The Macroeconomic Effects of Social Unrest

NOVEMBER 23, 2020

Metodij Hadzi-Vaskov, Samuel Pienknagura, and Luca Antonio Ricci
Motivation and Literature
Motivation: the issue

- **Social unrest has been increasing in recent years:**
 - Frequency of severe social protests has increased recently, affecting diverse places from France and Hong Kong in AEs to Chile and Lebanon in EMs, among others in 2019
 - The latest Global Peace Index (2020) suggests that the number of riots, general strikes and anti-government demonstrations around the world increased by 244 per cent over the last decade (2011 to 2019)

- **Social unrest is likely to pick up again after the pandemic** due to the adverse impact on inequality and poverty (Furceri, Loungani, Ostry, and Pizzuto, 2020; Ahmed, Ahmed, Pissarides, and Stiglitz, 2020)

- **Studies on macroeconomic effects of social unrest are limited** (more on large conflicts)
 - Conflicts are a key hurdle to economic growth (Rodrik, 1999), produce persistent negative effects on output (Cerra and Saxena, 2008; IMF, 2019; Rother et al. 2016), and result in large overall macroeconomic costs (Novta and Pugacheva, 2020)
 - Unrest usually an element of broader political instability that negatively affects growth (Alesina et al. 1996; Aisen and Veiga, 2013; Jong-A-Pin, 2009)

- Recent IMF work: Saadi Sedik and Xu (2020); Hlatshwayo and Redl (2020); Barrett et al. (2020)

Source: Authors’ calculations based on Barrett, Appendino, Nguyen and de Leon Miranda (2020).
Motivation: what we do

• We leverage on a novel index.
 • Barrett, Appendino, Nguyen and de Leon Miranda (2020).
 • Timely, transparent, high-frequency indicator with broad and consistent cross-country coverage based on counts in relevant media reports.
 • Compared to existing indicators, it provides higher frequency (than CNTSD, annual) and broader coverage (than ACLED, mainly SSA) with more objectivity and replicability (than ICRG, subjective assessment).

• We thus investigate the macroeconomic impact considering:
 • a broader pool of social events, including less severe than civil conflicts (compared to the literature looking at the economic costs of conflicts);
 • impact also on higher frequency indicators;
 • demand & supply components;
Economic activity declines following spikes in the unrest index, with GDP remaining on average ¼ pp below the pre-shock baseline after 6 quarters.

Adverse effect on GDP is driven by sharp contractions of services and manufacturing (sectoral decomposition) and consumption (demand decomposition).

Social unrest lowers confidence, raises uncertainty, albeit its adverse economic effects can be dampened by strong institutions and policy space.

Economic impact differs by type of unrest episodes:

- mainly due to politics/elections < socio-economic reasons < both

Results are robust to controlling for previous adverse growth events.
Data and methodology
Data on unrest

- Social unrest data comes from Barrett, Appendino, Nguyen and de Leon Miranda (2020).

- They propose a monthly news-based index starting in 1985m1 that quantifies social unrest for a large set of countries—the reported social unrest index (RSUI).

- The primary source is Dow Jones' Factiva news aggregator. They restrict their sample to printed articles published in major English-language newspapers and networks (USA, CAN, UK).

- The index takes the following form:

\[
RSUI_{it}^A = \frac{1}{12} \sum_{j=1}^{12} z_{t-j} x_{it} \times \frac{100}{\bar{x}_i / \bar{z}}
\]

- Where \(x_{it}\) is the article count related to unrest events in country \(i\) in month \(t\); \(z_t\) is the article count in period \(t\); \(\bar{x}_i\) and \(\bar{z}\) are the averages over all time periods.
Data on unrest (II)

- To obtain the article counts, the authors apply the following search criteria:

<table>
<thead>
<tr>
<th>x_{it}</th>
<th>y_{it}</th>
<th>z_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must include</td>
<td>Country name AND (“protest*” OR “riot*” OR “revolution” OR (“civil” or “domestic”) within 10 words of “unrest”)</td>
<td>Country Name AND “today”</td>
</tr>
<tr>
<td>Must exclude</td>
<td>Country-specific terms OR “vote of protest” OR “protest vote” OR “protestant*” OR “anniversary” OR “war” OR “memorial” OR “movie”</td>
<td>“today”</td>
</tr>
<tr>
<td>Location tag</td>
<td>Country i</td>
<td>Country i</td>
</tr>
<tr>
<td>Subject tag</td>
<td>Domestic Politics Or Civil Unrest</td>
<td></td>
</tr>
<tr>
<td>Word count</td>
<td>100+</td>
<td>100+</td>
</tr>
</tbody>
</table>

Table 1: Article search Criteria
RSUI

Source: Barrett et al. (2020).

