Gender Barriers, Structural Transformation and Economic Development

Gaurav Chiplunkar University of Virginia Tatjana Kleineberg World Bank

ABCDE June 2023

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 1 / 20

<ロ> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Motivation

 Extensive literature studies the causes of structural transformation and consequences for economic development (Maddison, 1980; Duernecker et al., 2016; Bick et al., 2022; Fiszbein, 2022)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Motivation

- Extensive literature studies the causes of structural transformation and consequences for economic development (Maddison, 1980; Duernecker et al., 2016; Bick et al., 2022; Fiszbein, 2022)
- However, the gender aspect of structural transformation remains understudied

<ロト < 同ト < 三ト < 三ト < 三ト < ○への</p>

Motivation

- Extensive literature studies the causes of structural transformation and consequences for economic development (Maddison, 1980; Duernecker et al., 2016; Bick et al., 2022; Fiszbein, 2022)
- However, the gender aspect of structural transformation remains understudied
- From the gender perspective, substantial changes across the world over the last 50 years:
 - ► higher FLFP, closing wage gaps b/w men and women
 - lower gender education gaps, esp. after 1990s Figure (Evans, Akmal and Jakiela, 2021)
 - measurable changes in gendered laws at the workplace, mobility for women, HH norms (WBL Data, World Bank)

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 2 / 20

However...

• Substantial gender barriers continue to persist, despite economic development \rightarrow extensive applied micro literature documenting its causes and consequences

<ロト < 同ト < 三ト < 三ト < 三ト < ○への</p>

However...

- Substantial gender barriers continue to persist, despite economic development \rightarrow extensive applied micro literature documenting its causes and consequences
- Growing (macro)literature emphasizes the importance of gender in:
 - impacting employment choices, and hence economic development (Gottlieb, Gollin, Doss and Poschke, 2021; Chiplunkar and Goldberg, 2022; Lee, 2020; Ngai and Petrongolo, 2017; Goldin, 1994)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

However...

- Substantial gender barriers continue to persist, despite economic development \rightarrow extensive applied micro literature documenting its causes and consequences
- Growing (macro)literature emphasizes the importance of gender in:
 - impacting employment choices, and hence economic development (Gottlieb, Gollin, Doss and Poschke, 2021; Chiplunkar and Goldberg, 2022; Lee, 2020; Ngai and Petrongolo, 2017; Goldin, 1994)
 - \blacktriangleright inefficient talent allocation across sectors \rightarrow loss in aggregate productivity/output

(Chiplunkar and Goldberg, 2022; Hsieh, Hurst, Jones and Klenow, 2019; Cuberes and Teignier, 2014, 2016)

<ロト < 回 ト < 三 ト < 三 ト < 三 ・ つ へ ()</p>

June 2023

3 / 20

Chiplunkar & Kleineberg (Gender and Structural Transformation)

Q1. What are the gender-specific patterns in employment and wages across countries and over time?

<ロト < 同ト < 三ト < 三ト = 三 の < ○</p>

Q1. What are the gender-specific patterns in employment and wages across countries and over time?

What we do:

- i) Document stylized facts on the gender dimension of structural transformation across countries b/w 1970-75 and 2015-2018
- ii) Examine occupation and sector choice (incl. home-work) + wages

Q1. What are the gender-specific patterns in employment and wages across countries and over time?

What we do:

- i) Document stylized facts on the gender dimension of structural transformation across countries b/w 1970-75 and 2015-2018
- ii) Examine occupation and sector choice (incl. home-work) + wages
- Q2. How important are gender barriers for countries' structural transformation and economic development?

Q1. What are the gender-specific patterns in employment and wages across countries and over time?

What we do:

- i) Document stylized facts on the gender dimension of structural transformation across countries b/w 1970-75 and 2015-2018
- ii) Examine occupation and sector choice (incl. home-work) + wages
- Q2. How important are gender barriers for countries' structural transformation and economic development?

What we do:

- i) Estimate a G.E. model of occupation-sector choice
 - decompose diff./changes \rightarrow economic & non-economic channels
- ii) How much do these gender barriers matter?
 - quantify growth b/w 1970-2015 coming from gender barriers

<ロ> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 4 / 20

- IPUMS Data
 - ► Nationally representative (census, labor force surveys)
 - ► Harmonized variables on sector, occupation, and education

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- IPUMS Data
 - ► Nationally representative (census, labor force surveys)
 - ► Harmonized variables on sector, occupation, and education
- Global Sample: 91 countries (273 country-years)
 - ► Data on employment choices → patterns of structural transformation + sectoral/occupation gaps
 - ► Coverage across LICs, MICs, HICs; Time: 1970-2015

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨー つくで

- IPUMS Data
 - ► Nationally representative (census, labor force surveys)
 - ► Harmonized variables on sector, occupation, and education
- Global Sample: 91 countries (273 country-years)
 - ► Data on employment choices → patterns of structural transformation + sectoral/occupation gaps
 - ► Coverage across LICs, MICs, HICs; Time: 1970-2015
- Core Sample: 6 countries (34 country-years) Global Coverage Countries
 - ► India, Indonesia, Brazil, Mexico, Canada, and USA
 - ► Data on hourly wages, sectoral value-added, etc. available
 - ► Long decadal panels for each country b/w 1970-75 to 2015-18 at the sector-occupation-gender level.

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 5 / 20

200

Classification of Sectors

Sector	IPUMS Sector Classifications
Agriculture Manufacturing Market Services	Agriculture, Fishing and Forestry Mining, Construction, Electricity, Gas, Water Retail, Wholesale, Transport, Hotels, Education, Health
Home Services	Household Services, Unemployed, Inactive

Similar to Herrendorf et al. (2013); Herrendorf and Schoellman (2018)

Classification of Occupations

Code	Occupation	Classification	Sector	Details
1 2 3	Officials and Managers Professionals Technicians	Professional Professional Professional	M, S M, S M, S	Senior Officials, General and Technical Managers
4 5	Clerks Service Workers and Shop and Market Sales	Clerks Services Workers	M, S M, S	Secretaries, Librarians, Cashiers Travel, Housekeeping, Personal- care Workers, Shop and Market Sales and Service Workers
6	Skilled Agricultural and Fishery Workers	Skilled Agri.	A	Farmers, Animal Producers, Forestry and Fishery Workers
7	Crafts and Related Trades Workers	Craft/Trade Wrkrs	M, S	Builders, Painters, Blacksmiths, Electricians, Potters, Printers, Textile, Leather Workers
8	Plant and Machine Operators	Plant & Machine	M, S	Plant and Machine Operators in Mining, Metal, Glass, Wood, Chemical, Rubber, Transportation
9	Elementary Occupa- tions	Elementary	A,M,S	Street Vendors, Domestic Helpers, Porters, Doorkeepers, Garbage Collectors, Manual and Trans- portation Laborers

