
Capital Embodied Structural Change ∗

Julieta Caunedo†, Elisa Keller‡

June 2023

Abstract

Structural change is a significant empirical pattern in economic development. Capital-
embodied technical change (CETC), or the decline in the price of capital relative to con-
sumption, plays a crucial role in driving economic growth. So what is the role of CETC for
structural change? We build new measures of the relative price of capital used for produc-
tion in different sectors in the US between 1948 and 2020, and document faster decline in
services, than in industry than in agriculture. The passthrough between structural change
and this decline is mediated by the dynamics of the labor share and output per worker in
each sector, through equilibrium output prices. We show that CETC, when paired with the
observed dynamics of the labor share, can trace the dynamic of the price of output in agri-
culture relative to industry, and to a less extent in services relative to industry. To quantify
the role of CETC for structural change we build a parsimonious model that accommodates
sector-specific CETC through the usage of distinct bundles of equipment across sectors and
where each sectorial labor share is endogenous to the path of CETC. Through counterfac-
tuals, we find that CETC is the primary driver of the reallocation of output away from
agriculture relative to industry, and accounts for a third of the reallocation towards services.
These findings emphasize sector-specific factor-biased technical change and underscore the
importance of investment and embodied technology as drivers of structural change.
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1 Introduction

The reallocation of economic activity across broadly defined sectors, i.e. structural change,

is a robust feature of the process of economic development. There is a growing consensus in

the literature that the main drivers of such reallocation are disparities in productivity growth

across sectors and shifts in consumers’ demand due to income effects (Ngai and Pissarides,

2007; Comin et al., 2021; Boppart, 2014). At the same time, capital embodied technological

change (CETC) has been identified as an important driver of economic growth (Greenwood

et al., 1997). The treatment of CETC within the framework of structural change has predom-

inantly concentrated on scenarios where capital services can be easily transferred between

sectors, assuming the existence of a single capital good. This approach appears somewhat

peculiar considering the evident disparities in the types of capital utilized across different

sectors, as well as the varying rates of technological advancements experienced by such cap-

ital. It is only logical to ponder the extent to which the reallocation of economic activity is

influenced by the presence of embodied technology. This paper answer the question.

Solow defines embodied technology as a shift in the marginal cost of producing investment

relative to consumption, and factor neutral technological change, as a shift in output for a

given level and composition of the capital stock, (Hercowitz, 1998). Greenwood et al. (1997)

maps Solow’s definition to investment-specific technical change, which is a consistent way

of defining embodiment in a two-sector economy. However, in the context of multi-sector

economies, we revert to the broader concept of a shift in the marginal cost of investment

relative to consumption. This is because the nature of the investment composite can alter

the relative price when it differs from the consumption composite.

Using this definition we document systematic disparities in CETC across sectors that

are driven by systematic disparities in the type of equipment used in production across

sectors. Our empirical analysis focuses on the US time series and the goal is to describe

the relationship between CETC and labor productivity, which is in turn proportional to

relative output prices. The elasticity of sectorial output to productivity embodied in capital

depends on the intensity of use of capital in production through the capital expenditure

share. Hence, whether fast CETC in a sector translate in faster labor productivity depends

on how intensively the sectors uses capital relative to others. Under the assumption of

constant returns technologies and competitive markets, we show how to link the path of

relative prices to sector-specific user cost of capital and, through it, to CETC. We document

that CETC tracks the path of the relative price of agriculture to industry and the relative

price of services to industry quite well, although the magnitudes in the latter are small than

in the data.
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Then, we construct a model economy that accommodates these disparities, while being

consistent with long-run balanced growth, and use it to run an accounting exercise on the

role of CETC for structural change. We find that CETC is the chief driver of the realloca-

tion of employment out of agriculture (88%) and accounts for about a third of the flow of

employment into services (37%) in the US, between 1948 and 2016.

Bringing CETC to the forefront of the drivers of sectoral productivity growth yields a new

emphasis to the role of capital accumulation for structural change. Unpacking the drivers of

sectorial productivity growth is important for two reasons. First, disparities in productivity

growth across sectors may not be stable. Post-second world war evidence suggest that in

developed economies productivity growth is the fastest in agriculture, and it is faster in

industry than in services (Herrendorf et al., 2014). However, we document that CETC is

the slowest in agriculture, and slower in industry than in services. CETC is a contributor

to labor productivity growth. As sectors become more capital intensive, CETC becomes

increasingly important as a driver of productivity growth and therefore current trends in

productivity growth may reverse.1 Second, most of the equipment in developing countries

is imported and hence, the ability of these countries to improve sectorial productivity may

depend critically on their ability to import given types of equipment (Eaton and Kortum,

2001, Mutreja et al., 2018).

To measure CETC we require an assumption on the technology that transforms con-

sumption goods into investment, which we assume linear, following the long tradition of

(Hulten, 1992; Greenwood et al., 1997). Then, quality-adjusted prices of investment relative

to consumption yield an empirical measure of the inverse of the rate of productivity growth

in this linear technology, a measure of CETC. We use quality-adjusted prices across 24 equip-

ment categories when available, and complement them with NIPA equipment deflators when

that is not the case. We then construct sector specific deflators for new capital by weight-

ing equipment prices across these 24 equipment categories using nominal investment shares

per equipment type and sector from the BEA. We document that the cost of new capital

relative to consumption has declined at an annualized rate of 1.5% in agriculture, 2.4% in

industry and 4.8% in services between 1948 and 2016. These are sizable differences in the

rate of CETC across sectors which are driven by systematic differences in the composition

of equipment across types in each sector.

The passthrough between capital services and labor productivity is mediated by the

expenditure share of capital in value added. We measure this share residually after computing

1Some early evidence of this phenomenon is documented by Alvarez-Cuadrado and Poschke (2011) in agri-
culture and, more recently, BEA estimates suggests that productivity growth in services may be surpassing
that of industry.
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the expenditure share of labor following the methodology in Herrendorf et al. (2015). Their

method allocates proprietors’ income equally between capital and labor within a sector. This

is an important source of returns to labor in agriculture and some services where workers

are mostly self-employed. The path of the capital share within each sector is consistent

with the extensive literature that documents a decline in the labor share in industry since

1980s, which has accelerated in the 2000s (Sahin et al., 2013). The capital share in services

is flat and the capital share in agriculture increases in the first half of the sample and starts

declining after that. We show that these movements in the capital share at the sectoral

level are quantitatively important for the correlation that we uncover between sectoral labor

productivity and CETC.

The relative price of agriculture to industry falls in the data, suggesting that labor produc-

tivity in agriculture raises faster than in industry. So how does CETC track this movement

given that CETC in agriculture is slower than in industry? Agriculture is more capital in-

tensive than industry at the beginning of the sample, when disparities in CETC across these

two sectors are not that large. The relative price of services to industry raises in the data,

suggesting that labor productivity growth in services is slower than in industry. So how

that CETC tracks this movement, in particular the acceleration in the pace of increase since

1980s if CETC in services is the fastest? The capital share in industry raises dramatically

since the 1980s, compensating for faster CETC in services.

Armed with these empirical patterns, we move to quantifying the role of CETC for

structural change in a general equilibrium model. For this purpose, we first take on the

task of constructing a model of structural change where sector-specific CETC has a role

in shaping the path of sectorial labor productivity. In the model, technical change is both

factor neutral (as in Ngai and Pissarides, 2007) and embedded in capital (CETC, as in

Greenwood et al., 1997). The latter emerges as a result of sectors using capital of different

types in different combinations to produce output. Sectorial output is a composite of output

from different activities, which can be performed with capital-intensive or labor-intensive

technologies. The elasticity of substitution across these activities determines the elasticity of

substitution between capital and labor in equilibrium in the aggregate sectorial production

function. Decisions related to the usage of capital-intensive or labor-intensive technologies,

or the share of activities performed by each technology, affect the bias between labor and

capital within the constant elasticity production function. In the limit, when the elasticity of

substitution across activities approaches 1, the technology is Cobb-Douglas and the factors

shares are proportional to the measure of activities performed with capital-intensive and

labor-intensive activities.

Importantly, in our model, capital deepening in production occurs through two mecha-
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nisms: on the one hand, CETC generates higher capital services per unit invested, lowering

the user cost of capital and increasing capital services; on the other hand, sectoral producers

may switch to more capital intensive technologies altogether. Non-monotonic movements

in capital expenditure shares paired with a steady decline in the relative price of capital

informs this modelling choice. In other words, the ability to switch to more capital intensive

technologies may be linked to innovation in processes that do not directly map into the cost

of capital. This feature allows us to match the non-monotonicity of the expenditure shares

despite the steady decline in the user cost of capital. For a given set of technologies, the

usage of more capital services is directly linked to its user cost.