Source: Barrett et al. (2020).
Data on unrest (III)

• In addition to constructing the index, the authors propose an algorithm to identify RSUI-implied events.

• An RSUI-implied event has to satisfy the following three criteria:

 1. It must be a local peak: \(RSUI_{it} = \max\{RSUI_{it+1}, RSUI_{it-1}\} \)

 2. The index satisfies one of the following:

 ▪ \(RSUI_{it} > \overline{RSUI_{it}} + (4 \times sd(RSUI_{it})) \) or

 ▪ \(RSUI_{it} \) is in the top 2% or

 ▪ \(RSUI_{it} \) exceed the 20-year moving average by 4 times the 20-year st. dev.

 3. The unrest article count for the month is at least 10 percent the average monthly count for the country over the past 12 months.

• We label an event satisfying all five criteria as a major event.
Data on unrest (IV)

- In the empirical analysis we use the dataset constructed by Barrett, Appendino, Nguyen and de Leon Miranda (2020) as follows:

 - For each country, we aggregate the **social unrest index** (RSUI) at the quarterly level by taking the maximum level over the quarter.

 - We also aggregate the **RSUI-implied event** dummy constructed by the authors and the **major event dummy** at the quarterly level (taking the maximum over the quarter) and focus on **new events**—events that are at least 8 quarters apart from each other.

 - We will use both the index and the event, in separate exercises.

 - Based on the event’s main underlying cause/trigger, we distinguish between 3 types:

 (1) **Political/elections**
 (2) **Socio-economic**
 (3) **Mixed**
Volatility of RSUI varies substantially across countries

Based on quarterly data, where the quarter is defined by the max of the 3 months.
Macroeconomic data and sample

- We include all 96 countries with both RSUI and quarterly GDP data over the period 1990-2018, excluding fragile states.
- Quarterly GDP and other NA accounts data comes from national sources (SA by authorities if available, otherwise we use Haver for SA).
- Debt/GDP comes from the Fiscal Monitor database.
- Rule of law estimates come from the World Governance Indicators (Kaufmann, Kraay, and Mastruzzi, 2010)
- Data on exchange rate regimes comes from Ilzetzki, Reinhart and Rogoff (2019).
- Data for confidence indicators, monthly economic activity and industrial production are from Haver.
- Data on uncertainty comes from the latest vintage of the World Uncertainty Index proposed by Ahir, Bloom and Furceri (2018).
- Excluded fragile states as defined by the World Bank in at least one year since 2006.
Macroeconomic data and sample

Advanced economies (33):
Australia, Austria, Belgium, Canada, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hong Kong, Ireland, Israel, Italy, Japan, Korea, Latvia, Lithuania, Netherlands, New Zealand, Norway, Portugal, Singapore, Slovakia, Slovenia, Spain, Sweden, Switzerland, Taiwan PoC, UK, United States

Emerging Mkts and Low-income Countries (63):
Albania, Algeria, Argentina, Armenia, Azerbaijan, Bahrain, Bangladesh, Bolivia, Brazil, Bulgaria, Burkina Faso, Chile, China, Colombia, Croatia, Ecuador, Egypt, Ethiopia, Ghana, Guatemala, Honduras, Hungary, India, Indonesia, Iran, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyz Republic, Macedonia, Malaysia, Mexico, Moldova, Montenegro, Morocco, Nicaragua, Niger, Pakistan, Panama, Paraguay, Peru, Philippines, Poland, Qatar, Romania, Russia, Rwanda, Saudi Arabia, Senegal, Serbia, South Africa, Sri Lanka, Tanzania, Thailand, Tunisia, Turkey, Uganda, Ukraine, United Arab Emirates, Venezuela, Vietnam, Zambia
Econometric approach

• We assess the macroeconomic impact of episodes of social unrest using the local projection method proposed by Jordà (2005) and Teulings and Zubanov (2014).

• The procedure does not constrain the shape of the impulse response functions and is less sensitive to misspecification than estimates of VAR models.

• The benchmark specification at a quarterly frequency is as follows:

\[y_{i,t+h} - y_{i,t-1} = \alpha_i^h + \gamma_t^h + \beta^h \text{unrest}_{i,t} + \delta X_{i,t} + \epsilon_{i,t+h} \]

• \(y\) is the variable of interest (GDP, sectoral value added, demand components, confidence); \textit{unrest is either the index proposed by Barrett et al. 2020 (RSUI) or the event dummy}; and \(X\) are a set of controls that includes past values of the dependent variable and past and future values of the shock (in the case of regressions using the RSUI).