<□▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

Stylized Facts on Gender and Structural Transformation

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 6 / 20

<ロト < 回 ト < 三 ト < 三 ト 三 三 のへで</p>

#1 Structural Transformation and Development

#1 Struc. Trans. b/w Men and Women

Excluding home-work, i.e., conditional on LFP

- Men leave Agriculture \rightarrow enter Manufacturing & Services
- ${\scriptstyle \bullet}$ Women leave Agriculture ${\rightarrow}$ enter Services

With Country FEs

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 8 / 20

nac

< A >

#1 Struc. Trans. b/w Men and Women Including home-work

- First: Leave Agriculture \rightarrow enter Services & Home Work (LFP \downarrow)
- Then: Leave Home Work → enter Services (LFP ↑)
 With Country FEs

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 9 / 20

nac

< 口 > < 何 >

#2 Occ. Trans. b/w Men and Women

Including home-work

- Men leave Agriculture \rightarrow Craft/Trade Wrkrs \rightarrow Professionals
- Women leave Agriculture \rightarrow Leave LF \rightarrow Clerks and Professionals With Country FEs

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 10 / 20

San

< □ > < 同 > < 三

Use Core Sample countries, define X Gap: $R_{oj}^{X} = X(oj|f)/X(oj|m)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

11 / 20

Use Core Sample countries, define X Gap: $R_{oj}^{X} = X(oj|f)/X(oj|m)$

- Employment Gaps: Across Countries
 - FLFP: Women 8.5x more likely to stay at home in 1970s;
 3.5x more likely by 2010s
 - Sectoral gaps \downarrow : esp. Services (0.63 \rightarrow 0.87)
 - Occ. gaps ↓: esp. Professional (0.41→0.86); Women over-represented in Clerk occupations

Use Core Sample countries, define X Gap: $R_{oj}^{X} = X(oj|f)/X(oj|m)$

- Employment Gaps: Across Countries
 - FLFP: Women 8.5x more likely to stay at home in 1970s;
 3.5x more likely by 2010s
 - Sectoral gaps \downarrow : esp. Services (0.63 \rightarrow 0.87)
 - ► Occ. gaps ↓: esp. Professional (0.41→0.86); Women over-represented in Clerk occupations
 - ► LICs vs MICs/HICs: higher levels, slower reductions over time

Use Core Sample countries, define X Gap: $R_{oj}^{X} = X(oj|f)/X(oj|m)$

- Employment Gaps: Across Countries
 - FLFP: Women 8.5x more likely to stay at home in 1970s;
 3.5x more likely by 2010s
 - Sectoral gaps \downarrow : esp. Services (0.63 \rightarrow 0.87)
 - ► Occ. gaps ↓: esp. Professional (0.41→0.86); Women over-represented in Clerk occupations
 - ► LICs vs MICs/HICs: higher levels, slower reductions over time
- Wage Gaps: Across Countries
 - ► General closing of wage gaps over time (slowest in India)
 - ► Women earn 80c per 1\$ by men in 85% of occupations even today

Use Core Sample countries, define X Gap: $R_{oj}^{X} = X(oj|f)/X(oj|m)$

- Employment Gaps: Across Countries
 - FLFP: Women 8.5x more likely to stay at home in 1970s;
 3.5x more likely by 2010s
 - ► Sectoral gaps ↓: esp. Services (0.63→0.87)
 - ► Occ. gaps ↓: esp. Professional (0.41→0.86); Women over-represented in Clerk occupations
 - ► LICs vs MICs/HICs: higher levels, slower reductions over time
- Wage Gaps: Across Countries
 - ► General closing of wage gaps over time (slowest in India)
 - ▶ Women earn 80c per 1\$ by men in 85% of occupations even today
 - \blacktriangleright No correlation across development \rightarrow gaps in LICs, MICs, HICs
 - ► Little correlation b/w Emp and Wage Gaps:
 Eg: Professionals→ highest wage gaps despite low emp. gaps

June 2023 11 / 20

<ロト < 回 ト < 三 ト < 三 ト < 三 ・ つ へ ()</p>

Measuring Segregation: Theil Index

• Theil index \rightarrow "distance" the population is away from the "ideal" egalitarian state (=0) Similar to the Gini Index

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Measuring Segregation: Theil Index

• Theil index \rightarrow "distance" the population is away from the "ideal" egalitarian state (=0) Similar to the Gini Index

- LICs: agro-economies; high FLFP \Rightarrow low segregation
- MICs: men \rightarrow {M,S}; women \rightarrow {H,S} \Rightarrow more segregation
- HICs: men & women \rightarrow S \Rightarrow lower segregation

Chiplunkar & Kleineberg (Gender and Structural Transformation)

Measuring Segregation: Sectors vs Occupations?

 Can decompose "overall" Theil index into across sectors vs within sectors across occupations

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Measuring Segregation: Sectors vs Occupations?

 Can decompose "overall" Theil index into across sectors vs within sectors across occupations

- LICs and MICs: 30-40% explained within sectors (across occs)
- HICs: \approx 60% explained within sectors (across occs)

Chiplunkar & Kleineberg (Gender and Structural Transformation)

 \bullet Diff. over time/ctries \rightarrow economic and non-economic channels

June 2023 14 / 20

<ロト < 回 ト < 三 ト < 三 ト 三 三 のへで</p>

- $\, \bullet \,$ Diff. over time/ctries \rightarrow economic and non-economic channels
- Economic channels:
 - Production technology differences
 - Gender-specific comparative advantage
 - Skill acquisition or returns in occupations
 - Changes in consumption baskets with income

<ロ> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

 $\, \bullet \,$ Diff. over time/ctries \rightarrow economic and non-economic channels

• Economic channels:

- Production technology differences
- Gender-specific comparative advantage
- Skill acquisition or returns in occupations
- Changes in consumption baskets with income

• Non-Economic Channels:

- Wage discrimination
- ► Gender norms/utility-costs of working in an occupation-sector

 $\, \bullet \,$ Diff. over time/ctries \rightarrow economic and non-economic channels

• Economic channels:

- Production technology differences
- Gender-specific comparative advantage
- Skill acquisition or returns in occupations
- Changes in consumption baskets with income

• Non-Economic Channels:

