			Appendix

Working and Saving Informally

The Link between Labor Market Informality and Financial Exclusion

Luca Flabbi¹ Mauricio Tejada²

¹Department of Economics, University of North Carolina – Chapel Hill, NC and IZA

²Department of Economics, Universidad Diego Portales – Santiago de Chile

Workshop on Informality in LAC - UMD-Lacea-WB - June 13, 2023

Image: A match the second s

Introduction				
•00				

Motivation

Developing countries are characterized by high informal employment and by low saving rates.

- High Informal employment:
 - In the Latin America and the Caribbean region (LAC), about half of the labor force is informal.
 - Informality:
 - may introduce some useful flexibility
 - but lowers workers' protections, increases employment risks, hinders productivity growth.

[Jessen and Kluve, 2021; La Porta and Shleifer, 2014; World Bank, 2013; Perry et al., 2007]

• Low Saving rate:

- In LAC, savings are 17% of GDP compared to 30% in High-Income regions.
- Low savings:
 - make individuals more vulnerable to shocks;
 - make economies less resilient;
 - but they are not simply due to many individuals "too poor to save".

[Cavallo et al., 2016; Bond et al. 2015; Dupas and Robinson 2013; Karlan and Morduch, 2010.]

Introduction				Appendix
000				

This Paper: Why

If both high levels of informality and low levels of saving are problems in themselves, this paper studies how they feed each other to generate potentially worse outcomes.

- The informality status causes:
 - higher employment risk, which in turn increases the need for precautionary savings
 - significant financial exclusion, which in turn increases the cost of saving
- As a result, workers with a history of informality:
 - need savings the most, but they end up with relatively low saving levels
 - low savings do not support effective labor market search, so they are more likely to accept informal jobs.
- In conclusion:
 - low savings and high informality can reinforce each other, becoming persistent.

Introduction							Appendix
000	0000	0000	0	0000	00	0	00000000

This Paper: How

Since these deep linkages prevents from studying each problem in isolation, we develop a model that integrates all the crucial elements giving rise to both phenomena:

- Agents search on- and off-the-job for both formal and informal work.
- Agents save through both formal and informal financial institutions.
- Informal workers face higher costs of accessing formal financial institutions (financial exclusion.)

Introduction							Appendix
000	0000	0000	0	0000	00	0	00000000

This Paper: How

Since these deep linkages prevents from studying each problem in isolation, we develop a model that integrates all the crucial elements giving rise to both phenomena:

- Agents search on- and off-the-job for both formal and informal work.
- Agents save through both formal and informal financial institutions.
- Informal workers face higher costs of accessing formal financial institutions (financial exclusion.)

To provide a quantitative assessment and evaluate policy interventions, we estimate the model on Colombia:

- It belongs to a region where both issues are particularly acute (Colombia is the fourth economy in LAC).
- It collects good quality data on both saving and labor market behavior (rare among developing countries).

Introduction							Appendix
000	0000	0000	0	0000	00	0	00000000

This Paper: How

Since these deep linkages prevents from studying each problem in isolation, we develop a model that integrates all the crucial elements giving rise to both phenomena:

- Agents search on- and off-the-job for both formal and informal work.
- Agents save through both formal and informal financial institutions.
- Informal workers face higher costs of accessing formal financial institutions (financial exclusion.)

To provide a quantitative assessment and evaluate policy interventions, we estimate the model on Colombia:

- It belongs to a region where both issues are particularly acute (Colombia is the fourth economy in LAC).
- It collects good quality data on both saving and labor market behavior (rare among developing countries).

As a byproduct, we provide a methodological contributions in the search literature:

• We add two assets to search and saving literature.

[Rendon (2006); Lentz (2009); Lise (2013); Garcia-Perez and Rendon (2020); Abrahams (2022); Krusell et al. (2010)]

• We add savings to search and informality literature.

