Structural Transformation

Joseph Kaboski

1University of Notre Dame, STEG

October 2022
What is Structural Transformation?

“The rate of structural transformation of the economy is high. Major aspects of structural change include the shift away from agriculture to nonagricultural pursuits and, recently, away from industry to services; a change in the scale of productive units, and a related shift from personal enterprise to impersonal organization of economic firms, with a corresponding change in the occupational status of labor.” – Kuznets (1973 Nobel Lecture)
What is Structural Transformation?

- most research focuses on sectoral patterns:
 - labor
 - value-added
 - consumption/final expenditures

- also called “structural change”
Plan for Lectures

1. Today: Focus on understanding ST patterns, implications for growth

2. Seminar: capital accumulation and growth dynamics under ST

3. Tomorrow: More normative ST patterns (agricultural productivity gap, premature industrialization, skill-biased services)
New Research Program

- “Structural Transformation and Economic Growth” (STEG)
- understand ways to industrialize, increase productivity, inclusively grow
- focus on low income countries, policy implications (macro development)
- broad both substantively and methodologically
- Partners: Notre Dame (BIG Lab), Oxford, ACET, Groningen, Y-RISE
- DFID-funded, CEPR-run, £12 million, 5 years
- Academic leads are Doug Gollin and I
- Started in 2020: continuing calls for grant proposals, conferences, lectures, etc.
- 2022: IMF course on ST and Inclusive Growth
Figure 1: Sectoral Shares of Employment and Value Added –
Selected Developed Countries 1800–2000

Employment

Value added

Agriculture

Manufacturing

Services

Log of GDP per capita (1990 international $)

Share in total employment

Share in value added (current prices)

Belgium Spain Finland France Japan

Korea Netherlands Sweden United Kingdom United States
Figure 2: Sectoral Shares of Hours Worked and Nominal Value Added –
5 Non–EU Countries and Aggregate of 15 EU Countries from EU KLEMS 1970–2007

Hours worked

Value added

Agriculture

Agriculture

Manufacturing

Manufacturing

Services

Services

△△△ Australia ○○○○ Canada ◆◆◆ 15 EU Countries ◆◆◆◆ Japan ●●● Korea ○○○ United States
Figure 5: Sectoral Shares of Employment – Cross Sections from the WDI 1980–2000

Agriculture

Manufacturing

Services

\[\text{Share in total employment} \]

\[\text{Log of GDP per capita (1990 international $)} \]

\[\text{Log of GDP per capita (1990 international $)} \]

\[\text{Log of GDP per capita (1990 international $)} \]

\[\text{Log of GDP per capita (1990 international $)} \]
Figure 6: Sectoral Shares of Nominal Value Added – Cross Sections from UN National Accounts 1975–2005

- **Agriculture**
- **Manufacturing**
- **Services**

- ●●● Actual Values
- ○○○ Predicted Values
Figure 7: Sectoral Shares of Nominal Consumption Expenditure – US and UK 1900–2008
Figure 9: Sectoral Shares of Nominal Consumption Expenditure – Cross Sections from the ICP Benchmark Studies 1980, 1985, 1996

- Food
- Manufactured Consumption
- Services

▲▲▲ 1980 ○ ○ 1985 ● ● 1996
Malaysia’s VA and Employment Shares over Time

Fraction of Economy

Year

1960 1980 2000

VA AGR EMP AGR
VA IND EMP IND
VA SRV EMP SRV

Kaboski (Notre Dame STEG)
Comparing Malaysia’s Agriculture VA Share with Other Countries
Comparing Malaysia’s Agriculture Emp. Share with Other Countries

Log Income Per Capita vs Employment Share: Agriculture

Kaboski (Notre Dame STEG)
Comparing Malaysia’s Industry VA Share with Other Countries
Comparing Malaysia’s Industry Emp. Share with Other Countries

![Graph showing the relationship between Log Income Per Capita and Employment Share: Industry.](image)
Comparing Malaysia’s Service VA Share with Other Countries
Comparing Malaysia’s Service Emp. Share with Other Countries

Graph showing the relationship between Log Income Per Capita and Employment Share: Services.
Why Do We Care about Structural Change?

