Distributional Impact of Cyclones on Indian Households' Income and Consumption

Saurabh Ghosh Siddhartha Nath Pawan Gopalakrishnan

Reserve Bank of India

October 30, 2023

12th South Asia Economic Policy Network Conference: Green Growth in South Asia

Background

- The frequency of incidence and intensity of extreme weather events, such as excessive/non-seasonal rainfall, floods, heat waves, and cyclones are rising in India.
- Two types of risks are associated with climate change physical risks and transition risks.
 - Physical risks
 - Acute Risks
 - Chronic Risk
 - Disruption of the global supply chain, lower productivity of agriculture, and consequent inflation.
 - Transition risks refer to a compliance cost that stems from the process of adjustment towards a lower carbon economy.
- Since cyclones cause direct damage to physical assets and livelihood, this amounts to a pure adverse exogenous shock.

Climate Risks Analysis in India: Literature

- Growth and inflation outlook are heavily influenced by rainfall and its distribution during the southwest monsoon season (June-September).
 - Affects PMI, IIP, demand for electricity, trade, tourist arrivals, and auto sales
- ▶ Dilip and Kundu (2021): Rainfall deviations cause
 - Food inflation

Long-lasting Vegetables & Fruit inflation

- ► Ghosh et al. (2022):
 - The impact of cyclones on five states along the western coastline

Lower output growth, high inflation, dampened tourist arrivals

- Beyer et al. (2022):
 - The impact of Kerala (2018) floods on household-level income and consumption; authors use monthly nighttime light intensity, ATM transactions, and credit disbursal data

Tamuly and Mukhopadhyay (2022):

Estimate the impact of natural disasters on monthly consumption for households using IHDS database

Objective of this paper

- Need for a parsimonious environment-DSGE (E-DSGE) model for India which includes:
 - adverse shocks to capital to mimic the physical risks damaging infrastructure, and
 - causing a negative effect on aggregate output
- Track the movement in income and consumption of the representative household
- Finally, test the model outcomes considering household-level data on income and consumption - using DID regression design and quantile regressions - for the coastal districts vis-à-vis non-coastal districts in India

In this paper

- Adverse shocks in EMEs like India can result in disparate outcomes on income and consumption. Typically, the response of consumption is more volatile than income (Aguiar and Gopinath, 2007).
- From the DSGE model with environment shocks, we ask two key questions:
 - Testable prediction 1: For a major adverse shock to capital, i.e., on account of a natural disaster, does consumption fall more than income for an emerging economy such as India?
 - Testable prediction 2: Does consumption take longer to recover than income as a result of a natural disaster?

The Model

- Objective: We build an E-DSGE model that captures the transmission of physical risks of a climate event to obtain some testable predictions
- Model Highlights:
 - A representative household that consumes, supplies labour and capital, holds bonds, and faces lump sum taxes
 - The law of motion of capital faces physical risks
 - A continuum of intermediate firms that produce a variety of goods and face quadratic price adjustment costs
 - A final goods sector that aggregates over the goods produced by the intermediate sector
 - The government imposes lump sum taxes on households, borrows by issuing bonds, undertakes wasteful expenditure
 - Rate on bonds are determined by a standard Taylor Rule

Households

The representative household solves the following discounted lifetime utility maximization problem:

$$\max E_t \sum_{n=0}^{\infty} \beta^{t+n} \left[\frac{C_{jt+n}^{1-\sigma}}{1-\sigma} - \epsilon_{t+n}^H \frac{\nu H_{jt+n}^{1+\varphi}}{1+\varphi} \right]$$

subject to:

$$P_t C_{jt} + P_t I_{jt} + S(I_{jt}, I_{jt-1}) + B_{jt} + T_{jt}$$

 $\leq W_t H_{jt} + Z_t K_{jt} + R_{t-1} B_{jt-1}$

$$S(I_{jt}, I_{jt-1}) = \frac{\kappa}{2} \left(\frac{I_{jt}}{I_{jt-1}} - 1 \right)^2 I_{jt-1}$$
(1)

$$\mathcal{K}_{jt} = (1 - \delta - \epsilon_t^{\prime})\mathcal{K}_{jt-1} + \mathcal{I}_{jt}$$
⁽²⁾