[Bobba et al. (2022, 2021); Megir et al. (2015); Bosch and Esteban-Pretel (2012); Charlot et al. (2013); Albrecht et al. (2009)]

	Model						
000	0000	0000	0	0000	00	0	00000000

Model: General Environment

- Stationary, continuous time.
- $\bullet\,$ Individuals discount the future at ρ and face a death shock with Poisson rate θ
 - \implies effective discount rate $\tilde{\rho} = \rho + \theta$
- They consume, search for jobs and can save and borrow.
- Objective function:

$$E_0 \int_0^\infty e^{-\tilde{\rho}t} \left[u(c) + \epsilon f \right]$$

where c is consumption, f = 1 if formal, $\epsilon > 0$ is the additional utility of being hired formally.

• We assume risk aversion of the form: Constant Relative Risk Aversion (CRRA)

$$u(c) = \frac{c^{\delta}}{\delta}$$

Model			Appendix
0000			

Model: Labor Market Environment

- Three labor market states:
 - Unemployed
 - Flow income b (social protection benefits, transfers, others)
 - Job offers at rate λ^u

employment in an informal job.

- ${\ensuremath{\, \circ \, }}$ Flow income w
- Job offers at rate $\lambda^e(0)$
- Termination shock at rate $\eta(0)$
- Imployment in a formal job.
 - Receive flow income $w(1-\tau)$
 - Receive job offers at rate $\lambda^e(1)$
 - $\bullet~$ Termination shock at rate $\eta(1)$
- Job offer is a pair $\{w, f\}$ where:
 - $f \in \{0,1\}$, f = 1 if formal status
 - $w \sim F(w|f)$
 - p(f) = proportion of f-status offers in the population

Model			Appendix
0000			

Model: Financial Market Environment

- Markets are incomplete:
 - individuals cannot fully insure against risk (but they can save and borrow.)
- There are two assets:
 - **()** Risk-less asset a_1 (formal asset):
 - Constant return r_1 .
 - **2** Risky asset a_2 (informal asset):
 - Different returns $r_2 \sim R(r_2)$
 - Return updates following a Poisson process with rate κ
- Wealth: $a = a_1 + a_2$
 - Share of formal assets $\phi = \frac{a_1}{a}$.
 - Convex costs to maintain portfolio φ:
 - $\frac{\psi^e(f)}{2}\phi^2 \implies \psi^e(0) > \psi^e(1)$ captures financial exclusion.
 - Self-imposed borrowing limit [Lise 2013; Aiyagari 1994]: $\underline{a}=-rac{b}{ar{r}_2(1+
 u)}$

Model			Appendix
0000			

Model: Equilibrium

Definition

Given the primitive parameters $\{\rho, \theta, \lambda^u, \lambda^e(1), \lambda^e(0), \eta(1), \eta(0), \psi^u, \psi^e(1), \psi^e(0), b\}$, the instantaneous utility function u(c), the distributions of wage offers F(w|1), F(w|0), p(1) the steady state equilibrium is a set of values $U(a, r_2)$ and $W(a, r_2, w, f)$ that satisfy the value functions equations, together with the invariant distributions of individuals across labor market states and the invariant distributions of total assets $\Lambda(a)$.

- Endogenous:
 - hazard rates
 - accepted wages distributions
 - distribution over labor market states
 - assets distribution
- Exogenous
 - wage offers distributions
 - utility function and institutional parameters
 - Poisson rates (mobility parameters, risky asset)
 - effective discount rate

	Data			Appendix
	0000			

Data: Sources

We combine information from two data sources: GEIH and ELCA.

- Gran Encuesta Integrada de Hogares (GEIH): Monthly household survey focusing on labor market outcomes.
 - Individual characteristics (gender, age, years of schooling)
 - Labor market status:
 - Formal employment: employed individuals who contribute to social security.
 - Informal employment: employed individuals who do not contribute to social security.
 - Unemployment: individuals who are not employed.
 - Durations:
 - On-going
 - In both unemployment and employment
 - Labor income:
 - Monthly wages and salaries
 - Weekly hours worked

• • = •

< 口 > < 同

	Data			Appendix
	0000			

Sources

Encuesta Longitudinal Colombiana (ELCA): Longitudinal survey focusing on saving behavior.