- Wage discrimination
- ► Gender norms/utility-costs of working in an occupation-sector
- $\bullet~$ Develop model of occupation-sector choice with these channels $\rightarrow~$ quantify gender barriers +~ impact on agg. outcomes

Model

Chiplunkar & Kleineberg (Gender and Structural Transformation)
Setup of the Economy

- Occupations and Sectors:
 - Agriculture, Manufacturing, "Home", "Market" Services
 - Occupations o within each sector j

Setup of the Economy

- Occupations and Sectors:
 - Agriculture, Manufacturing, "Home", "Market" Services
 - Occupations o within each sector j
- Consumer Preferences:
 - ► Non-homothetic PIGL preferences over j = {A, M, S} allow for changes in sectoral exp. shares as income increases Details (Herrendorf et al., 2013; Alder et al., 2022; Comin et al., 2021; Fan et al., 2021)
 - CES preferences over Home and Market Services Equations (Ngai and Petrongolo, 2017; Olivetti and Petrongolo, 2016)

Setup of the Economy

- Occupations and Sectors:
 - Agriculture, Manufacturing, "Home", "Market" Services
 - Occupations o within each sector j
- Consumer Preferences:
 - ► Non-homothetic PIGL preferences over j = {A, M, S} allow for changes in sectoral exp. shares as income increases Details (Herrendorf et al., 2013; Alder et al., 2022; Comin et al., 2021; Fan et al., 2021)
 - CES preferences over Home and Market Services Equations (Ngai and Petrongolo, 2017; Olivetti and Petrongolo, 2016)
- N_g individuals of gender g have ability $z \sim F_g(z)$:
 - ability dist.pprox schooling dist; returns to ability κ_{ojg}
 - production: occupational mix (γ_{oj}) ; sectoral productivity (B_j)

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 15 / 20

<ロ> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Calibrating the Gender Barriers

Gender norms/utility-cost calibrated to occupation choice data:

(normalizing $A_{home,g} = 0$)

$$\Pr(oj|g) \propto \left[\underbrace{V(I,p)}_{\text{Real Income}} - \underbrace{A_{ojg}}_{\text{LFP disutility}}\right]$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

Calibrating the Gender Barriers

Gender norms/utility-cost calibrated to occupation choice data:

2 Wage discrimination calibrated to gender wage gap data: $I_{ojg}(z) = (1 - \tau_{ojg})w_{oj} \times z^{\kappa_{ojg}}$

Calibrating the Gender Barriers

Gender norms/utility-cost calibrated to occupation choice data:

2 Wage discrimination calibrated to gender wage gap data: $I_{ojg}(z) = (1 - \tau_{ojg})w_{oj} \times z^{\kappa_{ojg}}$

3 Model Calibration:

 \rightarrow Minimal Restrictions: parameters at sector-occupation level, separately for each country-year

 \rightarrow No apriori assumptions: "barriers" can be $+ve_{,-}ve$

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 16 / 20

Sac

Results

Chiplunkar & Kleineberg (Gender and Structural Transformation)

Gender Norms and Wage Discrimination

- $\triangle A$ Across Countries Across Countries
 - Large reductions in $\triangle A$, especially in services, professional occupations
 - ► LICs vs MICs/HICs: higher levels, lower change over time

<ロ> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Gender Norms and Wage Discrimination

- $\triangle A$ Across Countries Across Countries
 - Large reductions in $\triangle A$, especially in services, professional occupations
 - ► LICs vs MICs/HICs: higher levels, lower change over time
- Wage discrimination τ : Across Countries
 - General lowering of τ over time (except in India)
 - Similar magnitudes across the spectrum of economic development

- コント (日) - (日) - (日) - (日) - (日)

Gender Norms and Wage Discrimination

- $\triangle A$ Across Countries Across Countries
 - ▶ Large reductions in $\triangle A$, especially in services, professional occupations
 - ► LICs vs MICs/HICs: higher levels, lower change over time
- Wage discrimination τ : Across Countries
 - General lowering of τ over time (except in India)
 - ► Similar magnitudes across the spectrum of economic development

• Plausibility of Estimates:

- corr. with occupational choices, wage gaps in data

Bin scatter: A Country-specific Fit: A Bin scatter: au Country-specific Fit: au

- Women, Business & Law Indicators on workplace equality and gender norms across countries \bigodot

- sectoral expenditure shares across ctries & over time Model vs Data

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

June 2023

17 / 20

Chiplunkar & Kleineberg (Gender and Structural Transformation)

How much do Gender Barriers Matter?

Chiplunkar & Kleineberg (Gender and Structural Transformation)

< □ > < 書 > < 書 > < 書 > 書 の Q (~ June 2023 17 / 20

• What proportion of growth in these countries b/w 1970-75 and 2010-15 be explained by a reduction in "gender barriers"?

- What proportion of growth in these countries b/w 1970-75 and 2010-15 be explained by a reduction in "gender barriers"?
- Calculate the following:
 - take the first (B) and last (E) year for each country

- What proportion of growth in these countries b/w 1970-75 and 2010-15 be explained by a reduction in "gender barriers"?
- Calculate the following:
 - take the first (B) and last (E) year for each country
 - fix au and riangle A to B and calculate: $riangle Y_j = rac{Y_{jE}}{Y_{jB}} 1$

- What proportion of growth in these countries b/w 1970-75 and 2010-15 be explained by a reduction in "gender barriers"?
- Calculate the following:
 - take the first (B) and last (E) year for each country
 - fix τ and $\triangle A$ to B and calculate: $\triangle Y_j = \frac{Y_{jE}}{Y_{iB}} 1$
 - calculate: $\lambda = 1 \frac{ riangle Y_j}{ riangle Y_i^{base}}$
 - $\lambda \rightarrow$ frac. of riangle Y that can be explained by gender barriers

- What proportion of growth in these countries b/w 1970-75 and 2010-15 be explained by a reduction in "gender barriers"?
- Calculate the following:
 - take the first (B) and last (E) year for each country
 - fix τ and $\triangle A$ to B and calculate: $\triangle Y_j = \frac{Y_{jE}}{Y_{iB}} 1$
 - calculate: $\lambda = 1 \frac{ riangle Y_j}{ riangle Y_j^{base}}$
 - $\lambda
 ightarrow$ frac. of riangle Y that can be explained by gender barriers
- Aim is to help us understand which barriers are important + "mechanisms" at work, as opposed to "policies" per se

Changes in Aggregate Output (Real Value-Added)

	Se	ectoral O	Aggregate	
	Agri.	Manf.	Services	Output
	(1)	(2)	(3)	(4)
IND	0.14	0.05	0.04	0.04
IDN	0.09	0.07	0.20	0.17
BRA	0.27	0.23	0.34	0.29
MEX	0.13	0.19	0.28	0.24
CAN	0.12	0.23	0.28	0.30
USA	0.12	0.19	0.25	0.25
AVG	0.15	0.16	0.23	0.21

- Gender barriers explain on average 20-30% of growth in these countries over time; India being the notable exception
- Driven by changes in FLFP, employment in manufacturing and services, clerk and professional occupations

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 19 / 20

Sac

Concluding Thoughts

Chiplunkar & Kleineberg (Gender and Structural Transformation)

Concluding Thoughts

 $\bullet\,$ Document the gender side of structural transformation $\to\,$ large gender differences in occ-sector choices and wages

Decompose these differences b/w economic and non-economic channels

 Policy simulations indicate that eliminating these barriers can meaningfully reallocate labor + explain 20-30% of economic growth experienced by these countries

Thank you!

