ln T_{US}^{CH}}{+\widehat{\beta_{3ig}} \Delta \ln T_i^{US} + \widehat{\beta_{4ig}} \Delta \ln T_i^{CH}} \right)$$

90/10 bootstrapped error bars

90/10 bootstrapped error bars

Takeaways

- New era for globalization
 - Elevated trade tensions between the two largest economies
 - Next phase has moved beyond tariffs to export bans and more systematic "decoupling"
- Evidence suggests that war has harmed consumers because of complete pass-through
- Global trade has reallocated, but at least in trade data, no sign that globalization has ended
 - Tariffs have **created** net trade opportunities for bystander countries
- A lot more work is needed!
 - country factors driving reallocations?
 - Micro-level data
 - Sector-specific analyses