Evaluating the Impact of Urban Transit Infrastructure: Evidence from Bogotá's TransMilenio

Nick Tsivanidis

University of California, Berkeley & IGC

6th IGC-World Bank Urbanization Conference September 2019

Empirical Questions:

1. What are the **aggregate** effects of improving urban transit?

- 1. What are the **aggregate** effects of improving urban transit?
 - 2.5 billion people will move into cities by 2050, most in developing countries

Empirical Questions:

- 1. What are the **aggregate** effects of improving urban transit?
 - 2.5 billion people will move into cities by 2050, most in developing countries

New Infrastructure

- 1. What are the **aggregate** effects of improving urban transit?
 - 2.5 billion people will move into cities by 2050, most in developing countries

- 1. What are the **aggregate** effects of improving urban transit?
 - 2.5 billion people will move into cities by 2050, most in developing countries

- 1. What are the **aggregate** effects of improving urban transit?
 - 2.5 billion people will move into cities by 2050, most in developing countries

- 1. What are the **aggregate** effects of improving urban transit?
 - 2.5 billion people will move into cities by 2050, most in developing countries

- 1. What are the **aggregate** effects of improving urban transit?
 - 2.5 billion people will move into cities by 2050, most in developing countries

Empirical Questions:

- 1. What are the **aggregate** effects of improving urban transit?
 - 2.5 billion people will move into cities by 2050, most in developing countries

2. How are the gains **distributed** across the low- and high-skilled?

- 1. What are the **aggregate** effects of improving urban transit?
 - 2.5 billion people will move into cities by 2050, most in developing countries

- 2. How are the gains **distributed** across the low- and high-skilled?
 - Bogotá in 1995: low-skilled 25% more likely to commute using informal bus...
 - Which were 32% slower than cars

Opened across 3 phases in 2000s

Opened across 3 phases in 2000s

Similar speed to subways, but **Faster** and **Cheaper** to build

Opened across 3 phases in 2000s

Similar speed to subways, but **Faster** and **Cheaper** to build

Currently being built in many developing countries

Opened across 3 phases in 2000s

Similar speed to subways, but **Faster** and **Cheaper** to build

Currently being built in many developing countries

Combine with detailed **tract-level data** to examine impact

 New Commuter Market Access approach from general equilibrium theory to measure effects of transit infrastructure within cities

- New Commuter Market Access approach from general equilibrium theory to measure effects of transit infrastructure within cities
 - Individuals: Access to Jobs. Firms: Access to Workers

- New Commuter Market Access approach from general equilibrium theory to measure effects of transit infrastructure within cities
 - Individuals: Access to Jobs. Firms: Access to Workers
 - Advantages vs Standard Distance-to-Station Approach

- New Commuter Market Access approach from general equilibrium theory to measure effects of transit infrastructure within cities
 - Individuals: Access to Jobs. Firms: Access to Workers
 - Advantages vs Standard Distance-to-Station Approach
 - Regression Framework: Log-linear reduced form between CMA and outcomes

- New Commuter Market Access approach from general equilibrium theory to measure effects of transit infrastructure within cities
 - Individuals: Access to Jobs. Firms: Access to Workers
 - Advantages vs Standard Distance-to-Station Approach
 - Regression Framework: Log-linear reduced form between CMA and outcomes

- 2. Quantitative general equilibrium model of a city:
 - New Features: Low/High-skill workers + Multiple transit modes

- New Commuter Market Access approach from general equilibrium theory to measure effects of transit infrastructure within cities
 - Individuals: Access to Jobs. Firms: Access to Workers
 - Advantages vs Standard Distance-to-Station Approach
 - Regression Framework: Log-linear reduced form between CMA and outcomes

2. Quantitative general equilibrium model of a city:

New Features: Low/High-skill workers + Multiple transit modes

3. Quantification+Counterfactuals:

 Quantify welfare effects through value of time savings (VTTS) + realllocation and general equilibrium effects

Main Results

- 1. Aggregate Effects: Large gains, worth the cost
 - Welfare ↑ 1.63%, Output (net of costs) ↑ 1.44%
 - VTTS accounts for 60-80% of welfare gains, remainder by reallocation+GE effects

Main Results

- 1. Aggregate Effects: Large gains, worth the cost
 - Welfare ↑ 1.63%, Output (net of costs) ↑ 1.44%
 - VTTS accounts for 60-80% of welfare gains, remainder by reallocation+GE effects

- 2. Distributional Effects: High and low skilled benefit about the same
 - Higher public transit use of low-skilled offset by differences in commuting elasticities and GE effects

