Barriers to Entry and Regional Economic Growth in China

Loren Brandt
University of Toronto

Gueorgui Kambourov
University of Toronto

Kjetil Storesletten
University of Minnesota

Annual Bank Conference on Development Economics 2022: Recovery, Reform, and Business Environment
Washington, DC, June 21-24, 2022
Motivation

• Since the onset of economic reform in the late 1970s, China has gone from one of the poorest to a middle-income economy

• Expansion of non-state sector was main source of growth (Zhu, 2012)

• But growth was highly uneven across localities (≈ 350 prefectures)

• We show that
 - By mid-1990s, there were **sizable local differences** in productivity, wages, & size of non-state manufacturing sector
 - dispersion reflected divergence before 1995
 - Reversal of fortune from mid-1990s: differences across localities in non-state manufacturing performance started disappearing
 - **strong convergence across prefectures** in non-state value added per worker, TFP, wages, and capital per worker
Overview

- Aim of paper: understand forces behind initial dispersion and 1995-2008 convergence

- Brandt et al. (2012) argue: creation and selection of new firms is most important source of non-state sector productivity and output growth

- We find: this process is very different across prefectures:

 ... in prefectures with a large presence of state firms,

 - less entry of non-state firms
 - non-state entrants pay lower wages, have lower TFP, lower value added per worker, lower capital per worker
Overview

- Build closed economy version of Hopenhayn (1992) model with 3 distortions to account for empirical patterns:
 - capital and output wedges,
 - an entry wedge
- Interpretation of entry wedge: restriction on number of licences allowing potential entrants to operate.
- Solve model analytically
- Develop a political economy model to rationalize local government behavior
Findings: Entry Wedge Is Quantitatively Most Important

- Entry wedge:
 - main driver of initial 1995 dispersion
 - main driver of 1995-2008 convergence

 - indices match well with our 2008 entry wedge estimates

- Study the empirical factors behind measured entry wedges:
 - 1995 level systematically linked to size of SOE sector
 - convergence after 1995 tied to downsizing of state sector
Static Hopenhayn Model

\[y_i = z_i^{1-\eta} k_i^{(1-\alpha_j)\eta} n_i^{\alpha_j\eta} \]

- firms in each industry have common production function
- \(j = J(i) \) denotes industry for firm \(i \)
- \(0 < \eta < 1 \): decreasing returns to scale
- common rental rate of capital \((r + \delta)\)
- closed labor market: prefecture-specific wage rate \(w \)
- distortions: output tax \(\tau^y \) and capital tax \(\tau^k \)
- Benchmark: focus on prefecture-specific wedges.
 - Extension: allow within-prefecture firm heterogeneity
Entrepreneur’s Problem, Entry Wedges

• Large (but finite) number M of potential entrepreneurs in each prefecture

• Potential entrepreneurs observe individual TFP z

• z is Pareto distributed $f(z) = z^{\xi} z^{-\xi - 1}$ (with $z^\xi \geq z$)

• Entrepreneur incurs fixed cost ν if firm is operated

• Entry wedge: only a share $(1 - \psi)$ of potential entrants allowed to enter
 - random selection/lottery
Entry Decision and Clearing of Labor Market

- Only entrepreneurs with $z \geq z^*$ will operate, where
 \[z^*(\tau^Y, \tau^k; w) = \frac{\nu}{(1 - \tau^Y)(1 - \eta) \cdot \bar{y}} \]

- Equilibrium wage w clears the (local) labor market
Equilibrium Mechanism

- Suppose \((1 - \psi)\) is small

- Low \((1 - \psi)\) implies that few firms enter

- Low entry implies low wages required to clear the labor market (since little competition for workers)

- Low wages implies low \(z^*\) (since labor is cheap)

- Low \(z^*\) implies negative selection
 ... hence low TFP and low \(Y/N\)
Effects of Wedges on Allocations

<table>
<thead>
<tr>
<th></th>
<th>((1 - \tau_y))</th>
<th>((1 + \tau_k))</th>
<th>((1 - \psi))</th>
<th>(N/M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wage rate (w)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Solow residual (Z)</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Entry (\Gamma)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(\frac{Y}{N})</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Chinese Industrial Census

- Chinese Industrial Census (CIC)
- Large: covers most of the manufacturing sector
- Rich: firm-level observations on value added, employment, capital stock, wage bill, year of birth, ownership, sector

Data work (issues)
- make prefectures consistent across years
- define the SOE sector (especially in 2004 and 2008)
- construct measures of real capital
Calibration