Several possible reasons:

1. Dramatic effect on the structure of society
 - disrupts communities
 - change in style of living
 - related to other changes like female labor force participation, family life, etc.
Why Do We Care about Structural Change?

Several possible reasons:

1. Dramatic effect on the structure of society
 - disrupts communities
 - change in style of living
 - related to other changes like female labor force participation, family life, etc.

2. May affect aggregate economic growth
Why Do We Care about Structural Change?

Several possible reasons:

1. Dramatic effect on the structure of society
 - disrupts communities
 - change in style of living
 - related to other changes like female labor force participation, family life, etc.

2. May affect aggregate economic growth

3. May affect inequality, factor shares
Why Do We Care about Structural Change?

Several possible reasons:

1. Dramatic effect on the structure of society
 - disrupts communities
 - change in style of living
 - related to other changes like female labor force participation, family life, etc.

2. May affect aggregate economic growth

3. May affect inequality, factor shares

4. May amplify/lessen misallocation
Why Do We Care about Structural Change?

Several possible reasons:

1. Dramatic effect on the structure of society
 - disrupts communities
 - change in style of living
 - related to other changes like female labor force participation, family life, etc.

2. May affect aggregate economic growth

3. May affect inequality, factor shares

4. May amplify/lessen misallocation

5. May interact with trade, business cycles, etc.
Why Do We Care about Structural Change?

Several possible reasons:

1. Dramatic effect on the structure of society
 ▶ disrupts communities
 ▶ change in style of living
 ▶ related to other changes like female labor force participation, family life, etc.

2. May affect aggregate economic growth

3. May affect inequality, factor shares

4. May amplify/lessen misallocation

5. May interact with trade, business cycles, etc.
ST-Relevant Policies

Each of these influence can influence efficiency, growth, and inequality in principle

1. Integration
 - external: trade policy, capital flows
 - internal: infrastructure

2. Subsidies and taxes
 - Removing distortions - all standard models
 - Efficiency enhancing industrial policy
 - Formalizing small-scale producers

3. Human capital - especially schooling

4. Financial development - large scale tradable sectors
Overview

This presentation draws upon several papers:

Buera and Kaboski (2009)
Kongsamut, Rebelo, Xie (2001)
Ngai and Pissarides (2007)
Acemoglu and Guerrieri (2008)
Comin, Mestieri, and Lashkari (2021)
Lecture Outline

1. Theory: Balanced Growth and Structural Change
 ▶ Puzzles
 ▶ Unsatisfying Solutions
 ▶ Aggregate Implications

2. Fitting the Data: Difficulties and Advances

3. Normative Policy/Concerns
Kaldor’s Stylized Facts

1. Output per worker grows at a constant rate
2. Capital per worker grows at a constant rate
3. Returns on capital are constant
4. Capital/output ratio is constant $\implies K$ and Y grow at same rate
5. Capital and labor’s shares are constant
6. Wide variation in growth rates of different countries
Kaldor’s Stylized Facts

1. Output per worker grows at a constant rate
2. Capital per worker grows at a constant rate
3. Returns on capital are constant
4. Capital/output ratio is constant $\Rightarrow K$ and Y grow at same rate
5. Capital and labor’s shares are constant
6. Wide variation in growth rates of different countries

How do we reconcile these patterns with dramatic structural transformation?
Two classic approaches to sectoral reallocation:

1. Preferences/Demand Story
 - Non-homothetic preferences
 - Agriculture is a necessity, while services are a luxury

2. Technology/Supply Story:
 - Differential productivity growth
 - A has high productivity growth,
 - S has low productivity growth
 - sectoral elasticity of substitution <1.
Constant growth puzzle 1: Non-homotheticities