Intermediate Firms

Each ith firm produces its variety using labour and capital by the following production function:

$$y_{it} = \epsilon_t^A k_{it-1}^\alpha h_{it}^{1-\alpha}$$

Firm's objective is to minimise costs of production, i.e.,

 $W_t h_{it} + Z_t k_{it}$

This yields:

$$k_{it-1}: Z_t = \Psi_{it} \alpha \frac{y_{it}}{k_{it-1}}$$
$$h_{it-1}: W_t = \Psi_{it} (1-\alpha) \frac{y_{it}}{h_{it}}$$

where, Ψ_{it} is the marginal cost

Final Goods Sector

The final goods firms produce the final good by aggregating over a unit-mass variety *i* of intermediate goods. The production technology is as follows:

$$Y_t = \left(\int_0^1 y_{it}^{\frac{\epsilon-1}{\epsilon}} di\right)^{\frac{\epsilon}{\epsilon-1}} \quad \forall t$$

Demand for the *i*th variety is as follows:

$$y_{it} = \left(\frac{p_{it}}{P_t}\right)^{-\epsilon} Y_t \quad \forall \ i.$$

Further from the zero profit condition, we get the following expression for the final goods price, P_t:

$$P_t = \left(\int_0^1 p_{it}^{1-\epsilon} \, di\right)^{\frac{1}{1-\epsilon}}$$

Price Setting

The dynamic profit maximization problem for the *ith* price-setting firm is as follows:

$$\max_{p_{it}} E_t \sum_{n=0}^{\infty} \Omega_{t,t+n} \left[\frac{p_{it+n}}{P_{t+n}} y_{it+n} - \Psi_{it+n} y_{it+n} - \Gamma_{it+n} Y_{t+n} \right]$$

- where, $\Gamma_{it} = \frac{\chi}{2} \left(\frac{p_{it}}{p_{it-1}} \bar{\pi}_i \right)^2$ is the quadratic adj. cost, and subject to $y_{it} = \left(\frac{p_{it}}{P_t} \right)^{-\epsilon} Y_t$, i.e., the final goods sector firm's demand for the *i*th variety
- ▶ We obtain the following "New Keynesian Phillips Curve":

$$(1-\epsilon)+\epsilon \Gamma_t-\Psi \pi_t \left(\pi_t-\bar{\pi}\right)+\beta E_t \left\{\frac{Y_{t+1}}{Y_t}\Psi \pi_{t+1} \left(\pi_{t+1}-\bar{\pi}\right)\right\}=0.$$

Equilibrium

► The Government balances the following budget constraint:

$$G_t + R_{t-1}B_{t-1} = T_t + B_t$$

, where $G_t = g^y Y_t \epsilon_t^G$, $g^y \in (0,1)$, and $\epsilon_t^G \in N(0, \sigma_G^2)$ is a CSSP shock

The policy rate, R_t is set according to the following standard "Taylor Rule":

$$R_{t} = R_{t-1}^{\rho} \left\{ \bar{R}^{\rho} \left(\frac{\pi_{t}}{\bar{\pi}} \right)^{\phi_{\pi}} \left(\frac{Y_{t}}{\bar{Y}} \right)^{\phi_{y}} \right\}^{1-\rho}, \quad \rho \in (0,1)$$