• One of the main advantages of the LP method in estimating the effects of shocks is its flexibility in dealing with non-linearities and state dependency (Ramey and Zubairy, 2018).
Results: Impact of RSUI
GDP declines following spikes in the unrest index

- GDP experiences a steady decline following a shock of one standard deviation in the unrest index.
- GDP declines by -0.1 percentage points qoq on impact.
- After 6 quarters, quarterly GDP remains .25 percentage points below its pre-shock level.
- A shock of one standard deviation is equivalent to the protests following the Peña Nieto election in 2012 or Chile’s presidential election protests in 2013.
- For comparison, the protests of July 2019 in HKG and the yellow vest protests of 2018 in France resulted in an increase of 4 st.dev. in RSUI, while the events of Oct/Nov 2019 in Chile resulted in a 10 st.dev. increase in RSUI.

Standard errors are clustered at the country level.
The adverse effects on GDP appear to be driven by a sharp contraction in manufacturing and services.

Agriculture
Response to a one st.dev. to the unrest index

Manufacturing
Response to a one st.dev. to the unrest index

Services
Response to a one st.dev. to the unrest index

Standard errors are clustered at the country level.
On the demand side, the effect of unrest is more evident on consumption.

Consumption
Response to a one st.dev. to the unrest index

Investment
Response to a one st.dev. to the unrest index

Trade balance
Response to a one st.dev. to the unrest index

Standard errors are clustered at the country level.
Unrest increases uncertainty and somewhat dampens consumer confidence

World Uncertainty Index for the country
Response to a one st.dev. to the unrest index

Consumer confidence
Response to a one st.dev. to the unrest index

Business Confidence
Response to a one st.dev. to the unrest index

Standard errors are clustered at the country level.
The adverse effects of unrest are evident in all countries regardless of income levels, but impact is (about 3 times) larger in EMs.

GDP, advanced economies

Response to a one st.dev. to the unrest index

GDP, EMs

Response to a one st.dev. to the unrest index

Standard errors are clustered at the country level.
Results: role of institutions and policy space
Econometric approach (state-dependent LP)

• In addition to the benchmark regression presented previously, we explore specifications that condition the response of activity to social unrest shocks to particular states S.

• The typical specification takes the following form (unrest=RSUI)

$$
\begin{align*}
 y_{i,t+h} - y_{i,t-1} &= F(z_{i,t-1})[a^h_{\text{high},i} + \gamma^h_{\text{high},t} + \beta^h_{\text{high}} \text{unrest}_{i,t} + \delta^h_{\text{high}}X_i,t] + \\
 (1 - F(z_{i,t-1}))[a^h_{\text{low},i} + \gamma^h_{\text{low},t} + \beta^h_{\text{low}} \text{unrest}_{i,t} + \delta^h_{\text{low}}X_i,t] + \epsilon_{i,t+h}.
\end{align*}
$$

• $F(z_{i,t-1})$ is a smooth function of the state variable taking a value between 0 and 1; z is a normalized version of the state variable such that $F(0) = \frac{1}{2}$.

• The state variables account for:
 i) Rule of law; ii) Debt level; iii) Exchange rate flexibility; iv) Product market competition, and v) Labor market flexibility

• As is common in the literature, we assume $F(z_{i,t-1}) = \exp(-\lambda_0 z_{i,t-1}) / (1 + \exp(-\lambda_0 z_{i,t-1}))$
Strong institutions and available policy space can dampen the adverse effects of unrest

Black (red) lines corresponding to weak (strong) institutions/policy space

GDP’s response to social unrest, by level of rule of law

GDP’s response to social unrest, by debt level

GDP’s response to social unrest, by XR-flexibility

Standard errors are clustered at the country level.
Some structural factors affect performance following episodes of unrest, others do not

Black (red) lines corresponding to low (high) competition/flexibility

GDP’s response to social unrest, by level of Product Market Competition

GDP’s response to social unrest, by level of Labor Market Flexibility

- Prior was for structural factors to affect medium-term performance, not necessarily the immediate response to unrest events.
- Open question: what could be plausible mechanisms through which low PMC amplifies the adverse effects of social unrest?
Results: large events and different types of episodes
Not surprisingly, large unrest events lead to larger GDP contractions (twice as much)

Standard errors are clustered at the country level.
Unrest episodes motivated by socio-economic issues lead to sharper GDP contractions than episodes related to politics/elections...