- Individual characteristics (gender, age, years of schooling)
- Labor market outcomes similar to GEIH with the exception of durations.
- Savings:
 - Average monthly savings.
 - Most assets in formal financial institutions such as as banks, employee funds, credit unions.
 - Most assets in informal financial institutions such as cash, informal group savings (RoSCA funds).

Estimation Sample:

- Unskilled urban men:
 - male, 25 and 55 years old, living in urban areas, at most secondary education.
- Observed in 2016:
 - most recent year for which both surveys are available
 - all monetary variables in December 2016 US Dollars

		Data					
000	0000	0000	0	0000	00	0	00000000

Descriptive statistics

Descriptive Statistics on Labor Market Outcomes

	Formal Employment	Informal Employment	Unemployment							
Labor Market States										
Proportion	0.395	0.527	0.077							
	Wages (monthly,	100s of US\$)								
Mean	3.284	2.429	_							
Standard Deviation	1.395	1.126	—							
	Ongoing Durati	ion (months)								
Mean	67.535	89.507	4.034							
Standard Deviation	78.689	100.191	6.858							
Sample										
Number Obs.	31,709	42,307	6,195							

		Data					
000	0000	0000	0	0000	00	0	00000000

Descriptive statistics

Descriptive Statistics on Saving Behavior

	Formal Employment	Informal Employment	Unemployment							
Proportion of Individuals who save										
At all	0.271	0.211	0.036							
Mainly in formal institutions	0.493	0.185	0.333							
Savings a	Savings amount among savers (monthly, 100s of US\$)									
Mean	0.601	0.508	0.443							
Standard Deviation	0.721	0.748	0.480							
Saving	rate among savers (sav	ings/labor income)								
Mean	0.133	0.151	-							
Standard Deviation	0.123	0.122	-							
Sample Size										
Number Obs.	517	589	83							

	Identification	Experiments	Appendix
	•		

Identification

- **9** Wage offers distributions: wages + distributional assumption: $\log(w)|f \sim \mathcal{N}(\mu(f), \sigma(f))$, with f = 0, 1.
- Obility parameters: durations and steady state proportions
- 8 Rate of returns:
 - Formal assets: $r_1 = 0.075$ (10-year Colombian Government Bond)
 - Informal assets: Eeckhout and Munshi (2010) + distributional assumption: $r_2 \sim \mathcal{N}\left(\mu_{r_2}, \sigma_{r_2}^2\right)$
- OPortfolio cost functions: savings and portfolio allocations
- Selibrated parameters:
 - $\rho = 0.120$: discount rate recommended for LAC by multilateral development banks;
 - $\theta = 0.013$: Colombia's life expectancy of 77 years.
 - $\delta = -0.5$: Relative risk aversion 1.5
 - $\tau = 0.16$: 2016 payroll contributions
 - $\nu = 1.14$: financial institutions markup from IMF International Financial Statistics

Model 0000		Estimation ●000		Appendix 00000000

Method

We estimate the model's parameters using the following Method of Simulated Moments (MSM) estimator:

$$\hat{\Xi}_{N,T}(W) = \operatorname{argmin}_{\Xi} \frac{1}{2} \left[M_N^D - M_T(\Xi) \right]' W_N \left[M_N^D - M_T(\Xi) \right]$$

where:

- Parameter set is: $\Xi \equiv \{b, \lambda^u, \psi^u, \kappa, p(1)\} \cup \{\lambda^e(f), \eta(f), \mu(f), \sigma(f), \psi^e(f)\}_{f \in \{0,1\}}$
- M_N^D denotes the set of appropriately chosen sample statistics
- $M_T(\Xi)$ denotes the corresponding simulated statistics at Ξ from sample of size T
- ${\ensuremath{\, \bullet }}\xspace W$ is a symmetric, positive-definite weighting matrix

and we use 41 moments to estimate 15 parameters.