We then quantify the model economy to measure the role of CETC in driving structural

change by asking how much of the reallocation of labor across sectors observed in the US

between 1948 and 2016 would have occurred absent CETC. To do so, we exploit the limiting

case of our model to Cobb-Douglas production functions for sectoral output, with sectoral

specific capital shares.2 We parameterize such model to match sectoral capital, output,

and employment in 1984 as well as the path of sectoral prices between 1984 and 2016.

Importantly, under such parameterization, the model is consistent with the path of structural

change observed in the data: it generates an employment outflow from agriculture of the

same magnitude as that observed in the data as well as 61% of the reallocation of employment

out of industry. Then, we run counterfactual exercises where we shut down, one at a time,

the two exogenous forces driving the path of relative prices in the model: sectoral factor-

neutral productivity growth and sectoral CETC. Via these exercises, we quantify that CETC

is an important factor driving structural change: it accounts for 88% of the movement out

of agriculture, for 27% of the movement out of industry, and for 37% of the movement into

services. In particular, factor-neutral productivity growth alone cannot generate the decline

in the relative price of agriculture to industry and, therefore, this force only generate 1/4 of

the reallocation of employment out of agriculture.

There is a growing literature that documents structural change within investment, i.e.

shifts in the composition of goods used to produce investment goods in the economy (Garćıa-

Santana et al., 2021 and Herrendorf et al., 2020). Differently, we focus on sectorial hetero-

geneity in the type of capital goods used in production and show that such a heterogeneity is

first order in explaining the process of structural change. This heterogeneity is particularly

important in poor and middle-income countries, which import the bulk of the equipment

used for production. Our proposed framework can be readily extended to allow for a rich

vintage structure for capital, diffusion waves as well as to think about policies geared towards

2We are working on a calibrated version of the economy with arbitrary (and possibly heterogeneous)
elasticities of substitution in each sector.
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boosting investment.

Our facts relate to an extensive literature that duels with the nature of technical change

and the extent to which its nature is embodied or disembodied from capital or other factors

of production (Intriligator, 1992). To the extent that embodied technology is reflected in

the decline in the relative price of equipment to consumption, our findings indicate that in

relative terms, CETC is of first order importance for agricultural productivity growth (sup-

porting previous cross-country findings in Caunedo and Keller, 2020, where either technology

embodied in labor or disembodied is relatively more important in the service sector).

From a modeling stand-point, we build a framework that is consistent with factor-biased

technical change and balanced growth. Acemoglu (2003) focuses on the incentives to inno-

vate on technologies that augment labor or capital. Conceptually, the main difference to

this work is that growth stems from the introduction of goods that are more capital or labor

intensive. In our framework, the set of goods is kept constant but the productivity of factors

of production changes making it cheaper to produce a good and so inducing growth. We

take the innovation process as given but our framework can be readily extended to allow for

endogenous innovation. Jones and Liu (2022) show a strategy to reconcile balanced growth

with production technologies that display non-unitary elasticities of substitution between

capital and labor. In their framework, technical change is factor biased but not necessarily

factor embodied, and whether technical change is embodied is important for measurement

and accounting. Indeed, as a consequence of this disparity, we are able to distinguish be-

tween labor productivity growth, which can be capital-biased and occurs whether investment

is undertaken or not; and CETC, which can only be taken advantage of via investment. Fi-

nally, we show that our model of structural change displays a limiting BGP despite having

allocations where capital-augmenting technical change is constant in production. The reason

is that capital-expenditure shares do not map one-to-one to the capital-augmenting term (as

they do in Jones and Liu, 2022). Instead, they depend on the relative price of sectorial

output to consumption, which is only unitary when a sector overtakes the economy.

2 Sectoral CETC

This section measures sectorial growth rates in relative prices, which are proportional to

sectorial labor productivity. Under the assumptions of competitive markets and constant

returns to scale technologies in each sector, these relative prices are a function of sectorial

CETC. We show that CETC varies systematically across sectors due to disparities in the

composition of the capital stock used in the sector and that the incidence of CETC on labor
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productivity is also heterogeneous across sectors, through disparities in the expenditure share

of capital.

We measure capital-embodied technical change in each capital type from the (quality-

adjusted) relative price of investment to consumption. This is a valid measurement for the

efficiency units of new capital when the technology that transforms goods into new capital

is linear. We construct a time-series of the quality-adjusted prices exploiting the estimates

in Gordon (1990) (which are available from 1948 to 1983) and then extrapolate his measures

using the prices reported by the BEA.3 Because we abstract from structures in the analysis

that follows, we remove the real state and construction sectors for the sectorial aggregation.

We also abstract from the government sector. Sectors are aggregated following Herrendorf

et al. (2014) into three categories: agriculture, industry (including mining and industry) and

services.

Let Is be a sector-specific aggregator of investment in J capital types, Is({Xjs(t)}j). The

aggregator displays constant returns to scale so the change in the price of sectorial investment

is a weighted average of the price of each investment type, with weights equal to the sectorial

investment shares for each type κjs(t) ≡
Pxj (t)Xjs(t)∑
j P

x
j (t)Xjs(t)

,

Ṗ x
s

P x
s

=
∑
j

κjs(t)
Ṗ x
j

P x
j

.4 (1)

If we add the assumption of a linear technology in the production of investment goods,

the (quality-adjusted) price of each investment good relative to consumption is the inverse

of CETC.5 Hence, equation 1 defines CETC at the sectorial level, Axs , as an investment

weighted average of CETC for each equipment type.

We start by reporting the change in the relative price of investment to consumption in

each of our three sectors. The decline in the price of capital is slower in agriculture than in

industry and both of them are slower than in services. Disparities in these declines are purely

a consequence of the compositional differences in the investment bundle across sectors and

3We could have alternatively followed the methodology in Cummins and Violante (2002) which projects
quality-adjusted series on BEA deflators. However, using a linear projection method over more than 30 years
of data stretches the validity of the assumptions of the econometric model. Quantitatively, the difference
between the quality-adjustment and the BEA series is not too large, in part because for the equipment
with arguably fastest shifts in quality, i.e computers and communication equipment, BEA introduces quality
adjustments and we use the raw series rather than an extrapolation.

4This is the correct aggregator when the composite of investment in each sector displays constant returns
to scale, Oulton and Srinivasan (2003).

5Appendix C displays the path of prices without quality adjustment (NIPA). Most of the differences
between the series occur at the beginning of the series and are concentrated in agriculture, consistent with
the findings in Manuelli and Seshadri (2014).
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Figure 1: Log-price of investment relative to consumption.

The price of investment relative to consumption is normalized to 1 in 1948 and the picture displays log of
prices. Source: BEA and own computations.

time, κjs. Hence, an implication of these differences is that the service sectors are relatively

more intensive in capital types with strong declines in the relative price of investment to

consumption. These average differences are certainly present in the data, but in addition,

the service sector has changed the bundle composition of capital towards equipment types

with faster CETC.6

These differences in CETC amount to an annualized growth rate of embodiment of 1.5%

in agriculture, 3.2% in industry and 4.3% in services between 1948 and 2016.

agriculture industry services

1.5% 3.2% 4.3%

Table 1: CETC

Decline in the relative price of investment to consumption between 1948-2016, annualized growth rates.
Source: BEA and own computations.

Let production technologies be Ys(t) ≡ As(t)Fs(Ks(t), Ns(t)) where As is total factor

6Figure 7 presents the series of prices when we fix investment weights to their values at the beginning
of the sample and at the end of the sample. The decline in prices is slower than in the benchmark if fixing
weights at the beginning of the sample.
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productivity, and F is a production technology that displays constant returns to scale. In

a standard model of structural change —i.e. Fs has common factor shares across sectors,

and unitary elasticities of substitution between capital and labor, e.g. Ngai and Pissarides

(2007)— differences in total factor productivity map into differences in output per worker

and inversely to relative output prices across sectors. Hence, faster productivity growth in

agriculture relative to industry translates into a decline in the relative price of agriculture

to industry. When factor shares are different across sectors but the elasticity of substitution

in capital and labor is unitary, relative prices are also inversely proportional to TFP but

now capital-output ratios need not be equalized across sectors. Capital-deepening (either

through investment or aggregate CETC) shifts labor productivity and differentially so across

sectors that are more or less capital intensive, as in Acemoglu and Guerrieri (2008).