Email: ChiplunkarG@darden.virginia.edu

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 20 / 20

Appendix

Chiplunkar & Kleineberg (Gender and Structural Transformation)

WBL changes Motivation Results

June 2023 21 / 20

Э

590

Chiplunkar & Kleineberg (Gender and Structural Transformation)

590 June 2023 22 / 20

Э

イロト 不得 トイヨト イヨト

Country	Years	GDP p.c. (2010 \$)
India	1983, 1987, 1993, 1999, 2004	\$1,357
Indonesia	1976, 1995	\$3,122
Jamaica	1982, 1991, 2001	\$4,704
Dom. Republic	1981, 2002	\$5,555
Colombia	1973	\$6,336
South Africa	1996, 2001, 2007	\$7,328
Panama	1980, 1990, 2000,2010	\$8,082
Mexico	1970, 1990, 1995, 2000, 2010, 2015	\$9,271
Brazil	1970, 1980, 1991, 2000, 2010	\$11,286
Uruguay	2006	\$11,992
Venezuela	1981, 1990, 2001	\$13,825
Canada	1971, 1981, 2001, 2011	\$48,464
USA	1960, 1970, 1980, 1990, 2000-15	\$48,467

Chiplunkar & Kleineberg (Gender and Structural Transformation)

Sample Back

Country	1970-80	1980-89	1990-99	2000-09	>2010
Mexico					
Brazil					
Canada					
USA					
Venezuela					
Panama					
India					
Indonesia					
Jamaica					
Dom. Republic					
South Africa					
Colombia					
Uruguay					
			• • • •		

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 24 / 20

 $Q (\mathcal{C})$

Sample details Back

Sample:

- Restrict the sample from 16-65 years of age
- Drop individuals who are in armed forces, retired, other unspecified occupations, etc.

Sample details Back

Sample:

- Restrict the sample from 16-65 years of age
- Drop individuals who are in armed forces, retired, other unspecified occupations, etc.

Income:

- $\bullet~$ To the extent possible, consider total income from all sources $\rightarrow~$ formal and informal jobs with/without benefits
- Next iteration: HH-income on farms (for example)

Sample details Back

Sample:

- Restrict the sample from 16-65 years of age
- Drop individuals who are in armed forces, retired, other unspecified occupations, etc.

Income:

- $\bullet~$ To the extent possible, consider total income from all sources $\rightarrow~$ formal and informal jobs with/without benefits
- Next iteration: HH-income on farms (for example)

Hours worked:

- Use months, days and hours worked when available.
- Where individuals do not report them, take the *ojgct* average
- When survey does not ask for them, set equal to 40/week and 52 weeks/year

June 2023 25 / 20

San

Coverage Across Countries Back

Country	Years	Real GDP p.c. in 2005
India	1983, 1987, 1993, 1999, 2004, 2010, 2018	\$947
Indonesia	1976, 1995, 2010, 2018	\$2,174
Brazil	1970, 1980, 1991, 2000, 2010	\$7,325
Mexico	1970, 1990, 1995, 2000, 2010, 2015	\$8,925
Canada	1971, 1981, 1991, 2001, 2011	\$40,989
USA	1970, 1980, 1990, 2000, 2005, 2010	\$52,789

June 2023

200

26 / 20

- Good coverage across stages of development
 - Rich countries (HICs): USA, Canada
 - Middle-income (MICs): Brazil, Mexico
 - Low-income (LICs): India, Indonesia
- Covers around a third of the world's population in 2010

Chiplunkar & Kleineberg (Gender and Structural Transformation)

#1 Struc. Trans. b/w Men and Women

Excluding home-work, i.e., conditional on LFP with Country FE

Back

June 2023 27 / 20

Sac

#1 Struc. Trans. b/w Men and Women

Including home-work with Country FE

Back

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 28 / 20

1

Sac

- 4

#1 Occ. Trans. b/w Men and Women

Excluding home-work, i.e., conditional on LFP with Country FE

(a) Men

(b) Women

Back

June 2023 29 / 20

Sac

#1 Occ. Trans. b/w Men and Women

Including home-work with Country FE

Back

June 2023 30 / 20

Sac

#3 Gender Occupational Choice Gap Over Time

Calculate $R_{oi}^{2000-15}/R_{oi}^{1970-85}$

-1 (Heat Map) (A

cross Countries Back

(a) Across Industries

(b) Across Occupations

イロト イポト イヨト イヨト

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 31 / 20

Sac

#3 Gender Occupational Choice Gap Over Time

Across Countries

Back

Calculate $R_{oi}^{2000-15}/R_{oi}^{1970-85}$

(a) Across Industries

(b) Across Occupations

イロト イポト イラト イラト

- FLFP increase (esp. in IDN, MEX, BRA) \Rightarrow across all ind-occ over time
- Sectors: Increase in services across countries; manf. in BRA and MEX
- Occupations: largest gains in Prof./Managerial jobs

#4 Gender Wage Gap Over Time

Calculate $R_{oj}^{2005-10}/R_{oj}^{1970-75}-1$ Heat M

Across Countries

Back

(a) Across Industries

(b) Across Occupations

イロト イボト イラト イラト

- Wage gaps \downarrow across all countries, except IND
- Gaps still persist in HICs (0.85-0.95)
- Sectors: gains across all sectors
- Occupations: gains across all; Prof/Mang. still with largest gaps
#2 Gender Occupational Choice Gap Over Time