				Estimation			
000	0000	0000	0	0000	00	0	00000000

Results

Implied Values

Definition	Parameter	Est. Value	Std. Error
Mobility Shoc	ks		
Job offer rate - unemployment	λ^u	0.178	(0.0072)
Job offer rate - formal employment	$\lambda^e(1)$	0.034	(0.0054)
Job offer rate - informal employment	$\lambda^e(0)$	0.015	(0.0040)
Job separation rate - formal employment	$\eta(1)$	0.017	(0.0039)
Job separation rate - informal employment	$\eta(0)$	0.014	(0.0027)
Job offers			
Proportion formal job offers	p(1)	0.455	(0.0038)
Location wages distribution - formal employment	$\mu(1)$	1.056	(0.0519)
Scale wages distribution - formal employment	$\sigma(1)$	0.394	(0.0147)
Location wages distribution - informal employment	$\mu(0)$	0.800	(0.0369)
Scale wages distribution - informal employment	$\sigma(0)$	0.408	(0.0205)

Estimated Parameters

メロト メロト メヨト メヨト

		Estimation		Appendix
		0000		

Results

Definition	Parameter	Est. Value	Std. Error							
Portfolio cos	Portfolio costs									
Cost function parameter - unemployment	ψ^u	0.063	(0.0045)							
Cost function parameter - formal employment	$\psi^e(1)$	0.024	(0.0027)							
Cost function parameter - informal employment	$\psi^e(0)$	0.224	(0.0314)							
Unemployment i	ncome									
Flow	b	0.197	(0.0230)							
Utility Value of Formal Jobs										
Value	ϵ	0.026	(0.0012)							

Estimated Parameters

メロト メヨト メヨト メヨト

				Estimation			
000	0000	0000	0	0000	00	0	00000000

Financial Exclusion

Figure: Portfolio Costs (\$ per month)

		Experiments	Appendix
		● 0	

Experiments: Definitions

We perform the following counterfactual experiments by simulation:

- **④** Financial inclusion: Equal portfolio costs for formal and informal workers: $\psi^e(0) = \psi^e(1) = 0.024$.
- **Orop in informal job offers**: Reduction that generates the same increase in savings obtained by the financial inclusion experiment: p(0) = 0.486 from the baseline 0.545.
- **Increase in formal payroll contribution**: Back to the level before the influential 2012 tax reform: $\tau = 0.295$ from the baseline 0.160.

We evaluate the impact on labor market and financial outcomes and on wealth and consumption inequality taking into account the endogenous adjustment in individuals' optimal behaviors.

		Experiments	Appendix
		00	

Results

	Benchmark	$\psi^{e}(0) =$	$=\psi^e(1)$	p(0) =	0.486	au = 0	0.295
	Value	Value	Ratio	Value	Ratio	Value	Ratio
	Savir	gs (100s	of \$ per	month)			
E[s s>0]	0.189	0.195	1.030	0.195	1.030	0.170	0.900
E[s s > 0, e(1)]	0.221	0.225	1.019	0.226	1.020	0.176	0.797
E[s s > 0, e(0)]	0.172	0.177	1.030	0.172	1.004	0.170	0.990
	Total A	ssets (10	0s of \$ p	er month)		
E[a]	6.149	6.365	1.035	6.322	1.028	5.519	0.898
E[a e(1)]	7.362	7.412	1.007	7.573	1.029	5.768	0.783
E[a e(0)]	5.495	5.862	1.067	5.499	1.001	5.557	1.011
	Formal /	Assets (10	00s of \$ p	per month	ı)		
$E[\phi a]$	2.241	2.705	1.207	2.305	1.028	1.921	0.857
$E[\phi a e(1)]$	3.264	3.223	0.987	3.283	1.006	2.404	0.736
$E[\phi a e(0)]$	1.598	2.461	1.540	1.566	0.980	1.704	1.066