We showed however, systematic disparities in the bundles of capital used by different

sectors, which in turn leads to systematic differences in the cost of capital across sectors.

In other words, there is no such a thing as an aggregate capital stock from which sectors

rent services. Disparities in the the cost of capital through the type of equipment used for

production have a direct impact on capital-output ratios, beyond disparities in factor shares.

Often the path of productivity across sectors is inferred from relative output prices,

assuming factor price equalization in the market for labor across sectors. In particular,

Ps(t)

Ps′(t)
=

1− αs′(t)
1− αs(t)

labor prod.︷ ︸︸ ︷
Ys′(t)/Ns′(t)

Ys(t)/Ns(t)
=

1− αs′(t)
1− αs(t)

As′(t)

As(t)

Fs′(Ks′(t)/Ns′(t), 1)

Fs(Ks(t)/Ns(t), 1)
(2)

where 1 − αs ≡ FnN
F

. Hence, the mapping between total factor productivity and relative

output prices depends on disparities in labor expenditure shares, 1−αs, as well as disparities

in capital-labor ratios, both of which are potentially affect by sectorial CETC.

We labor expenditure shares from the ratio of the compensation of employees in each sec-

tor and value added, as reported in the components of GDP by Industry reported by the BEA

and following the methodology of Herrendorf et al. (2015), see Figure 2. We find systematic

differences in the level of expenditure shares across sectors, consistent with Valentinyi and

Herrendorf (2008); and importantly, differences in their paths across sectors. As it is well

known in the literature, the labor share in industry declines post 1980s and this decline

accelerates post 2000s. Perhaps less known is that the labor share in agriculture also falls

sustainedly in the first half of our sample period, pre 1980s, and remains stable afterwards.

These movements affect the pass-through between capital-labor ratios and relative output

prices, which we quantify next.

Relative output prices and CETC. To make the link between relative prices and
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Figure 2: Labor expenditure shares

Labor compensation as a function of total value added in the sector. Estimates include proprietors income,
which has been distributed equally between labor and capital. Construction and real state are abstracted
away. Source: GDP by industry reported BEA and own computations.

CETC explicit we add the assumption of competitive input markets. Capital-labor ratios

are:
Ks(t)

Ns(t)
=
W (t)

Rs(t)

Fk,s(t)

Fn,s(t)
=
W (t)

Rs(t)

αs(t)

1− αs(t)
,

where the last equality exploits the homogeneity assumption on technology F, so that its

marginals are homogeneous of degree zero in inputs.

Proposition 1 The growth rate of relative prices across sectors satisfies

Ṗs
Ps
− Ṗs′

Ps′
=

1

1− αs′(t)
Ȧs′
As′
− 1

1− αs(t)
Ȧs
As

+
αs(t)

1− αs(t)
(
Ṙs

Rs

− Ṗs
Ps

)− αs′(t)

1− αs′(t)
(
Ṙs′

Rs′
− Ṗs′

Ps′
)

where ȦsAs corresponds to the change in sectorial TFP as well the weighted changes in expen-

diture shares, i.e. (1− αs(t))
˙1−αs

1−αs + αs(t)
α̇s
αs

.

Proofs can be found in Appendix B.

Proposition 1 shows that the difference in the change in relative output prices depends on

the difference in the change in factor neutral technical change and in the marginal product

of capital, i.e. the ratio between the user cost of capital and the sectorial output price.
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This condition is satisfied in any equilibrium where firms minimize costs and it is useful for

measurement purposes.

The link between the marginal product of capital and CETC requires further structure

on the model, namely an equilibrium path where the interest rate in the economy is constant.

This implies that the marginal product of capital is constant and therefore, that one can

link the path of the usercost of capital to the price of investment.

Corollary 1.1 The growth rate of relative prices across sectors in a balanced growth path

where one sector overtakes the economy satisfies

Ṗs
Ps
− Ṗs′

Ps′
=

1

1− αs′(t)
Ȧs′
As′
− 1

1− αs(t)
Ȧs
As

+
αs′(t)

1− αs′(t)
Ȧxs′

Axs′
− αs(t)

1− αs(t)
Ȧxs
Axs

.

CETC affects relative output prices both directly, through the rate of sectorial embodi-

ment, Ȧxs
Axs

, and indirectly, through movements in the capital expenditure shares induced by

shifts in the usercost of capital. The result in Corollary 1.1 requires that one sector overtakes

the economy. The reason is that the marginal product of capital is a measure of the usercost

relative to the price of sectorial output while CETC is a measure of the usercost of capital

relative to the price of consumption. Hence, if the economy displays structural change, the

price of sectorial output and the price of consumption will in general differ. While the mea-

surement of CETC is unaffected, the components of the residual variation in relative output

prices that are not explained by CETC now includes the price of sectorial output relative to

consumption.

For measurement purposes, it is useful to disaggregate the measure of sectorial CETC

as an investment weighted measure of CETC in each equipment type that comprises the

sectorial aggregator, so

Ṗs
Ps
− Ṗs′

Ps′
=

1

1− αs′(t)
Ȧs′
As′
− 1

1− αs(t)
Ȧs
As

+
αs′(t)

1− αs′(t)
∑
j

κjs(t)
Ȧxj
Axj
− αs(t)

1− αs(t)
∑
j

κjs(t)
Ȧxj
Axj

. (3)

Equation 3 is our main accounting measure. We observe relative prices, as well as con-

struct measures of the last two terms which correspond to the contribution of CETC for the

shift in relative prices.7 In addition, relative prices are proportional to labor productivity

given a constant returns technology for production, so the above condition also measures the

7Away from the balanced growth path, the residual term in equation 3 will also include shifts in sectorial
prices adjusted by the expenditure shares. See Proposition 1.
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Figure 3: Relative prices and CETC.

The price of value added in a sector relative to industry and CETC in industry relative to a given sector.
Source: BEA and own computations.

contribution of CETC to labor productivity. Because we are interested in changes through

time, both measures are normalized to 1 in the base year 2012.

Figure 3 Panel (a) displays the path for the relative of agriculture to industry as well

as the contribution of CETC. We find that movements in CETC track closely the path of

relative surprises, suggesting that in an accounting sense, CETC was likely the main driver

of differences in labor productivity across sectors. In other words, the residual variation in

relative output prices that is not accounted by CETC (adjusted by the capital expenditure

share) is relatively small. Figure 3 Panel (b) displays the paths for services relative to

industry. Qualitatively, the measure of relative CETC tracks the dynamics of relative prices

in the second half of the sample, particularly post-2000. This is in part driven by the

increased importance of high-skill services within the sector and the fact that CETC in

those sectors better tracks their relative prices, Figure ??. In low-skill services, CETC is

comparable to that of high-skill services but the measured capital expenditure share is closer

to that in industry, pushing relative prices to decline rather than to raise as observed in the

data. Quantitatively, the changes in measured CETC (corrected by the expenditure shares)

are substantially lower in magnitude than the change in relative output prices, which implies

higher residual variation accounted for disparities in total factor productivity.
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Figure 4: Contribution of CETC to labor productivity, constant αs.

Panel (a) displays the relative price of output in agriculture and Panel (b) the relative price of output in
services relative to industry. In pink, we show the path of CETC in industry relative to each of these sectors.
In red, we report the contribution of CETC when fixing the capital shares to their value in their initial and
final sample years. Source: BEA and own computations.

2.1 Discussion

Capital expenditure shares. These findings are somehow surprising given that the rank-

ing of CETC across sectors is opposite to the path of total factor productivity across sectors

that has been widely documented in the literature, where productivity growth in agriculture

is fastest in agriculture than in industry and in services (Herrendorf et al., 2014). Hence,

the direction of the component of relative prices accounted for by CETC is driven by the

expenditure share adjustment.

To assess the role of time-varying factor shares for the contribution of CETC to rela-

tive labor productivity, we compute a counterfactual path of CETC fixing the labor share
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to their initial and final levels in the sample, see top panel of Figure 4 for agriculture and

bottom for services. On average, agriculture is the most capital-intensive sector followed by

industry and services, with capital expenditure shares of 61%, 33% and 23% respectively.

These qualitative disparities remain through the sample, but its magnitude do not. indus-

try becomes more capital intensive (and closer to agriculture), which explain the upward

pressure on the relative price of agriculture to industry when computed with end-of-sample

expenditure shares. The same capital intensification, makes services and industry more dis-

similar in terms of expenditure shares, again generating upward pressure on relative output

prices as observed in the data.