Calculate $R_{oj}^{2000-15}/R_{oj}^{1970-75}-1$ Back

		1970-75		A	nnualized (Change
Prof./Managers -		0.10	0.49		0.56	1.06
Clerks -		0.73	1.38		1.39	1.11
Service Wrkrs -		0.24	1.36		0.44	-0.76
Crafts & Trade Wrkrs -		0.19	0.18		-0.05	0.08
Elem. Occ	0.20	0.12	0.70	1.47	1.10	0.52
Plant & Mach. Wrkrs -		0.37	0.07		-0.36	0.07
Agri. & Fishing Wrkrs -	0.27		0.15	0.28	i	0.01
l	Δ	M	s	Δ	M	s
Chiplunkar & Kleineberg	(Gender and	I Structural Tr	ansformation)	A		June 2023

୍ର ୧୦ 33 / 20

#2 Gender Wage Choice Gap Over Time

Calculate $R_{oj}^{2000-15}/R_{oj}^{1970-75}-1$ Back

		1970-75		Ar	nnualized C	hange
Prof./Managers -		0.67	0.60		0.45	0.46
Clerks -		0.83	0.85		0.15	0.09
Service Wrkrs -		0.60	0.56		1.34	0.82
Crafts & Trade Wrkrs -		0.58	0.67		0.61	0.95
Elem. Occ	0.84	0.66	0.51	0.64	0.78	1.20
Plant & Mach. Wrkrs -		0.81	0.73		-0.47	1.16
Agri. & Fishing Wrkrs -	0.93		0.71	-0.09		1.63
	Δ	M		Δ	M	S
Chiplunkar & Kleineberg	Gender and	d Structural Tr	ansformation)		IVI	June 2023

୍ର ୧୦ 34 / 20

	1970-75	2005-10	1970-75	2005-10	1970-75	2005-10	1970-75	2005-10
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Sectors:	Ho	me	Agric	Agriculture		anf.	Serv	vices
IND	13.61	12.87	0.47	0.63	0.26	0.28	0.20	0.23
IDN	15.22	6.53	0.60	0.55	0.53	0.37	0.59	0.74
BRA	22.88	1.99	0.09	0.42	0.10	0.22	1.16	1.22
MEX	52.43	8.72	0.04	0.07	0.15	0.28	0.60	0.89
CAN	5.47	1.56	0.35	0.38	0.31	0.35	1.15	1.34
USA	6.96	1.60	0.19	0.23	0.56	0.51	1.72	1.50
AVG	19.43	5.54	0.29	0.38	0.32	0.34	0.90	0.99
Occupati	ons:		Ag./I	Manf.	Elem./S	Services	Prof./	Mngr.
IND			0.39	0.59	0.41	0.45	0.18	0.23
IDN			0.60	0.52	0.64	0.75	0.23	0.54
BRA			0.08	0.40	1.03	0.94	0.44	0.93
MEX			0.04	0.09	0.48	0.68	0.34	0.70
CAN			0.23	0.24	0.98	1.01	0.76	1.35
USA			0.54	0.34	1.79	1.41	0.62	1.09
AVG			0.31	0.36	0.89	0.87	0.43	0.81
								▶ ≣ \

#2 Gender Employment Gaps Across Countries

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 35 / 20

	1970-75	2005-10	1970-75	2005-10	1970-75	2005-10
	(1)	(2)	(3)	(4)	(5)	(6)
Sectors:	Agric	ulture	Ma	anf.	Serv	vices
IND	0.65	0.49	0.42	0.51	0.66	0.66
IDN	0.48	0.76	0.44	0.69	0.60	0.71
BRA	0.58	0.99	0.64	0.87	0.51	0.84
MEX	1.06	0.90	0.56	0.70	0.55	0.95
CAN	0.50	0.67	0.57	0.88	0.53	0.87
USA	0.68	0.83	0.60	0.79	0.54	0.81
AVG	0.66	0.77	0.54	0.74	0.57	0.81
Occs:	Ag./I	Manf.	Elem./S	Services	Prof./	'Mngr.
IND	0.63	0.44	0.57	0.58	0.79	0.70
IDN	0.48	0.77	0.52	0.63	0.73	0.84
BRA	0.60	0.98	0.56	0.89	0.46	0.72
MEX	0.96	0.89	0.57	0.85	0.60	0.80
CAN	0.59	0.76	0.53	0.90	0.52	0.77
USA	0.59	0.77	0.56	0.84	0.55	0.74
AVG	0.64	0.77	0.55	0.78	0.61	0.76
-					4	

#2 Gender Wage Gaps Across Countries

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 36 / 20

#2 Gender Wage Gaps Decrease Over Time and Dev.

• Regress wage ratio on log of real GDP pc and fixed effects:

wage-ratio_{ojct} = $\alpha + \beta_{HIC}HIC_c \times Post_t + \beta_{LMIC}LMIC_c \times Post_t + FE + \varepsilon_{ojct}$

- Gender wage ratio increases in both LMIC and HIC $(\hat{eta} > 0)$:
 - Within countries over time (+ ctry FE)
 - Within occ-sector pairs (+ occ-sector FE)
 - Within country-occ-sector pairs (+ ctry-occ-sector FE)
- Results hold for different wage gap measures:
 - 1. Raw avg. wage ratio: $\beta_{ojct}^{R} = \ln \overline{\text{wage}}_{ojct}^{f} \ln \overline{\text{wage}}_{ojct}^{m}$
 - 2. Unadjusted: In $w_{it} = \alpha_t + \alpha_{oj} + \beta_{oj}^U \mathbf{1}_{oj} \times Female_i + \delta X_i + \varepsilon_i$
 - 3. Adjusted: In $w_{it} = \alpha_t + \alpha_{oj} + \beta^A_{oj} \mathbf{1}_{oj} \times Female_i + \gamma School_i + \delta X_i + \varepsilon_i$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#2 Gender Wage Gaps Across Countries \blacksquare

 Chiplunkar & Kleineberg
 (Gender and Structural Transformation)
 June 2023
 38 / 20

PIGL Preferences: Income Effects and Aggregation

• Individual expenditure share on sector $j = \{A, M, S\}$:

$$\varphi_j(l_{ojg}(z), p) = \omega_j + \nu_j \left(\frac{l_{ojg}(z)}{P}\right)^{-\eta}$$

- if $u_j < 0$, $\varphi_j \uparrow$ in income (services); $\sum_j \nu_j = 0$; $\sum_j \omega_j = 1$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

PIGL Preferences: Income Effects and Aggregation

• Individual expenditure share on sector $j = \{A, M, S\}$:

$$\varphi_j(l_{ojg}(z), p) = \omega_j + \nu_j \left(\frac{l_{ojg}(z)}{P}\right)^{-\eta}$$