Euler Equation:

\[u'(c_t) = \beta(1 + r)u'(c_{t+1}) \]
Constant growth puzzle 1: Non-homotheticities

Euler Equation:

$$u'(c_t) = \beta (1 + r) u'(c_{t+1})$$

Standard preferences imply constant growth:

$$u(c) = \frac{(c)^{1-\theta}}{1 - \theta}$$

$$\frac{c_{t+1}}{c_t} = [\beta(1 + r)]^{1/\theta}$$
Constant growth puzzle 1: Non-homotheticities

Euler Equation:

\[u'(c_t) = \beta (1 + r) u'(c_{t+1}) \]

Standard preferences imply constant growth:

\[u(c) = \frac{(c)^{1-\theta}}{1-\theta} \]

\[\frac{c_{t+1}}{c_t} = [\beta (1 + r)]^{1/\theta} \]

Subsistence requirement \(\underline{c} \) implies increasing growth:

\[u(c) = \frac{(c - \underline{c})^{1-\theta}}{1-\theta} \]

\[\frac{c_{t+1} - \underline{c}}{c_t - \underline{c}} = [\beta (1 + r)]^{1/\theta} \]
Balanced growth puzzle: differential productivity

- CES Aggregator over 2 intermediates:

\[y_t(x_{1,t}, x_{2,t}) = \left(\phi_1 x_{1,t}^{\frac{\varepsilon-1}{\varepsilon}} + \phi_2 x_{2,t}^{\frac{\varepsilon-1}{\varepsilon}} \right)^{\frac{\varepsilon}{\varepsilon-1}} \]

\[
\begin{align*}
 x_{1,t} &= A_1 \gamma_1^t l_t \\
 x_{2,t} &= A_2 \gamma_2^t (1 - l_t) \\
 \gamma_2 &> \gamma_1
\end{align*}
\]

- If \(\varepsilon < 1 \), \(l_t \) increases over time, and \(\frac{y_{t+1}}{y_t} \) falls over time (as \(l \to 0, \frac{y_{t+1}}{y_t} \to \gamma_1 \) when \(l \to 1, \frac{y_{t+1}}{y_t} \to \gamma_2 \))

- “Baumol’s Disease” – slowest growth sector sucks up resources and drags the economy down (think health care)
Balanced growth puzzle 3: sector capital shares

Think of differences in shares across sectors

\[y_i = A_i \gamma_i^t k_{i,t}^{\alpha_i} l_{i,t}^{1-\alpha_i} . \]

\[\alpha_1 < \alpha_2 \]

\[z \equiv \frac{p_1 y_1}{p_1 y_1 + p_2 y_2} \]

\[s_k \equiv \frac{RK}{Y} \]

\[s_k = \frac{Rk_1 + Rk_2}{p_1 y_1 + p_2 y_2} \]

\[s_k = \alpha_1 z + \alpha_2 (1 - z) \]

So if \(z \uparrow \) (i.e., sector 1 grows faster), agg. capital share \(\downarrow \)
Balanced growth puzzle 3: sector capital shares

Think of differences in shares across sectors

\[y_i = A_i \gamma_i^t k_{i,t}^{\alpha_i} l_{i,t}^{1-\alpha_i} \]

\[\alpha_1 < \alpha_2 \]

\[z \equiv \frac{p_1 y_1}{p_1 y_1 + p_2 y_2} \]

\[s_k \equiv \frac{R K}{Y} \]

\[s_k = \frac{Rk_1 + Rk_2}{p_1 y_1 + p_2 y_2} \]

\[s_k = \alpha_1 z + \alpha_2 (1 - z) \]

So if \(z \uparrow \) (i.e., sector 1 grows faster), agg. capital share \(\downarrow \)
Consider Combined Framework: BK (2009)

Allows for:
▶ generalized Stone-Geary non-homotheticities
▶ biased productivity growth
▶ sector-specific factor shares