Investment aggregator. Our main accounting allows for an arbitrary constant returns

to scale aggregator of investment in each sector. In addition, our benchmark accounting

assumes that, aside from an equipment-specific linear rate of transformation between con-

sumption and investment, there are no differences in the input aggregator across sectors i.e.

the final output aggregator is the same for consumption and investment goods. There is a

growing literature that argues that the nature of the production technology for investment

goods is systematically different than that of consumption goods and that this technology

shifts along the process of structural change, (Garćıa-Santana et al., 2021 and Herrendorf

et al., 2020). A natural question is to what extent the protracted decline in the price of

capital relative to consumption is driven by the process of structural change itself. Given

our definition of embodied, i.e. a decline in the relative price of investment to consumption,

shifts in factor neutral-technical change that has first order implications for this relative

price, are also embodied.

While the question of the core drivers of such relative prices is an interesting one, this

paper focuses on accounting for the direct effects of the systematic differences in this de-

cline for employment and output reallocation across sectors. Indeed, our main accounting,

equation 3, does not require assumptions on the nature of the final output aggregators. The

introduction of a distinct investment and consumption aggregator affects the mapping be-

tween the relative price of investment in each equipment type and the residual productivity

of the investment sector, see Corollary 1.1.

To adjust this mapping, we can augment our framework for an aggregator of final output

that differs between consumption and investment as in Buera et al. (2020). The output

of the investment aggregator is then linearly transformed into services of different capital

types. Cost minimization implies that the relative price of investment to consumption in each

equipment type is a combination between CETC and the sectorial output prices weighted

by their role in the investment aggregator, i.e. a common trend. Since there are systematic

differences in the expenditure shares of capital across sectors, the common component in the
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price investment would affect relative prices, exactly as in Acemoglu and Guerrieri (2008).

For example, suppose industry is relatively more capital intensive than services, and that

the price of the good produced by the investment aggregator falls. Then the price of of the

more capital-intensive sector (industry) will fall relative to the less capital-intensive sector

(services), everything else equal. Because the disparity in aggregator technologies between

consumption and investment have first order effect on the relative price of investment to

consumption, this effect is embodied in capital for the purposes of our accounting.

3 A model of capital-embodied structural change

To study the role of CETC for structural change, we build a parsimonious multi-sector model

where each sector uses heterogeneous bundles of capital, and capital expenditure shares are

endogenous to the price of each of these bundles relative to the cost of labor. Labor is

homogeneous and frictionlessly allocated across sectors. Final goods are a composite of

goods produced by these sectors and can be allocated to consumption or investment. A unit

of final output invested towards capital of type j generates Axj (t) capital services.

3.1 Demand structure

Consider a standard continuous time problem of a representative household with constant

intertemporal elasticity preferences over a consumption aggregate C(t). The household in-

elastically supplies N(t) units of labor which earns a wage W (t), and invest in capital of

different types j ∈ {1, , .., J}, Xj(t). This investment is distributed into three different sec-

tors for the accumulation of sectorial capital, which can be rented to firms in the economy

at a rental rate, Rs(t). Capital in each sector depreciates at a rate δs ∈ (0, 1). A bond B(t),

which is priced and pays off in units of consumption, is in zero net supply. This bond prices

the (consumption-based) interest rate, R(t), given the rate of discount υ.

The household’s problem is therefore:

max
C(t),Xj(t),Xjs(t),Ks(t),B(t)

∫ ∞
t=τ

eυ(t−τ)
C(t)1−θ

1− θ
,

subject to

Pc(t)C(t) +
∑
j

Pj(t)Xj(t) + Pc(t)Ḃ(t) = W (t)N(t) +
∑
s

Rs(t)Ks(t) + r(t)Pc(t)B(t),
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K̇s(t) = Is(Xs(t))− δsKs(t), (4)

Xj(t) =
∑
s

Xjs(t),

where Xs is a vector of investment of each equipment type in sector s, Xs ≡ [X1s, X2s, ..., XJs]

and Is is a homogeneous of degree one aggregator.

The amount of household labor allocated to different sectors should be consistent with

the labor supply, ∑
s

Ns(t) = N(t). (5)

To this consumption-investment problem, we add structural transformation. Define an

output aggregator

Y (t) = (
∑

s=a,m,s

ω
1
σy
ys Ys(t)

σy−1

σy )
σy
σy−1

for an elasticity of substitution, σy ∈ [0,+∞) . Final output can be used to produce final

consumption goods or inputs for investment goods, χj(t),

C(t) +
∑
j

χj(t) = Y (t).8 (6)

3.2 Production structure

Producers in the investment sector maximize profits Pj(t)Xj(t)−Pc(t)χj(t) subject to

a linear technology for production

Xj(t) = Aj(t)χj(t), (7)

with productivity trend, Ȧj(t) = γj(t)Aj(t).
9

Producers of sectorial goods need to perform a measure 1 of activities to generate output.

They choose which activities to perform with each factor of production and how much of

each factor to allocate to a given activity:

max
ki(t),ni(t),m(t)

Ps(t)F (ki(t), ni(t))−Rs(t)

∫ 1

0

ki(t)−W (t)

∫ 1

0

ni(t)di.

8The model can be readily extended to a non-homothetic final output aggregator, as well as distinct
output aggregators for consumption and investment goods.

9In the extensive tradition that studies investment-specific technical change, e.g. Greenwood et al. (1997)
and followers, the rate of technical change is assumed constant, γj(t) = γ̄j . At this level of generality, we
allow for a time-varying growth rate, and later narrow its path as we characterize equilibrium allocations.
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subject to their production technology

Ys(t) ≡ F (ki(t), ni(t)) =

[∫ 1

o

yi(t)
ρdi

] 1
ρ

,

yi(t) = ζi(t)
ρ−1
ρ Zs(t)

ρ−1
ρ ni(t) i ∈ [0, 1],

yi(t) = ki(t) i ∈ [0,m(t)],

Żs(t) = γZsZs(t).

Capital is equally productive across different activities, but labor is not: there exist a

profile ζi, increasing in the activity index i, which characterizes the productivity of labor

in each activity. In addition, there is a common component of labor productivity across

activities in the sector, Zs. Differences across economies in the supply of skills that are

relevant to a given sector would map into this common trend, while the relative productivity

of workers across production processes would better map to the profile ζi.

3.3 Optimal allocations

Key features of the allocation in this economy include the amount of labor allocated to each

sector, the capital-labor ratios, the capital-expenditure shares, and the shares of output in

total value added.

Expenditure shares across activities. We start characterizing the input allocation

in each sector. Optimality requires

W (t) = pi(t)(Zs(t)ζi(t))
ρ−1
ρ ,

Rs(t) = pi(t),

for a price of each activity that follows pi(t) = Ps(t)
(
Ys(t)
yi(t)

)1−ρ
. An implication of this

optimal allocation is that expenditure shares in all activities within a sector are the same.

Measure of mechanized activities. When the cost of performing an activity is lower

with capital than with labor, the activity is mechanized.

W (t)Zs(t)
1−ρ
ρ ζi(t)

1−ρ
ρ ≥ Rs(t). (8)

Any activity below m(t) that satisfies such a condition will be allocated no labor and the

optimal amount of capital, i.e. the activity is “mechanized”.
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This condition presents the key tradeoff between the rate of decline in the usercost of

capital, which is linked to CETC; and the improvements in labor productivity.

Capital and labor allocation per activity. A consequence of the equalization of the

expenditure shares across activities is that all mechanized activities get the same amount of

capital

ki(t) =
Ks(t)

ms(t)
. (9)

Output across non-mechanized activities depends on labor productivity and so does the

labor allocated to them,

ni(t) =

1
ζi(t)

Zs(t)
Ns(t)

1−ms(t)
, (10)

where Zs ≡ 1
1−ms(t)

∫ 1

ms(t)
1

ζi(t)
di, a geometric average of the labor productivity across activi-

ties. The amount of labor allocated to activities with higher labor productivity is relatively

lower.

It is indeed low enough that output in non-mechanized activities with higher labor pro-

ductivity is lower than in activities with lower labor productivity. This is again a consequence

of the equalization of expenditure across activities.

yi(t) =
Ps(t)

1
1−ρYs(t)

W (t)
1

1−ρ (Zs(t)ζi(t))
1
ρ

, (11)

yi(t) =
Ps(t)

1
1−ρYs(t)

Rs(t)
1

1−ρ
. (12)

Capital expenditure share. The expenditure share of capital, which is the sum of the

expenses across mechanized activities, can be described using equation 9

αs(t) ≡
∫ ms(t)

o

piki
Ps(t)Ys(t)

=
Rs(t)K(t)

Ps(t)Ys(t)
.