The goods market clearing condition is given by:

$$Y_t = C_t + I_t + G_t + S(I_{jt}, I_{jt-1}) + \Gamma_t Y_t$$

Calibration

Parameter	Description	Value	Reference
β	Discount factor for households	0.98	Gabriel et al. [2012]
σ	Inverse of IES	2	Atkeson and Ogaki [1996]
φ	Inverse of the Frisch Elasticity of Labor	3	Anand and Prasad [2010]
	Supply		
ν	Dis-utility from Labor	1	Ghate et al. [2018]
δ	Rate of capital depreciation	0.025	Banerjee et al. [2020]
$\bar{\kappa}$	Investment adjustment parameter	2	Banerjee and Basu [2019]
α	Share of capital in state output	0.3	Banerjee and Basu [2019]
χ	Inflation adjustment cost	118	Saxegaard et al. [2010]
ϵ	Elasticity of substitution (variety)	7.02	Ghate et al. [2018]
ρ	Interest rate smoothing parameter	0.63	Banerjee and Basu [2019]
ϕ_{π}	Taylor coefficient on inflation	1.2	Saxegaard et al. [2010]
ϕ_y	Taylor coefficient on output	0.5	Saxegaard et al. [2010]
$\overline{\pi}$	Target inflation rate	4%	RBI MPC
\overline{h}	Steady State hours worked	1/3	Assumption
g^y	Government spending share	11%	Authors' Calculations
ρ_a	Persistence of TFP Shock	0.95	Anand and Prasad [2010]
σ_a	Std. err. of TFP Shock	0.02	Ghate et al. [2018]
σ_i	Std. err. of depreciation Shock	0.13	Banerjee and Basu 2019

Climate Change Shock: Consumption and Labor

Figure 1: Impact of a one-period adverse shock to capital

Model Testable Predictions

- Consumption falls more than income for an emerging economy such as India, post a natural disaster
- Consumption also takes longer to recover than income
- Finally, we also quantify the impact on income and consumption by household categories by average monthly income
- Is there a scope for policy intervention?

Data Description - I

- Cyclones Events: Ockhi (Dec 2017), Fani (May 2019), Vayu (June 2019), Amphan (May 2020), Nisarga (June 2020).
- Affected State: Ockhi (TN and Kerala), Fani (Odisha), Vayu (Gujarat), Amphan (WB), Nisarga (Maharashtra). Additional Controls: Karnataka and Andhra Pradesh

(d) Cyclone Fani

(b) Cyclone Amphan

Sources: (a) NDMA (b)Outlook India (c) Indian express (d) Moneycontrol

Figure 2: Cyclones in India

Data Description - II

Figure 3: Description of Households

Panel 1: Treatment districts' vs. placebo districts' HHs

Panel 2: Large impact of cyclone Ockhi on HHs

Data Description - III

Figure 4: Impact on Households

Panel 1: Cyclone impacted HHs representation

Panel 2: Statewise cyclone impacted HHs count

Data Description - IV

Household Panel from CMIE: CP: Main Characteristics								
State	No. of Households Surveyed	No. of Coastal Districts (total no. of districts)	Percent of surveyed Households in Coastal Districts					
TAMIL NADU	11,235	13 (28)	47.9					
KERALA	4,823	9(14)	72.5					
ODISHA	7,182	7 (26)	29.6					
GUJARAT	9,974	14 (25)	71.4					
WEST BENGAL	11,418	3 (19)	16.0					
MAHARASHTRA	22,355	5 (32)	26.6					
ANDHRA PRADESH	8,596	9(13)	78.4					
KARNATAKA	9,814	3 (29)	16.2					
Grand Total	85,397	63 (186)	40.1					

- Monthly Household Panel data. Observe HHs both 1 year before and 1 year after the impact month
- Estimate: Coastal vs. Non-Coastal

Empirical Methodology

- Difference-in-Difference
- Treatment Group: HHs in Coastal District

$$log (Y_{it}) = \beta_0 + \beta_1 (coastal * cyclone) + \beta_2 coastal + \beta_3 cyclone + District_FE + Year_FE + Controls(I)$$
(3)

- where, Y_{it} is income or consumption for HH *i* in period *t*
- Other Controls (1) include household size, i.e., number of members, occupation categories, etc.