Counterfactual Experiments - Labor Market and Financial Outcomes

			Conclusion	Appendix
			•	

- We develop and estimate a model able to replicate the crucial features of developing countries economies:
 - 4 High level of labor market informality
 - 2 Low level of savings
 - I High proportion of assets held in informal institutions

20 / 28

						Conclusion	
000	0000	0000	0	0000	00	•	00000000

- We develop and estimate a model able to replicate the crucial features of developing countries economies:
 - I High level of labor market informality
 - 2 Low level of savings
 - Itigh proportion of assets held in informal institutions
- Our claim that working informally is linked to saving informally is confirmed:
 - Informal workers face partial financial exclusion from formal financial institutions
 - If full financial access were guaranteed to them:
 - Savings would increase 3% a month and formal assets 21%
 - $\bullet\,$ Asset inequality would decrease 13% and consumption inequality 4%

						Conclusion	
000	0000	0000	0	0000	00	•	00000000

- We develop and estimate a model able to replicate the crucial features of developing countries economies:
 - I High level of labor market informality
 - 2 Low level of savings
 - Itigh proportion of assets held in informal institutions
- Our claim that working informally is linked to saving informally is confirmed:
 - Informal workers face partial financial exclusion from formal financial institutions
 - If full financial access were guaranteed to them:
 - Savings would increase 3% a month and formal assets 21%
 - $\bullet\,$ Asset inequality would decrease 13% and consumption inequality 4%
- Colombia-specific policies:
 - A recent reform reducing formal payroll contribution had the potential to increase savings by 10% a month.

						Conclusion	
000	0000	0000	0	0000	00	•	00000000

- We develop and estimate a model able to replicate the crucial features of developing countries economies:
 - I High level of labor market informality
 - 2 Low level of savings
 - I High proportion of assets held in informal institutions
- Our claim that working informally is linked to saving informally is confirmed:
 - Informal workers face partial financial exclusion from formal financial institutions
 - If full financial access were guaranteed to them:
 - Savings would increase 3% a month and formal assets 21%
 - $\bullet\,$ Asset inequality would decrease 13% and consumption inequality 4%
- Colombia-specific policies:
 - A recent reform reducing formal payroll contribution had the potential to increase savings by 10% a month.
- We also provide two methodological contributions in the labor market search literature:
 - We add saving and borrowing to search models with informality.
 [Bobba et al. 2022, 2021; Megir et al. 2015; Bosch and Esteban-Pretel (2012)]; Charlot et al. 2013; Albrecht et al 2009]
 - We allow for two assets and portfolio allocation decisions in search models with saving. [Rendon (2006); Lentz (2009); Lise (2013); Danforth (1979); Acemoglu and Shimer (1999); Krusell et al. (2010); Bils et al. (2011)]

< ロ > < 同 > < 回 > < 回 >

							Appendix
000	0000	0000	0	0000	00	0	•0000000

Appendix

・ロト・日本・日本・日本・日本・日本・日本・日本・日本・日本

							Appendix
000	0000	0000	0	0000	00	0	0000000

Model: Value functions

The steady state value of unemployment is:

$$\begin{split} \tilde{\rho}U(a,r_2) &= \max_{0 \le c \le \bar{c}, 0 \le \phi \le 1} \{u(c) \\ &+ \lambda^u \sum_{f=0}^1 \int_w \max\{W(a,r_2,w,f) - U(a,r_2), 0\} dF(w|f) p(f)\} \\ &+ \partial_a U(a,r_2) \left[(r_1 \phi + r_2(1-\phi))(1+\nu I_{a^-})a + b - c - \frac{\psi^u}{2} \phi^2 \right] \\ &+ \kappa \int \left[U(a,r_2') - U(a,r_2) \right] dR(r_2') \end{split}$$

where ν is the markup over the savings rate that financial institutions charge and $I_{a^-} = 1$ if a < 0 (borrowing). Notice conditioning on both a and r_2 .