We can further describe the capital expenditure share in sector s as proportional to the

mechanization rate, m(t) and a function of the marginal product of capital using equation

12:

αs(t) = ms(t)

(
Ps(t)

Rs(t)

) ρ
1−ρ

. (13)

When there are complementarity in production across activities ρ < 0, the capital expen-

diture share increases in the marginal product of capital, Rs
Ps

, as well as the mechanization

18



rate. In a one sector economy, the marginal product of capital is simply a function of CETC

because the sectorial price equals the price of consumption. In an economy with a non-trivial

and heterogeneous path for sectorial prices, the marginal product is not only a function of

CETC but also of the relative price of output to consumption.10

Sectorial output and factor augmenting technology. Given the optimal capital

and labor demand, output in each sector can be written as

Ys(t) =

((1−ms(t))
1−ρ
ρ Ans (t)︸ ︷︷ ︸

bn(t)=labor augmenting

Ns(t))
ρ + ( ms(t)

1−ρ
ρ Aks(t)︸ ︷︷ ︸

bk(t)=capital augmenting

K̃s(t))
ρ


1
ρ

, (14)

where the elasticity of substitution between capital and labor services is 1
1−ρ < 1, and where

capital has been described as product between the stock in units of the top technology

available, and the efficiency of the top technology Aks(t), i.e. Ks = Aks(t)K̃s. Then, the

capital-augmenting term is a function of the share of activities that are mechanized, and

the efficiency of the top technology. The labor-augmenting term is in turn a function of

the average labor productivity in activities that are not mechanized, as well as its common

component within the sector, Ans (t) ≡ Zs(t)
Zs(t)

ρ−1
ρ .

Proposition 2 When ρ→ 0, the technology converges to a Cobb-Douglas form with output

elasticity to capital equal to ms and output elasticity to labor equal to 1 −ms, for arbitrary

ms ∈ (0, 1).

Hence, in the limit when ρ → 0 in all sectors, the economy converges to Acemoglu and

Guerrieri (2008).

Perhaps most important to the properties of allocations along the development path, one

can use the expression for output in each sector and the optimality condition for labor (in

terms of the labor expenditure share) to describe:

Ys(t) =
bns (t)

(1− αs(t))
1
ρ

Ns(t). (15)

This representation of output highlights the key departures from an economy where

the output elasticity of capital is constant. Output per worker is a function of the labor

augmenting term as in the plain vanilla model of structural change. But output per worker

10Note that Jones and Liu (2022) sets up an economy with structural change with no differences in the
prices of sectorial output. The authors assume this when imposing a linear aggregation of real output into
GDP.
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is also a function of the endogenous cost-share of capital, which responds to the cost of

capital relative to labor. When capital and labor are complementary, output per worker is

lower in sectors with higher labor share.

Households’ savings decisions. The dynamic decisions of the household are charac-

terized by the Euler equation associated to the accumulation of capital of type s,

θ
˙C(t)

C(t)
= R(t)− υ =

Rs(t)ιjs(t)

Pj(t)
− δs − υ + (

Ṗj(t)

Pj(t)
− Ṗc(t)

Pc(t)
−

˙ιjs(t)

ιjs(t)
)

where ιjs(t) ≡ ∂Is(Xs)
∂Xjs

, i.e. the partial of the investment aggregator in sector s to capital of

type j in sectorial capital s. The return to a unit invested in equipment j at cost Pj which

yields ιjs additional units of sectorial capital is
Rs(t)ιjs(t)

Pj(t)
net of the effective discount rate,

δs + υ, and the change in the value of the sectorial capital.

The relative price of investment to consumption can be computed from the zero profit

condition in the production of investment goods, so that
Ṗj(t)

Pj(t)
− Ṗc(t)

Pc(t)
= −

˙Aj(t)

Aj(t)
.

θ
˙C(t)

C(t)
=
Rs(t)ιjs(t)

Pj(t)
− δs − υ −

˙Aj(t)

Aj(t)
+

˙ιjs(t)

ιjs(t)

Cost minimization in the investment aggregator implies that Pxs (t)
Pj(t)

ιjs(t) = 1. The change

in the value of capital is then (
Ṗj(t)

Pj(t)
− Ṗc(t)

Pc(t)
−

˙ιjs(t)

ιjs(t)
) = Ṗxs (t)

Pxs (t)
− Ṗc(t)

Pc(t)
.

θ
˙C(t)

C(t)
=
Rs(t)

P x
s (t)

− δs − υ −
˙Axs(t)

Axs(t)
(16)

In other words, we can describe the dynamics for the accumulation of capital in the econ-

omy as a function of the sectorial capital composite, and its rate of embodiment. Likewise,

these Euler equations impose a series of no-arbitrage conditions on the value of the marginal

product of capital across sectors.

We can describe consumption in units of investment of an arbitrary sector as C̃s(t) ≡
Pc(t)
Pxs (t)

C(t). Then, the Euler equation(s) read

θ
˙̃Cs(t)

C̃s(t)
=
Rs(t)

P x
s (t)

− δs − υ − (1− θ)
˙Axs(t)

Axs(t)
. (17)

Then, with logarithmic preferences, θ = 1 the Euler equation is independent of the relative

price of investment to consumption, i.e. CETC, similarly to Herrendorf et al. (2020).
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3.4 Equilibrium

Definition: The competitive equilibrium is fully characterized by the Euler Equation,

16, the law of motion for capital in each sector, 4, the optimal capital and labor allocation

9 and 10, the optimal measure of mechanized activities in each sector, 8 and the feasibility

constraints of the economy, 5, 7 and

C(t) +
∑
j

χj = Y (t);

as well as the transversality condition for each capital type, limt→∞ e
υtC(t)−θKj(t) = 0.

With the definition of equilibrium at hand, we can explore what features of the economy

would admit a generalized balanced growth path as described below. In what follows we

assume logarithmic preferences for final consumption.

Definition: A generalized balanced growth path (GBGP) is an allocation where

the interest rate in the economy is constant, R̄ ≡ R(t) = Rs(t)
Pxs (t)

− δs.
The existence (or lack of) a GBGP depends critically on the properties of the rental rate

of capital in units of investment. Due to complementarities in the output aggregator, the

sector with slowest output growth overtakes the economy, call this sector s. The optimality

condition for capital implies that the rental cost of capital (in units of investment) is

R(t))

P x(t)
=
Ps(t)

Pc(t)

(
Ys(t)

K̃s(t)

)1−ρ

(bks)
ρ (18)

where Ps(t)
Pc(t)

=
(
Y (t)ωs
Ys(t)

)
1
σy . Hence, the sector with slowest output growth displays the fastest

growth of capital in efficiency units K̃s(t) whenever the elasticity of substitution between

capital and labor is higher than the elasticity of output across sectors, σy < σkn ≡ 1
1−ρ ,

which is the empirically relevant case. Conversely, the sector with the fastest growth in

output should display the slowest growth in capital in efficiency units. But a permanently

shrinking capital stock in efficiency units (sectorial output) would eventually hit the non-

negativity constraint for stocks (output), so it is not feasible along a GBGP. Hence, the BGP

is only achieved in the limit.

Before describing the long-run allocations, it is important to highlight the main differences

between our economy and others studied in the literature. Consider a version with no

disparities in CETC across sectors, γxs = γx, but where sectorial output follows the CES

structure posed before. Balanced growth for this class of technologies requires pure labor-

augmenting technical change Uzawa (1961), or bks(t) = bks .
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Proposition 3 Along an allocation with constant interest rate and capital-augmenting tech-

nical change, relative output follows

Ys(t)

Ys′(t)
=
ωs′

ωs

(
φs
φs′

αs(t)

αs′(t)

)−σy 1−ρ
ρ

,

where φs ≡
(

R
Px

1

bks
1
ρ

) ρ
1−ρ

is a constant.

Proposition 3 implies that the limiting sector has also the slowest increase in the capital-

expenditure share, which occurs whenever capital and labor are complementary, ρ < 0).