- Labor share for each industry $\alpha \eta$: Hsieh and Klenow (2009)
- Decreasing returns: $\eta = 0.85$ (Restuccia and Rogerson 2008)
- $\xi = 1.05$, Pareto parameter, use 30% of the most productive firms

$$E(z|z \geq z^*) = \frac{\xi}{\xi - 1}$$

- Set ν such that $n^*(z^*) = 1$ in the lowest s prefectures
- Set z such that $\psi = 0$ in the lowest s prefectures
- From 1995, 204, 2008 Chinese Industrial Census
 - value added: y_i
 - wage bill: $w_i n_i$
 - estimated real capital: k_i
Entry Wedge \((1 - \psi_p) \)

- Estimate \(\psi_p \) in prefecture \(p \) from the equilibrium condition

\[
\ln(1 - \psi_p) = \ln \left(\frac{N_p}{M_p} \right) + \frac{1 - \eta + \xi \alpha \eta}{1 - \eta} \ln w_p \\
- \frac{\xi}{1 - \eta} \ln \Delta_p^y \\
+ \frac{\xi \eta (1 - \alpha)}{1 - \eta} \ln \Delta_k^p \\
+ (\xi - 1) \ln \nu + \Omega(\alpha, \eta, \xi, \zeta)
\]
Estimated NSOE Entry Wedge \((1 - \psi_p)\) in 1995

- Log gross entry wedge \(\ln(1 - \hat{\psi}_p)\)
- SOE share accounts for 52% of the variation in the entry wedge
Estimated NSOE Entry Wedge \((1 - \psi_p)\)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>0.044</td>
<td>0.079</td>
<td>0.083</td>
<td>0.011</td>
</tr>
<tr>
<td>$\alpha \eta$</td>
<td>-0.004</td>
<td>-0.005</td>
<td>0.025</td>
<td>0.018</td>
</tr>
<tr>
<td>$\frac{N}{M}$</td>
<td>-0.002</td>
<td>-0.001</td>
<td>0.003</td>
<td>-0.007</td>
</tr>
<tr>
<td>$(1 + \tau^k)$</td>
<td>-0.005</td>
<td>-0.001</td>
<td>0.015</td>
<td>0.031</td>
</tr>
<tr>
<td>$(1 - \tau^y)$</td>
<td>0.011</td>
<td>0.028</td>
<td>-0.011</td>
<td>-0.078</td>
</tr>
<tr>
<td>$(1 - \psi)$</td>
<td>0.044</td>
<td>0.054</td>
<td>0.032</td>
<td>0.056</td>
</tr>
</tbody>
</table>
Entry Wedge and SOE Share, 1995-2004
Time-Series IV for Change in SOE Share, Δe^soe_p

- **Bartik** instrument for 1995-2004 SOE empl. change

 : 1998 SOE reform “Grab the Large, Release the Small”

- Aggregate 1995-2004 SOE empl. change in industry j

 : $\mu^\text{soe}_j = \frac{E^\text{soe}_{j,2004}}{E^\text{soe}_{j,1995}} - 1$

 : $e^\text{soe}_{p,j} = \frac{E^\text{soe}_{p,j}}{E_p}$

- Predicted increase in SOE employment (Bartik instrument)

 : $IV^\text{ind}_p = \sum_j e^\text{soe}_{p,j} \ast \mu^\text{soe}_j$
Change in the Entry Wedge, 1995-2004

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>OLS</th>
<th>IV_{Bartik}</th>
<th>IV_{Bartik}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Delta \ln(1 - \psi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\Delta S</td>
<td>-2.06*</td>
<td>-1.82</td>
<td>-8.99**</td>
<td>-10.28***</td>
</tr>
<tr>
<td></td>
<td>(1.16)</td>
<td>(1.16)</td>
<td>(2.63)</td>
<td>(2.91)</td>
</tr>
<tr>
<td>\Delta \ln FREV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.24***</td>
<td>0.76*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.40)</td>
<td>(0.46)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First stage:

<table>
<thead>
<tr>
<th>IV coefficient</th>
<th>OLS</th>
<th>OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.62***</td>
<td>0.65***</td>
</tr>
<tr>
<td>st. error</td>
<td>(0.07)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.22</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Note: *** – statistically significant at 1%; ** – at 5%; * – at 10%.
Conclusion

- Study growth patterns of non-state sector across localities in China
- Build Hopenhayn model of new firm entry with multiple distortions
- Identify novel entry wedge as key to explaining heterogeneity in new firm behavior across prefectures
 - Provide out-of-sample validation for these wedges
 - Link size and changes of entry costs to dynamics of state-sector
- Future directions
 - Allow wedges to differ by industry and location
 - Extend through Great Recession to capture possible reversal
 - Study role of wedges for impeding structural transformation
Thank You!