GDP

Response to events triggered by politics

Response to events associated with social issues

Standard errors are clustered at the country level.
...while episodes triggered by intertwined socio-economic and political issues are associated with largest GDP contractions

GDP

Response to events associated with both

- Standard errors are clustered at the country level.

GDP

Response to events that cannot be labeled

- Standard errors are clustered at the country level.
Addressing endogeneity concerns
No clear growth decline pre-unrest, apart from in t-3 average growth deviation below zero for 4q after unrest.
Methodology (I)

We refine our regressions to control for potential endogeneity both when using RSUI and events. When using “events” we run the following regression:

\[y_{i,t+h} - y_{i,t-1} = \alpha_i^h + \gamma_t^h + \beta_{s}^{h} s_{\text{event} i,t} + \beta_{g}^{h} g_{\text{event} i,t} + \delta X_{i,t} + \epsilon_{i,t+h} \]

- \(s_{\text{event} i,t} \): a dummy taking value one if country \(i \) experienced a social unrest event in period \(t \) and experienced two or three quarters of below average growth in the three quarters preceding the unrest event;
- \(s_{\text{event} i,t} \): takes value one if country \(i \) experienced a social unrest event and did not experienced two or three quarters of below average growth in the three quarters preceding the unrest event;
- \(g_{\text{event} i,t} \): takes value one if country \(i \) experienced two or three quarters of below average growth prior to \(t \) and did not experience a social unrest event. The excluded group are countries that neither experienced unrest nor low growth.
- Growth events based on negative deviations from country averages (at least 2 out of the last 3 quarters). Robust to alternative definitions based on: similar deviations from MA, or from zero growth, as well as negative growth in t-1
Methodology (II)

We follow a slightly modified approach when using RSUI as our shock. In this case we run the following LP model:

\[
y_{i,t+h} - y_{i,t-1} = \alpha^h_i + \gamma^h_t + \beta_{low}^h \times low_{i,t} \times RSUI \\
+ \beta_{no
down}^h \times (1 - low_{i,t}) \times RSUI_{i,t} + \delta_{low}^h \times low_{i,t} + \delta_{low}^h \times (1 - low_{i,t}) + \delta X_{i,t} + \epsilon_{i,t+h}
\]

Where \(low_{i,t}\) is a dummy variable that takes value one if country \(i\) experienced two or three quarters of below average growth prior.

- Thus, \(\beta_{low}^h\) captures the effect of an increase in the social unrest index (RSUI) in countries with prior low growth, and \(\beta_{no
down}^h\) captures the effect of an increase in the social unrest index (RSUI) in countries with no prior low growth.
Social unrest affects growth even when controlling for prior adverse growth events (I)

- Panel 3 shows that social unrest affects growth even if not preceded by adverse growth events.

- Panels 1 and 2 show that adverse growth events are persistent, but when followed by social unrest then the future growth impact is larger.

- Indeed, Panel 4 shows that social unrest significantly worsens the growth impact of adverse growth events.
Social unrest affects growth even when controlling for prior adverse growth events (II)

- Similar results when using RSUI.
- A one st. dev. spike in RSUI lowers GDP in countries that experienced prior low growth.
- Similarly, spikes in RSUI diminishes GDP in countries that were not experiencing low growth, albeit effects are smaller and last fewer quarters.
Conclusions
Conclusions (I)

- Economic activity declines following a one standard deviation increase in the unrest index, with GDP remaining on average ¼ pp below the pre-shock level after 6 quarters.

- Adverse effect on GDP is driven by sharp contractions of:
 - *Manufacturing and Services* (from sectoral perspective); and
 - *Consumption* (from demand side).

- Unrest is found to:
 - dampen (consumer) confidence and raise uncertainty
 - adversely affect both AE and EM, though effect seems larger for EMs.

- Strong institutions and available policy space can dampen the adverse effects of unrest.
Conclusions (II)

• Effects are larger when considering events of social unrest—which are increases of at least 4 standard deviations in the RSUI.

 o On average, GDP remains 2 percentage points below baseline after 6 quarters of a social unrest event.

 o For comparison, the impact of social unrest events is larger than the impact on GDP of a negative shock (2 st.dev.) to commodity terms-of-trade growth.

• Unrest episodes motivated by socio-economic reasons result in sharper GDP contractions compared to those associated mainly with politics/elections; episodes triggered by a combination of socio-economic and political issues see sharpest contractions

• Results are robust to controlling for previous adverse growth events

• Results based on monthly data somewhat weaker given the relatively high noise at such frequency