Image: Image:

→ 4 Ξ

							Appendix
000	0000	0000	0	0000	00	0	0000000

Model: Value functions

The steady state value of employment is:

$$\begin{split} \tilde{\rho}W(a, r_2, w, f) &= \max_{0 \le c \le \bar{c}, 0 \le \phi \le 1} \{u(c) + \epsilon f \\ &+ \lambda^e(f) \sum_{f=0}^1 \int_{w'} \max\{W(a, r_2, w', f') - W(a, r_2, w, f), 0\} dF(w'|f') p(f') \\ &+ \eta(f) \left[U(a, r_2) - W(a, r_2, w, f)\right] \\ &+ \partial_a W(a, r_2, w, f) \left[(r_1 \phi + r_2(1 - \phi))(1 + \nu I_{a^-})a + w(1 - \tau f) - c - \frac{\psi^e(f)}{2} \phi^2 \right] \\ &+ \kappa \int \left[W(a, r'_2, w, f) - W(a, r_2, w, f) \right] dR(r'_2) \end{split}$$

			Appendix
			00000000

Model: Decisions rules

- Optimal decisions on job offers are derived by pairwise value function comparisons.
- Optimal decision rules on $\{c, \phi\}$ are derived from the first order conditions of the value functions:
 - Unemployment:

 $\begin{array}{lll} u'(c) &=& \partial_a U(a,r_2) & & \mbox{inter-temporal condition} \\ (r_1-r_2)(1+\nu I_{a^-})a &=& \psi^u \phi & & \mbox{optimal portfolio allocation} \end{array}$

• Employment:

 $\begin{array}{lll} u'(c) &=& \partial_a W(a,r_2,w,f) & \mbox{ inter-temporal condition} \\ (r_1-r_2)(1+\nu I_{a^-})a &=& \psi^e(f)\phi & \mbox{ optimal portfolio allocation} \end{array}$

Note: Corner solutions at $\phi = 0, \phi = 1$ are possible.

イロト イポト イヨト イヨト 二日

							Appendix
000	0000	0000	0	0000	00	0	00000000

Moments and Fit

Back

Statistic	Data	Model	Statistic	Data	Model	Statistic	Data	Model
e(1)	0.395	0.394	$E[I_{s>0} \times s e(1)]$	0.163	0.097	$\Pr[\phi > 0.5 e(1)]$	0.493	0.434
e(2)	0.527	0.566	$SD[I_{s>0} \times s e(1)]$	0.460	0.223	$\Pr[\phi > 0.5 e(1)]$	0.493	0.434
u	0.077	0.039	$E[I_{s>0} \times s e(0)]$	0.107	0.080	$\Pr[\phi > 0.5 e(0)]$	0.185	0.208
E[w(1)]	3.284	3.759	$SD[I_{s>0} \times s e(0)]$	0.400	0.183	$\Pr[\phi > 0.5 u]$	0.333	0.314
SD[w(1)]	1.395	1.465	$E[I_{s>0} \times s u]$	0.016	0.001	$\Pr[\phi > 0.5 e(1), Q_1]$	0.312	0.397
E[w(0)]	2.429	2.854	$SD[I_{s>0} \times s u]$	0.112	0.003	$\Pr[\phi > 0.5 e(1), Q_2]$	0.458	0.436
SD[w(0)]	1.126	1.153	$E[I_{s>0} \times s e(1), Q_1]$	0.061	0.029	$\Pr[\phi > 0.5 e(1), Q_3]$	0.368	0.450
P5[w(1)]	2.289	1.790	$E[I_{s>0} \times s e(1), Q_2]$	0.065	0.067	$\Pr[\phi > 0.5 e(1), Q_4]$	0.623	0.454
P5[w(0)]	0.867	1.348	$E[I_{s>0} \times s e(1), Q_3]$	0.145	0.106	$\Pr[\phi > 0.5 e(0), Q_1]$	0.000	0.047
E[t e(1)]	5.628	5.950	$E[I_{s>0} \times s e(1), Q_4]$	0.393	0.187	$\Pr[\phi > 0.5 e(0), Q_2]$	0.107	0.176
SD[t e(1)]	6.557	6.316	$E[I_{s>0} \times s e(0), Q_1]$	0.026	0.029	$\Pr[\phi > 0.5 e(0), Q_3]$	0.194	0.257
E[t e(0)]	7.459	7.653	$E[I_{s>0} \times s e(0), Q_2]$	0.056	0.051	$\Pr[\phi > 0.5 e(0), Q_4]$	0.353	0.353
SD[t e(0)]	8.349	8.107	$E[I_{s>0} \times s e(0), Q_3]$	0.096	0.087			
E[t u]	4.034	4.954	$E[I_{s>0} \times s e(0), Q_4]$	0.310	0.152			
SD[t u]	6.859	5.922						