KRX (2001), NP (2007), AG (2008) are special cases
Non-Homothetic Preferences

Generalized Stone-Geary:

\[U(c) = \sum \beta^t \tilde{C}_t^{1-\theta} - 1 \]

\[\tilde{C}_t = \left[\sum_{i=a,m,s} \phi_i (c_{i,t} - c_i) \frac{\varepsilon - 1}{\varepsilon} \right]^\frac{\varepsilon}{\varepsilon - 1} \]
Consumer’s Problem

\[
\begin{align*}
\max_{\{c_{i,t}\}_{i=a,m,s,k_t}} & \quad U(c) \\
\text{s.t.} & \quad p_{mt}I_t + \sum_{i=a,m,s} p_{i,t}c_{i,t} \leq R_t k_t + w_t h \\
& \quad k_{t+1} = (1 - \delta) k_t + I_t
\end{align*}
\]
Optimality

Intratemporal FOC:

\[
\frac{\phi_i}{\phi_j} \left(\frac{c_{i,t} - c_i}{c_{j,t} - c_j} \right)^{-1/\varepsilon} = \frac{p_{i,t}}{p_{j,t}}
\]

(1)

Euler Equation:

\[
\tilde{C}_{t+1}^{\theta-1/\varepsilon} \left(\frac{c_{m,t+1} - c_m}{c_{m,t} - c_m} \right)^{1/\varepsilon} = \left[\frac{R_{t+1}}{p_{m,t}} + 1 - \delta \right]
\]

Constant growth requires both:

1. constant \(R \) and \(p_m \)
2. \(c_m = 0 \)
Kongsamut, Rebelo, Xie (2001): Demand Driven

- Supply Assumptions:

\[
\frac{p_{i,t}}{p_{j,t}} = \frac{p_i}{p_j}
\]

by intratemporal FOC, growth \(\frac{\tilde{C}_{t+1}}{\tilde{C}_t} = \frac{\tilde{c}_{i,t+1}}{\tilde{c}_{i,t}} \) (constant).

- Demand Assumptions:

\[
\begin{align*}
 c_a &> 0, \ c_s < 0, \ c_m = 0 \\
p_a c_a &= -c_s p_s
\end{align*}
\]

- Consumption is then

\[
C_t = p_a c_{a,t} + p_m c_{m,t} + p_s c_{s,t}
\]

\[
= p_a (c_{a,t} - c_a) + p_m c_{m,t} + p_s (c_{s,t} - c_s)
\]
KRX (2001): Unsatisfying Solution

- Results:
 - labor, consumption, output grows:
 - slower in agriculture
 - faster in services
 - constant Kaldor growth

- How? No net subsistence requirement/endowment in budget

- Caveats:
 1. predicts flat manufacturing share
 2. predicts early growth in services
 3. requires (counterfactually) flat relative prices
 4. needs cross-restrictions on technology/preferences
Allow for biased sectors:

\[y_i = A_i \gamma_i t^k_i \alpha_i l_i^{1-\alpha_i} \]

Firms’ Problem:

\[
\max_{k_i, h_i, l_i} p_{i,t} A_i \gamma_i k_i^\alpha l_i^{1-\alpha_i} - (1 + \tau^i_k) R k_i - (1 + \tau^i_w) w h_i l_i
\]

Here \(\tau^i_k \) and \(\tau^i_w \) are any friction or wedge on using inputs in sector \(i \).
Results for Symmetric Cobb-Douglas

- Assuming $\alpha_i = \alpha \implies$ linear PPFs

\[
\frac{p_{it}}{p_{jt}} = \frac{A_j \gamma_j^t}{A_i \gamma_i^t} \left(\frac{1 + \tau_i^k}{1 + \tau_i^k} \right)^{\alpha} \left(\frac{1 + \tau_i^w}{1 + \tau_i^w} \right)^{1-\alpha}
\]
Results for Symmetric Cobb-Douglas