Main Results

- 1. Aggregate Effects: Large gains, worth the cost
 - Welfare ↑ 1.63%, Output (net of costs) ↑ 1.44%
 - VTTS accounts for 60-80% of welfare gains, remainder by reallocation+GE effects

- 2. Distributional Effects: High and low skilled benefit about the same
 - Higher public transit use of low-skilled offset by differences in commuting elasticities and GE effects

- 3. Key Policy Implication: Large gains to integrated transit + land use policy
 - Average welfare gain 19% higher under more accommodative zoning policy
 - Revenue from Land Value Capture scheme covers 10-40% of const. costs

Roadmap

1. Empirical Approach & Results

2. Quantification and Counterfactuals

Ingredients:

- Many discrete locations indexed by i = 1, ..., N (e.g. blocks or census tracts)
- Locations differ in amenities, productivities, commute times, floorspace
- Individuals decide where to live and work
- · Firms in each location decide how much labor+commercial floorspace to hire
- House prices and wages adjust to clear markets

Individuals: Choose between pairs of where to live *i* and work *j* that depends on:

- Residential Location Characteristics: Amenities, house prices in i
- Workplace Location Characteristics: Wages in j
- Pairwise Commute Characteristics: Cost of commuting from i to j

Supply of Residents: Depends on amenities u_i , house prices r_{Ri} and access to well-paid jobs Φ_{Ri} (RCMA)

$$L_{Ri} \propto \left(u_i r_{Ri}^{\beta-1}\right)^{\theta} \Phi_{Ri}$$

Supply of Residents: Depends on amenities u_i , house prices r_{Ri} and access to well-paid jobs Φ_{Ri} (RCMA)

$$L_{Ri} \propto \left(u_i r_{Ri}^{\beta-1}\right)^{\theta} \Phi_{Ri}$$

Supply of Labor: Depends on wages w_j and access to workers Φ_{Fj} (FCMA)

$$L_{Fj} \propto w_j^{\theta} \Phi_{Fj}$$

Supply of Residents: Depends on amenities u_i , house prices r_{Ri} and access to well-paid jobs Φ_{Ri} (RCMA)

$$L_{Ri} \propto \left(u_i r_{Ri}^{\beta-1}\right)^{\theta} \Phi_{Ri}$$

Supply of Labor: Depends on wages w_i and access to workers Φ_{F_i} (FCMA)

$$L_{Fj} \propto w_j^{\theta} \Phi_{Fj}$$

Computing CMA: Unique values of RCMA and FCMA can be recovered from data (L_{Fj}, L_{Ri}) and parameterization of commute costs (e.g. commute times computed in ArcMap).

Distance-Based Treatment Effect: Close vs Far

Distance-Based Treatment Effect: Close vs Interm. vs Far

Residents: Change in InRCMA

Hot: Larger increase Cool: Smaller increase

Firms: Change in InFCMA

Hot: Larger increase Cool: Smaller increase

Reduced Form Representation

Equilibrium can be written as:

$$\Delta \ln \mathbf{Y}_{Ri} = \boldsymbol{\beta}_{R} \Delta \ln \Phi_{Ri} + \mathbf{e}_{Ri}$$
$$\Delta \ln \mathbf{Y}_{Fi} = \boldsymbol{\beta}_{F} \Delta \ln \Phi_{Fi} + \mathbf{e}_{Fi}$$

where

- $\Delta \ln Y_{Ri} = \begin{bmatrix} \Delta \ln L_{Ri} & \Delta \ln r_{Ri} \end{bmatrix}$ and $\Delta \ln Y_{Fi} = \begin{bmatrix} \Delta \ln L_{Fi} & \Delta \ln r_{Fi} \end{bmatrix}'$ are changes in endogenous outcomes
- $\beta_R.\beta_F$ are reduced form coefficients capturing direct+indirect effects of CMA on outcomes
- \mathbf{e}_{Ri} , \mathbf{e}_{Fi} are structural errors containing changes in amenities/productivities

Isomorphisms

Data

Dataset	Source	Year	Variables
Population	General Census/DANE	1993, 2005,2015	Residential Population by Education Group
Commuting	DANE Mobility Survey	1995, 2005, 2011, 2015	Trip-diaries (trip and person characteristics)
Housing	Cadastral Department	2000-2013	Property value and characteristics, land use, land and floorspace area
Employment (Firms)	General Census	1990, 2005	Employment and industry (universe of estab.)
	Business Registry (Chamber of Commerce)	2000, 2014	Employment and industry (formal estab.)
Employment (Workers)	DANE Household Surveys (ECH/GEIH)	2000-2014	Worker demographics and employment characteristics
Commute Times	City Maps	-	Times by mode computed in ArcMap