The representation of output in this Proposition also highlights the main difference to Jones

and Liu (2022), where constant capital-augmenting technical change maps one-to-one to

a constant capital share. This is a consequence of the 1-sector nature of their economy

and the fact that they study a static allocation, i.e. capital fully depreciates.11 Indeed,

the representation of the capital expenditure share in equation 13, makes it clear that the

expenditure share is a function of the price of sectorial output, which differs from the price

of consumption. In a one-sector economy, these two prices are identical.

3.5 Long run properties

We now characterize what happens along the limiting BGP.

Sectorial Output. In the steady-state the growth rate of output in the sector follows

from equation 15,

gYs =
1− ρ
ρ

(g1−ms + gAs) =
ρ− 1

ρ
(gZs − g∫ 1

ms
1
ζi
di

)). (19)

Given that ρ ≤ 0 in the limiting sector, growth occurs as As declines. It does so for three

reasons: (a) there are less activities performed by labor, (b) the productivity of labor in

newly mechanized activities is higher (lower 1
ζms (t)

on the margin), (c) the productivity of

labor in all activities grows exogenously at rate gZs . the first two reasons imply that average

productivity across activities is falling, g∫ 1
ms

1
ζi
di
< 0.

Aggregate Output and Wages. To compute the equilibrium wage, aggregate over the

optimal demand for labor in sector. Assuming a common elasticity of substitution between

11In this case, the rental rate of capital equals the price of investment and 13 can be rewritten as αs(t) =

mt(
Ps(t)
Pc(t)

Pc(t)
Pxs

Pxs
Rs(t)

)
ρ

1−ρ = mt(
Ps(t)
Pc(t)

Aks(t)
Pxs
Rs(t)

)
ρ

1−ρ . In the setup of Jones and Liu (2022) the latter equation

equals, αs = bks
1

1−ρ .
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capital and labor across sectors, wages in the long-run converge to

W (t)→ 1

N(t)1−ρ
(ωys)

1
σy

(
Ys(t)

Zs(t)

∫ 1

ms

1

ζi(t)
di

)1−ρ

for the sector s that overtakes the economy. Using the growth rate for sectorial output 19

we can compute the equilibrium growth rate of wages, which as expected, follows the growth

rate of output:

gw =
ρ− 1

ρ
(γZs − g∫ 1

ms
1
ζi
di

) (20)

which is an increasing function of the labor augmenting term for ρ < 0. In other words,

gw = gY = gY/N .

Usercost of Capital and Mechanization. Using the ratio of the expenditure shares

in capital and labor, we can compute the growth rate in the usercost of capital as a function

of the mechanization rate and the growth rate in labor augmenting technology

αs
1− αs

=
Rs(t)Ks(t)

W (t)Ns(t)
=

ms(t)∫ 1

ms
1
ζi
di

(
W (t)

Rs(t)

) ρ
1−ρ

.

so that

gRs =
1− ρ
ρ

(gm − (g∫ 1
ms

1
ζi
di
− γZs)) + gw

gRs =
1− ρ
ρ

gm. (21)

Hence, the reason for which in this model the capital share is constant is that when the cost

of capital falls, there is a proportional increase in the share of newly automated tasks, com-

pensating for the upward pressure on the capital expenditure share from more mechanized

activities. Notice that the impact of mechanization on the efficiency of labor generates even

more upward pressure on the expenditure ratio, but this effect is exactly compensated with

an increase in wages.

The growth rate of the usercost of capital is linked to CETC through the Euler equation,

equation 16, which in turn pins down gm as a function of factor neutral productivity and
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CETC, i.e. gRs = −γAks ; so that

gms =
ρ

ρ− 1
γAks > 0.12 (22)

By definition, as activities become mechanized, the measure of unmechanized activities

shrinks. Incidentally, the rate of shrinkage is also the rate at which ms(t) reaches its limit

g1−ms =
ṁs

1−ms(t)
= −gms

ms(t)

1−ms(t)

or what is the same

gms = −g1−ms
1−ms(t)

ms(t)
. (23)

There are two takeaways from this expression. The second term in the LHS is monotonically

decreasing so two scenarios can realize: (a) if the growth rate of mechanized activities is

constant, then the growth rate of unmechanized activities has to be monotonically increas-

ing; or (b) the growth rate of unmechanized activities is constant, and the growth rate of

mechanized activities is monotonically decreasing. The first case cannot arise because mt is

bounded between 0 and 1. Hence, if gms > 0 is declining then so is the rate of decline in

the usercost of capital, see equation 21, gms , gRs → 0. A slow-down in the rate of decline

in the usercost of capital, also imposes restrictions on the rate of CETC through the Euler

equation.

The optimality condition for the set of automated tasks implies,

gw +
1− ρ
ρ

(γZs + gζms ) = gRs .

Replacing the expressions for the growth rates of wages and the usercost, equations 20 and

21,

gζms = gms − g∫ 1
ms

1
ζi
di

(24)

Let the trend in labor productivity be −q = (g∫ 1
ms

1
ζi
di
− γZs). Along the BGP, q should be

constant (Uzawa, 1961). Then, the rate of shrinking of the productivity across activities is

proportional to the growth in productivity within the sector.13

12The usercost of capital is only exactly proportional to CETC when the rate of embodiment is constant,
the interest rate is constant and the expenditure share in each equipment type in the investment aggregator is
constant. The latter occurs along the transition path if the investment aggregator displays unitary elasticity
across capital types. Still, the economy’s interest rate might not be constant away from the limiting BGP.

13Before convergence in ms, the threshold is also a function of CETC, gζms = ρ
ρ−1gAxs − g∫ 1

ms

1
ζi
di

.
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Totally differentiating the expression for labor productivity and using the Leibniz rule,

−
˙ms(t)

ζms(t)
= −q + γZs

Then,

ζms(t) =
g1−ms(1−ms(t))

q + γZs
,

or what is the same, γζms = g1−ms . Using equation 24, we conclude that q = g1−ms + γZs
and constant.

Finally, using the expression of the usercost of capital is easy to see that in the limit,

capital and output grow at the same rate.

3.6 Detrending and steady state

Sectorial output in each sector should be detrended by labor productivity, Ans (t). Define the

trend in aggregate output as

a(t) ≡

(∑
s

ω
1
σy
s (bns (t))

σy−1

σy

) σy
1−σy

, for bns (t) ≡ (1−ms(t))
1−ρ
ρ Ans (t).

The trend in sectorial capital is

aks(t) ≡ a(t)Aks(t).
14

With these trends, we can define detrended consumption, output, sectorial output and

sectorial capital as follows

c(t) ≡ C(t)

a(t)
, y(t) ≡ Y (t)

a(t)
, ys(t) ≡

Ys(t)

a(t)
, ks(t) ≡

Ks(t)

aks(t)
.

14Here we take a shortcut and describe the trend in sectorial CETC, but this trend is an investment
weighted sum across CETC of different equipment types.
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3.7 Transition dynamics

With the detrended economy, the transition dynamic of the problem is summarized by the

following conditions

θ
˙̃cs(t)

c̃s(t)
= rs(t)− δs − υ

where c̃ corresponds to the detrended consumption expenditure in units of investment and

rs(t) is the detrended value of the marginal product of capital in each sector, which satisfies

ps(t)
ys(t)

ks(t)

1−ρ

Axs(t)
ρms(t)

1−ρ(
a(t)

as(t)
)ρ = rs(t).

The detrended sectorial output satisfies

ys(t) =

[
Nρ
s +ms(t)

1−ρ
(
a(t)

as(t)

)ρ
Aks(t)

ρks(t)
ρ

] 1
ρ

.

The dynamics of capital in the detrended economy are

k̇s(t)

ks(t)
=

y(t)

ks(t)
− c(t)

ks(t)
−
∑
s′ 6=s

xs′(t)

ks(t)
− δs − γAks − γa

for xs′ → 0 for any sector that is not the one overtaking the economy.

Prices of sectorial output satisfy:

ps(t) = ω
1
σy
s (

as(t)

a(t)
)
σy−1

σy

(
y(t)

ys(t)

) 1
σy

Combining the optimality condition for capital with that of labor, we obtain a characteriza-

tion of the static allocation, and equilibrium capital-labor ratios.

Finally, the system is closed with a transversality condition for each sectorial capital,

limt→∞ exp(−(υ+(1−θ)γa−γAx)t)c(t)−θks(t) = 0. For log utility, the transversality condition

requires υ > γAx , which is trivially satisfied absent CETC in the limit, or if agents have a

relatively high discount for time.

4 The role CETC for structural change

To quantify the role of CETC for structural change, we run an accounting exercise on a

calibrated version of the model described in the previous section. We start our exercise
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Table 2: Calibration.