- Assuming $\alpha_i = \alpha \implies$ linear PPFs

$$\frac{p_{it}}{p_{jt}} = \frac{A_j \gamma_j^t}{A_i \gamma_i^t} \left(\frac{1 + \tau_i^i}{1 + \tau_k^i} \right)^\alpha \left(\frac{1 + \tau_w^i}{1 + \tau_w^i} \right)^{1-\alpha}$$

- Since R and w are constant across sectors:

$$\frac{1 + \tau_k^i}{1 + \tau_w^i} \frac{k_i}{h_i l_i} = \frac{1 + \tau_k^j}{1 + \tau_w^j} \frac{k_j}{h_j l_j}$$
Results for Symmetric Cobb-Douglas

- Assuming $\alpha_i = \alpha \implies$ linear PPFs

\[
p_{it} = \frac{A_j \gamma_j^t}{A_i \gamma_i^t} \left(\frac{1 + \tau_k^i}{1 + \tau_k^j} \right)^\alpha \left(\frac{1 + \tau_w^i}{1 + \tau_w^j} \right)^{1-\alpha}
\]

- Since R and w are constant across sectors:

\[
\frac{1 + \tau_k^i}{1 + \tau_w^i} \frac{k_i}{h_i l_i} = \frac{1 + \tau_k^j}{1 + \tau_w^j} \frac{k_j}{h_j l_j}
\]

- If $\tau_w^i = \tau_w, \tau_k^i = \tau_k$, output and labor payment measures equal:

\[
\frac{p_i y_i}{\sum_j p_j y_j} = \frac{w h_i l_i}{w \sum_j h_j l_j} = f_i
\]
Results for Symmetric Cobb-Douglas

- Assuming $\alpha_i = \alpha \implies$ linear PPFs

$$\frac{p_{it}}{p_{jt}} = \frac{A_j \gamma^t_j}{A_i \gamma^t_i} \left(\frac{1 + \tau^i_k}{1 + \tau^j_k} \right)^\alpha \left(\frac{1 + \tau^i_w}{1 + \tau^j_w} \right)^{1-\alpha}$$

- Since R and w are constant across sectors:

$$\frac{1 + \tau^i_k}{1 + \tau^i_w} \frac{k_i}{h_i l_i} = \frac{1 + \tau^j_k}{1 + \tau^j_w} \frac{k_j}{h_j l_j}$$

- If $\tau^i_w = \tau_w, \tau^i_k = \tau_k$, output and labor payment measures equal:

$$\frac{p_i y_i}{\sum_j p_j y_j} = \frac{w h_i l_i}{w \sum_j h_j l_j} = f_i$$

- if $h_i = h_j$ then:

$$\frac{\text{Labor}_i}{\text{Total Labor}} = \frac{l_i}{\sum_j l_j} = f_i$$
Results for Symmetric Cobb-Douglas

- Assuming $\alpha_i = \alpha \implies \text{linear PPFs}$

$$\frac{p_{it}}{p_{jt}} = \frac{A_j \gamma_j^t}{A_i \gamma_i^t} \left(\frac{1 + \tau_i^k}{1 + \tau_j^k} \right)^{\alpha} \left(\frac{1 + \tau_i^w}{1 + \tau_j^w} \right)^{1-\alpha}$$

- Since R and w are constant across sectors:

$$\frac{1 + \tau_i^k}{1 + \tau_j^k} \frac{k_i}{h_i l_i} = \frac{1 + \tau_j^k}{1 + \tau_j^w} \frac{k_j}{h_j l_j}$$

- If $\tau_i^w = \tau_j^w$, $\tau_i^k = \tau_j^k$, output and labor payment same

$$\frac{p_i y_i}{\sum_j p_j y_j} = \frac{w h_i l_i}{w \sum_j h_j l_j} = f_i$$

- If $h_i = h_j$ then:

$$\frac{\text{Labor}_i}{\text{Total Labor}} = \frac{l_i}{\sum_j l_j} = f_i$$
Comparing Malaysia’s Agricultural Rel. Prod. with Other Countries