► House Prices → Times → Rel Speeds → TM Use Inc → Employment → Congestion → Trip Char → Image

Establishing Causal Impact of BRT

 Challenge: BRT routes chosen by government, may be correlated with other drivers of economic activity

Approach:

- 1. Predict TransMi routes using (i) historical tram and (ii) least cost construction routes
- 2. Exploit opening across 3 phases to show no impacts until lines open
- 3. Use changes in accessibility due to new lines >1.5km away
- Additional Outcomes: In paper, look at effect on commute distances, wages and gentrification

CMA Captures Differential Response Across Space

Residential Floorspace Prices vs RCMA

Res Pop vs RCMA

Commercial Floorspace Price vs FCMA

Employment vs FCMA

Roadmap

1. Empirical Approach & Results

2. Quantification and Counterfactuals

Extended Model

To speak to distributional consequences, paper then develops model with multiple types of workers, firms and transit modes

Extended Model

To speak to distributional consequences, paper then develops model with multiple types of workers, firms and transit modes

Summary of Identification:

- Mode Choice Parameters: Responsiveness of mode choices to differences in commute times
- Commuting Elasticity: Responsiveness of change in commute flows to changes in commute times
- 3. **Agglomeration Externalities**: Responsiveness of change in productivities + amenities to exogenous shift in supply of residents and labor across city provided by Δ CMA instruments

Aggregate Impacts of TransMilenio

Panel A: Aggregate Gains				
Output	1.82%			
Average Welfare	1.63%			
Rents	1.91%			
Panel B: Costs vs Benefits				
Capital Costs (mm)	1,137			
NPV Operating Costs (mm)	5,963			
NPV Total Costs (mm)	7,101			
NPV Net Increase Output (mm)	26,808			
Net Increase Output	1.44%			

Welfare Decomposition

- Theoretical Result: In an efficient equilibrium, the first order welfare impact in the full GE model is simply the VTTS
- Empirical Question: How important are reallocation + GE effects?

Welfare Decomposition

- Theoretical Result: In an efficient equilibrium, the first order welfare impact in the full GE model is simply the VTTS
- Empirical Question: How important are reallocation + GE effects?

	Average Welfare	Inequality
First Order Approximation (VTTS)	1.308	-0.172
General Equilibrium	1.628	0.085

• Implication: Reallocation + GE effects are important for large shocks + distributional consequences

Policy Counterfactuals 1: Network Components

- 1. **Geography Matters**: Low-skilled benefit most from lines connecting where they live with areas of dense employment
- Large Returns to Complementary Services: "Feeder" network increases welfare more than any other line

- In Bogotá, change in transit w/o complementary change in zoning laws
 - ⇒ No significant response in housing supply to TM → details

- In Bogotá, change in transit w/o complementary change in zoning laws
 - → No significant response in housing supply to TM betails

Land Value Capture:

- "Development Rights Sale" Gvt sells permits to build at higher densities near stations
- Successful in Asian cities to (i) finance construction and (ii) increase housing supply

- In Bogotá, change in transit w/o complementary change in zoning laws
 - ⇒ No significant response in housing supply to TM → details

Land Value Capture:

- "Development Rights Sale" Gvt sells permits to build at higher densities near stations
- · Successful in Asian cities to (i) finance construction and (ii) increase housing supply

- 2 Policies: Allocate the same amount of new floorspace permits via
 - 1. Increase density by 30% within 500m of stations
 - 2. Increase density proportional to predicted change in CMA

	Avg Welfare	Inequality	Gvt. Rev Closed City	Gvt. Rev Open City
Baseline	1.63%	0.09%		
LVC-Distance	1.71%	0.03%	5.72%	17.82%
LVC-CMA	1.93%	0.01%	10.21%	41.07%

- 1. Average welfare gain 19% larger under LVC
- 2. Welfare + Revenue Gain greater under CMA-based scheme
- 3. Low-skilled benefit the most

Conclusion

My Contribution:

- Develop new empirical approach to measure effects of transit
- Quantitative model to assess aggregate and distributional effects across groups
- · Combine rich microdata + construction of world's largest BRT to assess causal impact

My Findings:

- 1. Investments in transit such as BRT have large aggregate net benefits to cities
- Low- and high-skilled benefit about the same ⇒ less precise policy tool to target the poor than implied by standard approach
- 3. Complementary change in zoning policies ⇒ maximize returns from these investments