Parameter Value Target

output elast. σy 0.4 .
discount factor β 0.98 Buera et al. (2020)

Agr. Manuf. Serv.

elast. of substitution, k-l 1
1−ρ 1.6 0.8 0.75 Herrendorf et al. (2015)

depreciation rate δ 0.14 0.21 0.17 data
output shares ωys 0.10 0.40 0.50 employment shares, 1948
mechanization rate ms(t) capital share
labor aug. tech: relative bns (t)/bnm(t) relative prices
labor aug. tech: level bnm(t) output per worker

Note: The table shows the value of the calibrated parameters and their targets. Sectoral values are reported
in the following order: agriculture, industry, services.

by feeding the path of observed sectoral capitals to the model and calibrate the remaining

parameters to the path of relative prices and average output growth in the data. We then

run counterfactual exercises where we measure the contribution of CETC to the reallocation

of labor across sectors – that is, our measure of structural change.

4.1 Calibration

We calibrate our model to the US economy between 1948 and 2020. In our accounting

exercise, we take the path of sectoral capital as given. We use the Euler equation for each

sectoral capital good to measure the path of CETC in the sector and allow for a wedge in

the sectoral capital demand, τs(t), (i.e. equation 18):

τs(t)Rs(t) = Ps(t)ms(t)
1−ρ
(
Ys(t)

Ks(t)

)1−ρ

, (25)

where the price of consumption is normalized to 1. This approach allows us to get a perfect

fit on the path of sectoral capital along the process of structural change.

Our calibration strategy is summarized in Table 2 and described below.

Pre-set parameters. We measure the sectoral depreciation rates δs directly from the

data as described in Section 2. We set the discount factor, β, in line with Buera et al. (2020)

and the elasticity of substitution across occupational outputs, σy, to 0.4. We allow for the

elasticity of substitution between capital and labor to differ across sectors and parameterize

it according to Herrendorf et al. (2015): capital and labor are measured substitutes in
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agriculture and complements in the remaining two sectors. Lastly, as mentioned above we

measure the user cost of capital Rs(t) from the Euler equation as described in Section 2.

Targeted moments. We calibrate the remaining parameters to match relevant features

of the structural transformation process in the US between 1948 and 2020. In the first

year of our sample, 1948, we target the sectoral employment allocation using the sectoral

shares in final good production, ωys, and sectoral labor productivity, using labor augmenting

technology bns (t), using:

(
Ns(t)

Nu(t)

) 1
σy

=

(
ωys
ωyu

) 1
σy
(
bns (t)

bnu(t)

)ρ(
Ys(t)/Ns(t)

Yu(t)/Nu(t)

)1−ρ− 1
σy

,

and the sectoral production function.

Then, in all other years in our sample, we target (a) the capital share, to parameterize

the mechanization rate ms(t) for observed capital output ratios in each sector:

αs(t) = ms(t)
1−ρ
(
Ys(t)

Ks(t)

)−ρ
;

(b) the path of relative output prices to parameterize the path of sectoral labor-augmenting

technology relative to the industry sector, using the optimality conditions for sectorial output

demand and the industry sector as baseline

g Ps
Pm

= − 1

σy
g Ys
Ym

;

(c) the path of labor productivity in the industry sector to parameterize the path of labor-

augmenting technology in the sector, using the sectoral production function. Finally, the

model-implied wedge on sectoral capital demand can be recovered from equation 25.

Outcomes. Figure 5 shows the fit of the model on the paths of relative sectoral prices.

The model generates the same trend in relative prices as in the data. Table 3, columns Model

and Data shows the model fit on the change in the allocation of employment between 1948

and 2020. This path is not a target of our calibration exercise and it is a measure of structural

change. We find that the model generates a decline of 3.31p.p. in the share of agricultural

employment, compared to the 4.24p.p. decline observed in the data. At the same time, the

model generates an increase in the share of employment in services of 17.55p.p. compared

to the observed increase of 35.28p.p.. Hence, the model generates 78% of the reallocation of

employment out of agriculture and 50% of the reallocation toward services.15

15A missing source of structural change in our set-up are income effects (see Herrendorf et al., 2014). We
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Figure 5: Model fit on relative sectoral prices.

The figure shows the model fit on the targeted trend in relative prices. Data moments are in solid lines and
model moments are in striped lines.

Our next step is to isolate the drivers of these relative prices and, therefore, of struc-

tural change, via counterfactual exercises. Before that, we describe the paths of the two

additional sources of technological changes that, along with CETC, shape allocations in the

model: labor-augmenting technology and mechanization rates. Figure 6 displays the path

of mechanized activities in agriculture, industry and services. Two patterns arise: (a) the

rate of mechanization has been faster in agriculture, with a pick in the 2000s; (b) the rate of

mechanization in services and industry proceeds at similar speed throughout the period of

analysis. The right panel of Figure 6 displays the paths of labor-augmenting technology in

each sector. The growth rate of labor-augmenting technology has been stronger in agricul-

ture, followed by industry and then services, consistently with the gold-standard calibration

outcomes of models of structural change.

4.2 Accounting exercise

Three exogenous forces drive the paths of relative prices in the model, and so, of structural

change: sectoral labor-augmenting technical change, bns (t), sectoral CETC, Aks(t), and sec-

toral changing mechanization rates ms(t). We run counterfactual exercises to isolate the role

of the latter two forces, where we held constant each force, one at a time. In our first coun-

terfactual, “no Aks”, we shut down sectoral differences in CETC – that is, we set Aks(t) = 1

plan to include this source in the next version of the paper.
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Figure 6: Paths of mechanization and labor-augmenting technology.

Panel (a) displays the mechanization rates ms(t) while Panel (b) displays labor-augmenting technology,
bns (t). Source: Own computations.

Table 3: Counterfactuals.

Sector Data Model no Aks no ms both no Akm

Agriculture -4.24 -3.31 -2.26 -2.2 -0.1 -3.1
industry -31.05 -14.23 -13.3 -17.4 -16.3 -5.5
Services 35.28 17.55 15.6 19.6 16.5 8.7

Note: The table shows the change between 1948 and 2016 in sectoral relative prices and employment shares
in the data, as predicted by teh model, and as predicted in the two counterfactual exercises described in the
text. Values are in percent.

∀s, t. In our second counterfactual, “no ms”, we shut down sectoral differences in the path

of mechanization. Lastly, we run a third counterfactual where we shut down both forces at

the same time, ”both”. Table 3 shows the change in sectoral employment shares between

1948 and 2020, as predicted by each of the three counterfactual exercises. We measure that

CETC accounts for 32% of the movement of employment out of agriculture and for 11% of

the movement toward services. Mechanization accounts for the same fraction of the outflow

of employment from the agricultural sector but, differently from CETC, it generates and

outflow of employment from the service sector. Last, we run an additional set to counter-

factual exercises where we isolate the effect of sectoral CETC – that is, we separately shut

down CETC in each sector. In column “no Akm ”of Table 3, we report the results for when

Akm(t) = 1. CETC in the industry sector is a strong driver of the outflow of employment

from industry into services: it accounts for 61% of the former and for 50% of the latter.
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5 Final Remarks

We document systematic disparities in the bundle of capital used for production across

sectors. These disparities induce sector-specific rates of capital-embodied technical change

which we can directly measure in the data using data on the cost of capital relative to

consumption.

CETC differentials map into labor productivity differences through capital-expenditure

shares, which we also show have been changing within sectors through time. We build

a structural model that can accommodate those movements endogenously, and therefore

propose a theory for the endogenous link between CETC and labor productivity.

Our preliminary results show that labor productivity differentials across sectors (fastest

in agriculture, slower in industry and slowest in services) may reverse as CETCbecomes

ever more important for output production. Hence, our findings may have implications for

Baumol’s cost disease.

Overall, our findings draw attention to the nature of investment for the path of economic

development.
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A Data construction.

VA price deflators by sector are Torqvinst price indexes constructed weighting the price

deflator of output in each sector (variable V AP ) by nominal value-added weights, (variable

V A).

Real measures of value added (in national currency) are the ratio between total value

added by sector (aggregated linearly) and the price deflator for output in the sector.

Measures of employment correspond to counts of people and total hours of those em-

ployed (variables EMPE and HEMPE). I have also included measures of labor compensa-

tion LAB.

Measures of capital include capital compensation rk, (variable CAP ) and KLEMS also

produces a measure of stock which is a quantity index with base year 2010.