- if $u_j < 0$, $\varphi_j \uparrow$ in income (services); $\sum_j \nu_j = 0$; $\sum_j \omega_j = 1$

• Aggregate expenditure share on sector *j*:

$$\Phi_j = \omega_j + \nu_j \sum_{ojg} \phi_{ojg} g(z^{\kappa_{ojg}}) \times \left(\frac{\overline{I_{ojg}}}{P}\right)^{-\eta}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

June 2023

39 / 20

- ► *l_{ojg}*: average income of a 'representative worker' in *ojg*
- $g(z^{\kappa_{ojg}})$: adjustment factor for sorting in ojg
- ϕ_{ojg} : share of income earned by all workers in ojg

Chiplunkar & Kleineberg (Gender and Structural Transformation)

CES Preferences for "Home" and "Market" Services

Home and Market Services are imperfect substitutes:

$$\min \sum_{j=\{hs,ms\}} p_j C_j$$

s.t. $C_s = \left[\sum_{j=\{hs,ms\}} \alpha_j^{\frac{1}{\eta_s}} C_j^{\frac{\eta_s-1}{\eta_s}}\right]^{\frac{\eta_s}{\eta_s-1}}$

• Expenditure share on $j = \{hs, ms\}$ given by:

$$\varphi_j = \frac{\alpha_j p_j^{1-\eta_s}}{P_s^{1-\eta_s}} \times \varphi_s$$

Back

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 40 / 20

イロト (日本) (日本) (日本) (日本) (日本)

Occupation and Sector Choice: Equations

• Indirect utility from consumption: $V(I_{ojg}, p)$ (Back

$$V(I_{ojg},p) = rac{1}{\eta} \left(rac{I_{ojgz}(z)}{P}
ight)^{\eta} - D(p)$$

• Utility of workers with gender g and ability z who choose oj:

$$U_{ojg}^{i}(z) = V(I_{ojg}^{i}(z), p) + A_{ojg} + \varepsilon_{oj}^{i}$$

• Share of workers of gender g and ability z who choose oj:

$$\Pr(oj|g,z) = \frac{\exp\left[\frac{1}{\sigma_{\varepsilon}}V(I_{ojg}(z),p) + \frac{1}{\sigma_{\varepsilon}}A_{ojg}\right]}{\sum_{j'}\sum_{o'}\exp\left[\frac{1}{\sigma_{\varepsilon}}V(I_{o'j'g}(z),p) + \frac{1}{\sigma_{\varepsilon}}A_{o'j'g}\right]}$$

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 41 / 20

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Back

Estimation Algorithm: Iteration over 3 Envelopes

Condition on: return to ability κ_{ojg} , preference and distributional params

- Guess PIGL parameters ω_j and ν_j (loop 1)
- Guess prices p_j (loop 2)
- Guess gender-specific wage rates w_{ojg} and amenities A_{ojg} (loop 3)
 - Solve for occupational choices, human capital, & income in model
 - Update w_{ojg} from avg wage data and model-implied avg HC by ojg
 - Update A_{ojg} from occ. choice data and model-implied utility V(I,p)
- Update prices p_j from good market clearing: $p_j^{new} = (\Phi_j \times I)/Y_j$
 - Compute sector demand and supply in model (given HC_{oj})
- Update PIGL params from relation btw demand shares and real inc.
 - Model implies: $\Phi_j = \omega_j + \nu_j \times g(I_{ojgz}, P, \Pr(oj|g, z))$
 - Update (ω_j, ν_j) for each sector j by regressing observed demand shares Φ_j across countries and time on an intercept (implies ω_j^{new}) and on model-implied "real income" g(.) (implies ν_i^{new})
- \Rightarrow Iterate on all guesses until convergence \blacksquare

(日) (雪) (日) (日) (日)

Gender Wage Discrimination (au_{ojg}) and Wage Gaps

Figure: Corr. au and wage ratios

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 43 / 20

Э

QC

< □ > < 同 > <

Correlating Gender Wage Discrimination τ_{oi} with "World. Business. and the Law" Indicators Back

Estimate: $\tau_{oict} = \alpha_c + \alpha_t + \alpha_{oi} + \beta \text{WBL Measure}_{ct} + \gamma X_{ct} + \varepsilon_{oict}$

	Coefficient	S.E.	p-value
	(1)	(2)	(3)
Panel A. Gender Equality in Mobility and LFP			
Index of Mobility/LFP Can a woman get a job in the same way as a man? Can a woman work at night in the same way as a man? Can a woman work in a job deemed dangerous in the same way as a man? Can a woman work in an industrial job in the same way as a man?	-0.07 -0.04 -0.04 -0.07 -0.07	(0.02) (0.04) (0.02) (0.01) (0.01)	0.08* 0.43 0.20 0.04** 0.04**
Panel B. Gender Equality at the Workplace			
Index of Workplace Equality Does the law prohibit discrimination in employment based on gender? Ln(1+Paid Maternity Days Leave)	0.02 0.01 -0.03	(0.03) (0.01) (0.01)	0.55 0.55 0.03**
Observations	510		

Chiplunkar & Kleineberg (Gender and Structural Transformation)

*ロ * * @ * * ミ * ミ * ・ ミ * の < @ June 2023

44 / 20

Correlation betw. Occupation Choices & Norms/LFP-Cost

Figure: Corr. Gender Norms/LFP Cost A and Occupational Choices

June 2023 45 / 20

Э

Sac

< □ > < 同 > <

Correlating Norms/LFP-cost A_{oig} with "World, Business, and the Law" Indicators Back

Define: $\triangle A_{ojct} = A_{ojfct} - A_{ojmct}$ and standardize to mean 0, std dev 1 Estimate: $\Delta \tilde{A}_{oict} = \alpha_c + \alpha_t + \alpha_{oi} + \beta \text{WBL Measure}_{ct} + \gamma X_{ct} + \varepsilon_{oict}$

	Coefficient	S.E.	p-value
	(1)	(2)	(3)
Panel A. Gender Equality in Mobility and LFP			
Index of Mobility/LFP	-1.15	(0.18)	0.02**
Can a woman get a job in the same way as a man?	-0.66	(0.27)	0.13
Can a woman work at night in the same way as a man?	-1.26	(0.05)	0.00***
Can a woman work in a job deemed dangerous in the same way as a man?	-0.96	(0.15)	0.02**
Can a woman work in an industrial job in the same way as a man?	-0.87	(0.22)	0.06*
Panel B. Household Norms			
Index of Household Norms	-0.65	(0.04)	0.00***
Can a woman be head of household in the same way as a man?	-1.01	(0.04)	0.00***
Is there legislation specifically addressing domestic violence?	0.34	(0.15)	0.15
Does a woman have the same rights to remarry as a man?	-0.11	(0.14)	0.51
Do men and women have equal ownership rights to immovable property?	-1.01	(0.04)	0.00***
Ln(1+Paid Maternity Days Leave)	-0.09	(0.07)	0.34
Observations	510		
	<	₹ E ► 4	
Chiplunkar & Kleineberg (Gender and Structural Transformation)	_	lune	2023