![Graph showing the relationship between log income per capita and relative productivity in agriculture.](image-url)
Comparing Malaysia’s Industrial Rel. Prod. with Other Countries

![Graph showing relative productivity vs. log income per capita](image-url)
Comparing Malaysia’s Service Relative Productivity with Other Countries

![Graph showing relative productivity of services vs log income per capita.](image-url)

- Supply Assumptions:
 - differential productivity growth: $\gamma_a > \gamma_m > \gamma_s$
 - $\implies \frac{p_{it}}{p_{jt}}$ vary over time, but make c_m the numeraire
 - no difference in factor shares, i.e., linear PPFs

- Supply Assumptions:
 - differential productivity growth: $\gamma_a > \gamma_m > \gamma_s$
 - $\implies \frac{p_{it}}{p_{jt}}$ vary over time, but make c_m the numeraire
 - no difference in factor shares, i.e., linear PPFs

- Demand Assumptions:
 - Homothetic preferences (i.e., $c_i = 0$)
 - Low elasticity of substitution: $\varepsilon < 1$
 - Log intertemporal substitution: $\theta = 1$
 - $\implies BGP$ (investment doesn’t respond to changing capital price)

- Supply Assumptions:
 - differential productivity growth: $\gamma_a > \gamma_m > \gamma_s$
 - p_{it}/p_{jt} vary over time, but make c_m the numeraire
 - no difference in factor shares, i.e., linear PPFs

- Demand Assumptions:
 - Homothetic preferences (i.e., $c_i = 0$)
 - Low elasticity of substitution: $\varepsilon < 1$
 - Log intertemporal substitution: $\theta = 1$
 $\implies BGP$ (investment doesn’t respond to changing capital price)

- Key equations:

\[n_i \equiv \frac{l_i}{L} = \frac{p_i c_i}{PY} \]

\[\frac{\dot{n}_i}{n_i} = (1 - \varepsilon) \left(\bar{\gamma} - \gamma_i \right) \]

\[\bar{\gamma} \equiv \sum_i n_i \gamma_i \]
NP (2007): Unsatisfying Solution

- Results:
 - labor, consumption, output grows:
 - slower in agriculture
 - faster in services
 - *slight* hump share in manufacturing
 - constant Kaldor growth

- How? Log intertemporal elasticity and non-changing numeraire

- Caveats:
 1. predicts almost flat manufacturing share
 2. predicts constant growth in services
 3. requires no income effects
 4. doesn’t *really* avoid Baumol’s disease
Growth Implications of Generalized Model

- Equivalent Program for Linear PPF Case:

\[
\max_{C_t, k_t} \sum \hat{\beta}_t \frac{C_t^{1-\theta}}{1 - \theta} \text{ s.t. }
\]

\[
I_t + C_t \leq R_t k_t + w_t h - \sum p_{i,t} c_i
\]

\[
k_{t+1} = (1 - \delta) k_t + I_t
\]

\[
C_t = \left[\sum_{i=a,m,s} \left(\frac{\phi_i}{\phi_m} \right)^\varepsilon \left(\frac{A_m \gamma_m^t}{A_i \gamma_i^t} \right)^{1-\varepsilon} \right] (c_{mt} - c_m)
\]

\[
\hat{\beta}_t = \beta^t \left[\sum_{i=a,m,s} \left(\frac{\phi_i}{\phi_m} \right)^\varepsilon \left(\frac{A_m \gamma_m^t}{A_i \gamma_i^t} \right)^{1-\varepsilon} \right]^{\frac{\theta-1}{1-\varepsilon}}
\]

- Both models set \(c_m = 0 \) and \(\sum p_{i,t} c_i = 0 \)
- In NP, Baumol’s disease still present in C and effective discount rate
- When Kaldor holds, ST irrelevant for growth
Acemoglu and Guerrieri (2008): Rybczinski Supply Story

- Supply Assumptions:
 - different capital shares: $\alpha_i > \alpha_j$
 - allow for different productivity growth, as long as

$$\left(\gamma_1\right)^{\frac{1}{1-\alpha_1}} < \left(\gamma_2\right)^{\frac{1}{1-\alpha_2}}$$

- Demand Assumptions: Same as NP

- What is the impact of capital deepening?