B Proofs

Proof. Proposition 1.

Let ks(t) ≡ Ks(t)
Ns(t)

, and define output in terms of capital per worker as f(ks(t)) ≡
F (Ks(t)

Ns(t)
, 1). The, wages can be written as,

Ps(t)(1− αs(t))f(
Wt

Rs(t)

αs(t)

1− αs(t)
) = Wt.

The above expression can be linearized around the steady state of the economy as

ln(P ?
s ) +

Ps − P ?
s

P ?
s

+ ln(A?s) +
As − A?s
A?s

+ ln(1− α?s) +
(1− αs)− (1− α?s)

(1− α?s)
+ ln(f(k?)) +

fkk
?

f

(k − k?)
k?

= ln(W ?) +
W −W ?

W ?

where x? corresponds to the s.s. level of variable x.

d ln(Ps) + d ln(1− αs) + d ln(As) +
fkk

?

f
d ln(k) = d ln(W )

using the optimal capital labor ratios

d ln(Ps)+d ln(1−αs)+d ln(As)+
fkk

?

f
(d ln(W )−d ln(Rs)+d ln(αs)−d ln(1−αs)) = d ln(W ).
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The term fkk
?

f
= αs(t) by definition, and therefore

(1−αs(t))(d ln(Ps)+d ln(As))+d ln(1−αs)(1−αs(t))+αs(t)d ln(αs)+αs(t)(d ln(Ps)−d ln(Rs)) = d ln(W )(1−αs(t))

d ln(Ps)+d ln(As)+d ln(1−αs(t))+
αs(t)

1− αs(t)
d ln(αs)+

αs(t)

1− αs(t)
(d ln(Ps)−d ln(Rs)) = d ln(W )

Computing the difference between sectors yields the result.

Proof. Corollary 1.1 We rewrite this condition as a function of CETC using the relationship

between the user cost of capital and CETC through the Euler equation in the long-run:

λt
βλt+1

−
P x
st+1

Ps(t)x
(1− δs) =

rst+1

Ps(t)x

for P x
s the price of investment in sector s

λt
βλt+1

−
P x
st+1

Ps(t)x
(1− δ) =

rst+1

Ps(t)

Pct
Ps(t)x

Ps(t)

Pct
.

The first term is the interest rate in the economy Rt whereas the second term is a function of

CETC
Pxst+1

Ps(t)x
. Both of them are constant along a (limiting) BGP. The term Pct corresponds

to the deflator of final output. Along the (limiting) BGP, Ps(t)
Pct

is a constant, and therefore

the user cost of capital relative to the price of output grows at the same rate as the price of

investment in the sector relative to consumption:

d ln(Rs(t))− d ln(Ps(t)) = d ln(P x
s (t))− d ln(Pct) = −d ln(Axs(t)).

We replace this long run condition into equation ?? and use the condition for wage equal-

ization across sectors to obtain equation ??.16

Proof. Proposition 2.

Apply logs to equation 14 and take the limit when ρ→ 0.

lim
ρ→0

ln(Ys(t)) = lim
ρ→0

1

ρ
ln

(
(1−ms(t))

(
Ans (t)Ns(t)

1−ms(t)

)ρ
+ms(t)

(
Aks(t)K̃s(t)

ms(t)

)ρ)
16Along the transition to the limiting BGP, the mapping between the usercost of capital and CETC

becomes non-linear, but equation ?? still provides a valid link between the growth rate in sectorial prices
(and labor productivity), and the usercost of capital.
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Because ms(t) + 1−ms(t) = 1 we can apply L’hopital rule and compute the limit.

lim
ρ→0

ln(Ys(t)) = (1−ms(t)) ln

(
Ans (t)Ns(t)

1−ms(t)

)
+ms(t) ln

(
Aks(t)K̃s(t)

ms(t)

)

which is just a Cobb-Douglas form.

Ys(t) =
Ans (t)1−ms(t)

(1−ms(t))1−ms(t)ms(t)ms(t)
Ns(t)

1−ms(t)(Aks(t)K̃s(t))
ms(t) (26)

Proof. Proposition 3.

We can compute relative output as the ratio of output in different sectors, equation

15.
Ys(t)

Ys′(t)
=

(
bns′(t)

bns (t)

)− 1
ρ
(

1− αs(t)
1− αs′(t)

)− 1
ρ Ns(t)

Ns′(t)
(27)

The labor allocation follows

Ns′(t)

Ns(t)
=
Ys′(t)

Ys(t)

1− 1
σy

1
1−ρ
(
ωs
ωs′

) 1
σy

1
1−ρ
(
bns′(t)

bns (t)

) 1
1−ρ

Replacing back in the equation for relative output, we obtain(
Ys(t)

Ys′(t)

) 1
σy

1
1−ρ

=

(
bns
bns′

) 1
ρ
(

1− αs(t)
1− αs′(t)

)− 1
ρ
(
ωs′

ωs

) 1
σy

1
1−ρ
(
bns (t)

bns′(t)

) 1
1−ρ

(
Ys(t)

Ys′(t)

)
=

(
bns′

bns

)−σy
ρ
(

1− αs(t)
1− αs′(t)

)−σy 1−ρ
ρ
(
ωs′

ωs

)
(28)

Output in the limiting sector will grow slower than elsewhere if labor augmenting pro-

ductivity growth is slower in this sector (slower decline in bns ), or if the labor share falls

faster in that sector. In the data however, we have seen a faster decline in the labor share

in industry relative to services, which would push in the opposite direction.

To sign the dynamics of the labor share in both sectors, we need the dynamics of the

capital-labor ratios since
1− αs(t)
αs(t)

=
bns (t)

bks(t)

(
Ns(t)

K̃s(t)

)ρ
. (29)
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Using the optimality conditions for labor describe the ratio of capital-labor ratios as

Ps
Ps′

[
Ys(t)/K̃s(t)

Ys′(t)/K̃s′(t)

]1−ρ
=

[
K̃s′(t)/Ns′(t)

K̃s(t)/Ns(t)

]1−ρ
bns′(t)

bns (t)

The optimality condition for capital 18 implies that the left hand side is a constant along

a GBGP if bk is constant, equal to

Rs(t)/P
x
s (t)

Rs′(t)/P x
s′(t)

bks′

bks
=

[
K̃s′(t)/Ns′(t)

K̃s(t)/Ns(t)

]1−ρ
bns′(t)

bns (t)
(30)

and therefore the capital labor ratios move inversely to the labor augmenting terms bn.

Faster labor productivity growth in a sector implies a shrinking labor augmenting term and

therefore higher capital-labor ratios.

Hence, combining equation 30 and 29(
Rs(t)/P

x
s (t)

Rs′(t)/P x
s′(t)

bks′

bks

bns
bns′

) 1
1−ρ

=

(
1− αs(t)
αs(t)

αs′(t)

1− αs′(t)
bks(t)

bns (t)

bns′(t)

bks′(t)

) 1
ρ

Hence,

1− αs(t)
αs(t)

αs′(t)

1− αs′(t)
=

(
Rs(t)/P

x
s (t)

Rs′(t)/P x
s′(t)

) ρ
1−ρ
(
bks′

bks

bns
bns′

) 1
1−ρ

which is only a function of the labor productivity trends along a BGP where the value of

the marginal product of capital is constant. If labor augmenting productivity is slower in

the limiting sector, then the capital share grows slower in the limiting sector than elsewhere

in the economy (assuming capital and labor are complementary, ρ < 0).

Define the constant φs ≡ (Rs(t)/P
x
s (t))

ρ
1−ρ 1

bks
1

1−ρ
so that we can write the ratio of the

labor shares as
1− αs
1− αs′

=
φs
φs′

(
bns
bns′

) 1
1−ρ αs

αs′

which can be replaced into 28 as

(
Ys(t)

Ys′(t)

)
=

(
bns′

bns

)−σy
ρ

(
φs
φs′

(
bns
bns′

) 1
1−ρ αs

αs′

)−σy 1−ρ
ρ (

ωs′

ωs

)
(
Ys(t)

Ys′(t)

)
=

(
φs
φs′

αs(t)

αs′(t)

)−σy 1−ρ
ρ
(
ωs′

ωs

)
.
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Figure 7: Sectorial CETC for different investment weights.

The price of investment relative to consumption is normalized to 1 in 1948 and the picture displays log of
prices. Source: BEA and own computations.

C Additional Tables and Figures.
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Figure 8: Relative price of investment to consumption (logs). Raw series (BEA), without
quality adjustment.
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