Sac

VA Shares Across Countries Back

୬ < ୍ 47 / 20

Co-Movements Across Specific Countries over Time

Back

Co-Movements Across Specific Countries over Time

Back

Changes in $\triangle A$

Back

୍ରର 50 / 20

τ Over Time

$\triangle A$ Across Countries Back

	1970-75	2005-10	1970-75	2005-10	1970-75	2005-10
	(1)	(2)	(3)	(4)	(5)	(6)
Sectors:	Agric	ulture	Ma	anf.	Serv	vices
IND	6.59	5.70	7.23	6.99	8.65	7.98
IDN	6.21	4.78	6.45	5.57	6.81	4.63
BRA	10.92	3.09	10.63	5.05	7.28	1.57
MEX	14.53	9.62	11.44	6.88	9.68	5.23
CAN	5.14	2.17	6.13	4.18	3.70	0.70
USA	7.38	3.38	5.98	3.17	3.20	0.41
AVG	8.46	4.79	7.98	5.31	6.55	3.42
Occs:	Ag./I	Manf.	Elem./S	Services	Prof./	Mngr.
IDN	6.35	5.11	6.14	4.03	8.16	4.73
BRA	11.21	3.34	8.06	2.98	7.52	1.24
MEX	14.31	9.52	10.17	5.72	9.88	4.91
CAN	7.39	3.25	4.24	2.04	3.76	0.11
USA	5.06	2.79	3.83	1.28	4.69	0.61
AVG	8.55	4.99	6.57	3.78	7.08	3.19

Chiplunkar & Kleineberg (Gender and Structural Transformation)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

τ Across Countries ${}^{\rm Back}$

	1970-75	2005-10	1970-75	2005-10	1970-75	2005-10
	(1)	(2)	(3)	(4)	(5)	(6)
Sectors:	Agric	ulture	Ma	anf.	Serv	vices
IND	0.30	0.47	0.47	0.42	0.08	0.19
IDN	0.49	0.20	0.50	0.27	0.31	0.24
BRA	0.42	0.05	0.36	0.16	0.48	0.19
MEX	-0.09	0.09	0.42	0.29	0.43	0.05
CAN	0.50	0.33	0.43	0.13	0.47	0.14
USA	0.33	0.17	0.41	0.22	0.46	0.20
AVG	0.33	0.22	0.43	0.25	0.37	0.17
Occs:	Ag./I	Manf.	Elem./S	Services	Prof./	Mngr.
IND	0.31	0.51	0.37	0.37	-0.25	0.06
IDN	0.48	0.19	0.41	0.32	0.14	0.11
BRA	0.40	0.06	0.44	0.14	0.53	0.32
MEX	0.01	0.10	0.41	0.14	0.36	0.19
CAN	0.40	0.25	0.47	0.10	0.47	0.24
USA	0.41	0.23	0.44	0.17	0.46	0.27
AVG	0.34	0.22	0.42	0.21	0.28	0.20
					4	

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 53 / 20

Changes in Gender Barriers in LMICs and HICs Over Time

 $Y_{oict} = \alpha + \beta_{HIC} \mathsf{Post}_t \times HIC_c + \beta_{LIC} \mathsf{Post}_t \times LIC_c + \gamma HIC_c + \varepsilon_{oict}$

		τ _{oj}		l	Diff. LFP Costs			
	(1)	(2)	(3)	(4)	(5)	(6)		
1(2000-15) \times HIC	-0.179*** (0.048)	-0.179*** (0.049)	-0.179*** (0.051)	-3.982*** (0.690)	-3.982*** (0.699)	-3.982*** (0.481)		
1(2000-15) × LMIC	-0.025 (0.033)	-0.030 (0.036)	-0.030 (0.033)	-2.545*** (0.430)	-2.784*** (0.404)	-2.784*** (0.303)		
HIC Mean—Post=0	0.27	0.27	0.27	6.48	6.48	6.48		
LMIC Mean—Post=0	0.17	0.17	0.17	8.25	8.25	8.25		
p-val: $\beta_1 = \beta_2$	0.01	0.01	0.01	0.08	0.14	0.04		
N	300	300	300	300	300	300		
R ²	0.04	0.09	0.26	0.25	0.41	0.71		
Country FE	No	Yes	Yes	No	Yes	Yes		
Sector-Occ FE	No	No	Yes	No	No	Yes		

Chiplunkar & Kleineberg (Gender and Structural Transformation)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで June 2023

54 / 20

Heat Map Across Countries Back

(a) Across Sectors

(b) Across Occupations

< □ > < 同 > < 三

- Decrease across all countries and all sectors-occupations
- Largest changes in MICs and HICs
- Gaps still larger in LICs and MICs as compared to HICs

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 55 / 20

QC

τ Across Countries

Heat Map Across Countries Back

(a) Across Sectors

(b) Across Occupations

- Decrease across all countries (except IND) and all sectors
- Largest reductions in MICs and HICs
- Gaps are similar in HICs and MICs, higher in LICs

June 2023 56 / 20

QC

▶ 4 Ξ ▶

riangle A and au Over Time

	G	ender Norn	V	/age Penalt	:y	
	1970-75	2005-10	Change	1970-75	2005-10	Ch
	(1)	(2)	(3)	(4)	(5)	
Agriculture	-103.68	-336.21	-551.78	2.28	0.48	_4
Manufacturing	-78.10	-56.94	52.88	2.19	1.03	-2
Services	-31.88	-15.43	40.16	0.92	0.58	-(
Professional	5.91	2.24	-8.96	0.29	0.27	-(
Clerk	5.22	1.88	-8.24	0.15	0.09	-(
Craft, Trade, Service	6.06	4.08	-4.74	0.46	0.24	-(
Agricultural	7.49	4.86	-6.36	0.35	0.14	-(
Machine Op. and Elem.	7.04	4.31	-6.73	0.38	0.17	-(

 $\triangle A$ Across Countries

 τ Across Countries

Chiplunkar & Kleineberg (Gender and Structural Transformation)

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 2 少 0 0
June 2023 57 / 20

Gender Gap in Returns to Ability (κ_{ojg}) Back

Figures/Estimation/cdf_kappa.png

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

June 2023

58 / 20

Figure: Ratio of $\kappa_{ojf}/\kappa_{ojm}$

• Significant improvements across decades, especially when $\kappa_{ojf}/\kappa_{ojm} < 1$.