- Rybczinski Theorem: when a factor of production (e.g., K) is increased there is a decline in the relative price of the good whose production is relatively intensive in that factor.
Acemoglu and Guerrieri (2008): Rybczinski Supply Story

- Supply Assumptions:
 - different capital shares: $\alpha_i > \alpha_j$
 - allow for different productivity growth, as long as
 $$ (\gamma_1)^{\frac{1}{1-\alpha_1}} < (\gamma_2)^{\frac{1}{1-\alpha_2}} $$

- Demand Assumptions: Same as NP
Acemoglu and Guerrieri (2008): Rybczinski Supply Story

- **Supply Assumptions:**
 - different capital shares: $\alpha_i > \alpha_j$
 - allow for different productivity growth, as long as
 \[
 (\gamma_1)^{\frac{1}{1-\alpha_1}} < (\gamma_2)^{\frac{1}{1-\alpha_2}}
 \]

- **Demand Assumptions:** Same as NP

- What is the impact of capital deepening?

- **Rybczinski Theorem:** when a factor of production (e.g., K) is increased there is a decline in the relative price of the good whose production is relatively intensive in that factor
AG (2008): Unsatisfying Solution

Results:
- labor, consumption, output grows:
 - slower in capital intensive sector
 - faster in non-capital intensive sector
- constant growth – but only asymptotically

How? Asymptotically, it is a single sector model

Caveats:
1. no big difference in capital share across standard sectors
2. redefine sectors and get evidence of structural change
3. changing aggregate capital’s share (non-Kaldor)
Quantitative and Normative Questions: BK (2008)

1. Can traditional theories fit the data?
2. How important are sectoral distortions/ relative human capital differences?
3. Can the theory predict structural change in a cross-section of countries?
Estimation/calibration

- **Data:** \(\{y_i\}_{i=a,m,s}, \left\{ \frac{p_i}{p_m} \right\}_{i=a,s}, k_0 \)

- **Parameters:** \(\{\bar{c}_i\}_{i=a,m,s}, \varepsilon, \{\gamma_i\}_{i=a,s}, \left\{ \frac{h_i(1+\tau_i^i)}{h_a(1+\tau_a^i)} \right\}_{i=m,s} \),

 \[\alpha = 1/3, \quad \delta = 0.08, \quad \sigma = 1, \quad \beta = 0.94 \]
Estimated Role of Demand and Supply

- Agriculture: $\bar{c}_a > 0$ (≈ one dollar a day)
- Services: $\bar{c}_s < 0$
- Manufacturing: $\bar{c}_m = 0$
- $\varepsilon \approx 0$ (Leontief)
Value-added vs. Employment

Sectoral distortions/relative human capital

Value-added vs. employment

Sectoral distortions/relative human capital

\[\frac{1 + \tau_s}{1 + \tau_l} \]

\[\frac{1 + \tau_m}{1 + \tau_l} \]

Buera & Kaboski (UCLA & OSU)
Fitting Structural Change
EEA August 29, 2008 21 / 23
Predicting Cross-section of countries in 1990

Agriculture

Manufacturing

Services

Model

Data
Summary of Fit

Two key failures:

1. delayed acceleration of services, steep decline of manufacturing
2. differential patterns of value-added and labor shares

This motivates:

1. preferences with more nuanced income effects, e.g. Boppart (2015), Comin, Lashkari, Mestieri (2021)
2. normative wedge analysis of structural change patterns, e.g., Cheremukhin et al (2017a,b), Buera et al (2018)
CLM (2021) Preferences

Indirectly defined preferences:

\[
\sum_{i=1}^{I} \Omega_i \frac{1}{\sigma} C_t^{\frac{\varepsilon_i - \sigma}{\sigma}} C_{it}^{\frac{\sigma - 1}{\sigma}} = 1,
\]