Moments Fit

NOTE: s = da/dt is the amount saved, $I_{s>0}$ is an indicator variable that takes the value of $\mathbb T$ if the individual $\exists -\infty$

							Appendix
000	0000	0000	0	0000	00	0	00000000

Implied Paramters

Back

Table: Implied Parameters

Definition	Parameter	Est. Value					
Job offers							
Mean of wages distribution - formal employment	E[w(1)]	3.106					
Std.Dev. of wages distribution - formal employment	SD[w(1)]	1.274					
Mean of wages distribution - informal employment	E[w(0)]	2.418					
Std. Dev. of wages distribution - informal employment	SD[w(0)]	1.030					
Distribution of the rate of return for informal assets							
Mean rate of return of informal assets	\bar{r}_2	0.079					
Std. Dev. of the rate of return of informal assets	s_{r_2}	0.031					

メロトメ 日 トメヨトメヨ

			Appendix
			000000000

Informal Asset

Back

							Appendix
000	0000	0000	0	0000	00	0	0000000

Results: Inequality

General Entropy	Benchmark	nchmark $\psi^e(0) = \psi^e(1)$		p(0) = 0.325		$\tau = 0.295$			
Indexes	Value	Value	Ratio	Value	Ratio	Value	Ratio		
Total Assets									
GE(0) Mean log deviation	0.277	0.240	0.869	0.270	0.975	0.277	1.001		
GE(1) Theil index	0.224	0.196	0.878	0.220	0.982	0.223	0.997		
GE(2) Coefficient of variation/2	0.247	0.216	0.872	0.242	0.979	0.241	0.975		
Formal Assets									
GE(0) Mean log deviation	0.794	0.359	0.453	0.760	0.956	0.799	1.007		
GE(1) Theil index	0.434	0.232	0.533	0.415	0.955	0.451	1.039		
GE(2) Coefficient of variation/2	1.625	1.135	0.699	1.556	0.958	1.678	1.033		
Consumption									
GE(0) Mean log deviation	0.128	0.126	0.986	0.130	1.016	0.128	1.002		
GE(1) Theil index	0.110	0.107	0.971	0.111	1.007	0.109	0.990		
GE(2) Coefficient of variation/2	0.113	0.108	0.957	0.113	1.002	0.110	0.977		

Counterfactual Experiments - Inequality

NOTE: Benchmark's values are: $\psi^{e}(0) = 0.224; \psi^{e}(1) = 0.024; p(0) = 0.545; \tau = 0.160; \Box \rightarrow (3.5); \tau = 0.224; \psi^{e}(0) = 0.224; \psi^{e}$