Chiplunkar & Kleineberg (Gender and Structural Transformation)

Changes in WBL Back

Figure: Changes in WBL

Chiplunkar & Kleineberg (Gender and Structural Transformation)

■ ▲ ■ ♪ ▲ ■ ♪ へへ June 2023 59 / 20

Changes in FLFPR and Employment Over Time

	Baseline	Fixed τ	Fixed $\triangle A$	Fix Both
	(1)	(2)	(3)	(4)
Panel A: Changes i	n Sectoral	Employm	ient	
LFPR	0.38	0.32	-0.39	-0.45
Agriculture	-0.13	-0.13	-0.26	-0.27
Manf.	0.04	0.03	-0.04	-0.05
Services	0.47	0.43	-0.09	-0.13
Panel B: Changes i	n Occupat	ional Em	oloyment	
Ag./Manf. Workers	-0.14	-0.15	-0.28	-0.28
Elem. Workers.	0.19	0.15	-0.16	-0.20
Prof./Managers	0.33	0.32	0.04	0.03

Back

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 60 / 20

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Changes in Male LFPR and Employment Over Time

	Baseline	Fixed τ	Fixed $\triangle A$	Fix Both
	(1)	(2)	(3)	(4)
Panel A: Changes i	n Sectoral	Employm	nent	
LFPR	-0.20	-0.19	-0.17	-0.16
Agriculture	-0.60	-0.60	-0.59	-0.59
Manf.	0.07	0.08	0.07	0.07
Services	0.33	0.33	0.36	0.36
Panel B: Changes i	n Occupat	ional Em	ployment	
Ag./Manf. Workers	-0.51	-0.51	-0.52	-0.52
Elem. Workers.	0.14	0.14	0.14	0.14
Prof./Managers	0.18	0.18	0.21	0.21

Back

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 61 / 20

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Occupation Choices Back

June 2023 62 / 20

200

Sectoral Choices Back

) ९ (२ 63 / 20

Chiplunkar & Kleineberg (Gender and Structural Transformation) June 2023 6

) ৭ ে 64 / 20

Chiplunkar & Kleineberg (Gender and Structural Transformation) June 2023

) ९ (२ 65 / 20

Chiplunkar & Kleineberg (Gender and Structural Transformation) June 2023 66 / 20

200

Chiplunkar & Kleineberg (Gender and Structural Transformation)
Sectoral and Occupational Choices Back

Chiplunkar & Kleineberg (Gender and Structural Transformation) June 2023 68 / 20

Sectoral and Occupational Choices Back

Chiplunkar & Kleineberg (Gender and Structural Transformation) June 2023 69 / 20

Sectoral and Occupational Choices Back

Chiplunkar & Kleineberg (Gender and Structural Transformation) June 2023 70 / 20

Changes in Aggregate Real Income Back

GDP changes **Back**

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023

GDP changes relative to US (Back

Chiplunkar & Kleineberg (Gender and Structural Transformation)

73 / 20

June 2023

References I

See the paper for a complete list of references

- Alder, Simon, Timo Boppart, and Andreas Müller, "A theory of structural change that can fit the data," American Economic Journal: Macroeconomics, 2022, 14 (2), 160–206.
- Bick, Alexander, Nicola Fuchs-Schündeln, David Lagakos, and Hitoshi Tsujiyama, "Structural change in labor supply and cross-country differences in hours worked," *Journal of Monetary Economics*, 2022, 130, 68–85.
- Chiplunkar, Gaurav and Pinelopi K. Goldberg, "Aggregate Implications of Barriers to Female Entrepreneurship," Technical Report, National Bureau of Economic Research 2022.
- Comin, Diego, Danial Lashkari, and Martí Mestieri, "Structural change with long-run income and price effects," Econometrica, 2021, 89 (1), 311–374.
- Cuberes, David and Marc Teignier, "Gender inequality and economic growth: A critical review," Journal of International Development, 2014, 26 (2), 260–276.
- ____ and ____, "Aggregate effects of gender gaps in the labor market: A quantitative estimate," Journal of Human Capital, 2016, 10, 1–32.
- Duernecker, Georg, Berthold Herrendorf et al., "Structural transformation of occupation employment," Unpublished manuscript, 2016.
- Evans, David K, Maryam Akmal, and Pamela Jakiela, "Gender gaps in education: The long view," IZA Journal of Development and Migration, 2021, 12 (1).
- Fan, Tianyu, Michael Peters, and Fabrizio Zilibotti, "Service-Led or Service-Biased Growth? Equilibrium Development Accounting across Indian Districts," Technical Report, National Bureau of Economic Research 2021.
- Fiszbein, Martin, "Agricultural Diversity, Structural Change, and Long-Run Development: Evidence from the United States," American Economic Journal: Macroeconomics, 2022, 14 (2), 1–43.
- Goldin, Claudia, "The u-shaped female labor force function in economic development and economic history," Working Paper 4707, National Bureau of Economic Research, 1994.
- Gottlieb, Charles, Douglas Gollin, Cheryl Doss, and Markus Poschke, "Gender, Work and Structural Transformation," 2021.

Chiplunkar & Kleineberg (Gender and Structural Transformation)

June 2023 74 / 20

References II

See the paper for a complete list of references

- _____, Richard Rogerson, and Akos Valentinyi, "Two perspectives on preferences and structural transformation," American Economic Review, 2013, 103 (7), 2752–89.
- Hsieh, Chang-Tai, Erik Hurst, Charles Jones, and Peter Klenow, "The Allocation of Talent and U.S. Economic Growth," Econometrica, 2019, 87 (5), 1439–1474.
- Lee, Munseob, "Allocation of Female Talent and Cross-Country Productivity Differences," Unpublished Manuscript, 2020.
- Maddison, Angus, "Economic growth and structural change in the advanced countries," Western Economies in Transition, eds.: I. Leveson and W. Wheeler. London: Croom Helm, 1980.
- Ngai, L. Rachel and Barbara Petrongolo, "Gender Gaps and the Rise of the Service Economy," American Economic Journal: Macroeconomics, 2017, 9 (4), 1–44.
- Olivetti, Claudia and Barbara Petrongolo, "The evolution of gender gaps in industrialized countries," Annual Review of Economics, 2016, 8 (1), 405–434.

200