- \(\sigma \) is the elasticity of substitution.
- \(\varepsilon_i \) is the real income elasticity → constant (non-diminishing)
- If \(\varepsilon_i = 1 \), we recover homothetic CES.
- Assume \(\sigma \in (0, 1) \) and \(\varepsilon_i \geq 1 \).
Indirectly defined preferences:

$$\sum_{i=1}^{I} \Pi_{i}^{\frac{1}{\sigma}} C_{t}^{\frac{\epsilon_{i}-\sigma}{\sigma}} C_{it}^{\frac{\sigma-1}{\sigma}} = 1,$$

- σ is the elasticity of substitution.
- ϵ_{i} is the real income elasticity \rightarrow constant (non-diminishing)
- If $\epsilon_{i} = 1$, we recover homothetic CES.
- Assume $\sigma \in (0, 1)$ and $\epsilon_{i} \geq 1$.
- Can freely normalize one Π_{i} and one ϵ_{i}
CLM (2021) Demand Equations

- Much simpler demand equations

\[
\ln s_{it} = \ln \Omega_i - \sigma \ln \tau_{Cict} - (1 - \sigma) \ln \left(\frac{p_{ict}}{P_{ct}} \right) + (\epsilon_i - 1) \ln \left(\frac{p_{ict}}{P_{ct}} \right)
\]

\[\epsilon_i = 1 \rightarrow \text{Homotheticity}, \quad \sigma = 1 \rightarrow \text{Cobb-Douglas}.\]

- Can estimate, quantify channels:
 \[\longrightarrow \text{majority income effects: } 86\%(A), \ 57\%(M), \ 82\%(S)\]

- Much improved fit
Asia - Nonhomothetic CES vs. Stone-Geary

Uses World Estimates for All Elasticities. \(\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\} \)
Asia

Uses World Estimates for All Elasticities. \(\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\} \)
Asia

Uses World Estimates for All Elasticities, $\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\}$

[Graphs showing employment shares in Korea and Philippines, with data from 1960 to 2010.]
Latin America
Uses World Estimates for All Elasticities. \{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\}
Latin America

Uses World Estimates for All Elasticities, \(\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\} \)
OECD*

Uses World Estimates for All Elasticities, \(\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\} \)
OECD*

Uses World Estimates for All Elasticities. \(\{\sigma, \varepsilon_a - \varepsilon_m, \varepsilon_s - \varepsilon_m\} \)

USA

- Employment Shares
- Year: 1940 to 2000

Spain

- Employment Shares
- Year: 1970 to 2010

USA Stone-Geary

- Employment Shares
- Year: 1940 to 2000

Spain Stone-Geary

- Employment Shares
- Year: 1970 to 2010

Legend:
- Agriculture
- Manufacturing
- Services
- Linear Fit Agriculture
- Linear Fit Manufacturing
- Linear Fit Services
Malaysia’s Fit

Uses World Estimates for All Elasticities, \(\{\sigma, \epsilon_a - \epsilon_m, \epsilon_s - \epsilon_m\} \)
Malaysia’s Fit

Uses Malaysia Estimates for All Elasticities, \(\{\sigma, \epsilon_a - \epsilon_m, \epsilon_s - \epsilon_m\} \)
1. Stone-Geary income effects are short-lived, so need a lot of work from relative prices

2. Malaysia is unusual in that the relative price of services falls over time (rises elsewhere)

3. very little action from relative prices, so fit is flat

4. country-specific estimate fits better but imputes manufacturing as a luxury good
Malaysia’s Relative Prices

Uses Malaysia Estimates for All Elasticities, \(\{\sigma, \epsilon_a - \epsilon_m, \epsilon_s - \epsilon_m\} \)
Conclusions

- Important question on many fronts
- Lots of puzzles
- Progress in terms of positive prediction
- Lots of work to do on normative questions