Results: Household Income

		One Yea	r effect on I	Household I	ncome		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	All	West	Tamil	Kerala	Odisha	Maharashtra	Gujarat
		Bengal	Nadu				
coastal=1	0.26***	-0.22***	-0.16***	0.09***	0.01	0.48***	0.53***
	(0.04)	(0.01)	(0.01)	(0.02)	(0.01)	(0.01)	(0.04)
cyclone=1	-0.10***	-0.01	0.25***	0.40***	-0.13***	-0.03**	-0.44***
	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.05)
coastal=1 #	-0.04***	-0.15***	-0.06***	0.03***	-0.03***	0.02**	0.01
cyclone=1	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Constant	8.21***	8.79***	8.50***	8.64***	7.98***	8.50***	8.14***
	(0.04)	(0.02)	(0.02)	(0.03)	(0.11)	(0.02)	(0.13)
Observations	790232	98379	167225	52514	99225	252611	120278
Pseudo R ²							

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

- Cyclones mostly cause a negative impact on HH incomes coastal states
- Exceptions are Kerala and Maharashtra

Results: Household Consumption

One year effect on household consumption							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	All	West	Tamil	Kerala	Odisha	Maharashtra	Gujarat
		Bengal	Nadu				
coastal=1	0.06***	-0.33***	-0.19***	0.42***	-0.04***	0.28***	0.06***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.01)
cyclone=1	-0.01	-0.17***	0.22***	0.37***	-0.02*	-0.09***	0.01
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.01)
coastal=1 #	-0.07***	-0.08***	0.02***	-0.07***	-0.08***	-0.16***	-0.10***
cyclone=1	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.01)
Constant	8.18***	8.59***	8.73***	8.17***	7.83***	8.41***	8.35***
	(0.01)	(0.01)	(0.01)	(0.02)	(0.06)	(0.01)	(0.05)
Observations	880035	104228	178012	72750	103551	286844	134650
Pseudo R ²							

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

HH consumption suffers more due to cyclone

Absolute value of coefficients are mostly higher than income

Satisfies Hypothesis - I of E-DSGE model

Validating DSGE Model Findings

Figure 5: Comparing the impact of Cyclone: Income vs. Consumption

- Analogous to LLP Approach: Collects coefficients periodically
- Consumption takes longer to recover than income

Satisfies Hypothesis - II of E-DSGE model

Distributional Effects

Distribution of Green Swan effects by income categories

Results: Bank Deposit and Lending

	Chan	ges in Deposi	t and Credit:	Ockhi Cyclo	one	
	(1)	(2)	(3)	(4)	(5)	(6)
	Deposit	Deposit:	Deposit:	Credit	Credit: Rural	Credit:
		Rural	Urban			Urban
ockhi=1	0.22^{***}	0.12^{**}	0.25***	0.21***	0.07	0.24***
	(0.01)	(0.05)	(0.01)	(0.01)	(0.06)	(0.01)
coastal=1	2.17***	0.09	2.21***	1.18***	0.33	1.20***
	(0.02)	(0.21)	(0.03)	(0.04)	(0.42)	(0.04)
ockhi=1 #	-0.01	0.02	-0.03*	0.01	-0.09	0.01
coastal=1	(0.01)	(0.05)	(0.01)	(0.01)	(0.09)	(0.02)
Constant	10.14^{***}	6.64***	10.10***	10.37***	6.85***	10.33***
	(0.02)	(0.21)	(0.03)	(0.04)	(0.16)	(0.04)
Observations	123	120	123	123	120	123

Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01

No clear direction from bank deposit and lending data

Conclusions

- Data validates the model findings on:
 - the dent due to cyclone is more on consumption than income, and
 - it takes longer for consumption to recover
- Cyclones significantly reduced income in the coastal district (treatment groups) of the same state when compared to the non-coastal district.
- A significant negative impact on consumption and these losses were widespread across states.
- Evidence of regional differences, which may be influenced by a state's number of coastal districts, cyclone landfalls, and level of preparedness.

Conclusions

- The quantile regression results show that households in lower-income strata were more adversely impacted in terms of their income and consumption.
- Further, some households in higher-income strata actually witnessed an increase in income, which could have implications for equity and development.
- Underline the public policy space:
 - to revitalize consumption quickly in affected districts
 - with emphasis on transfers / redistribution to the lower income households

Thank You!