The commuting costs of high intensity rains Evidence from Rio de Janeiro

Pedro Henrique Chaves Maia

FGV/EPGE Brazilian School of Economics and Finance

IGC-WB-GWU Young Urban Economist Workshop January 31, 2023

Motivation

- High intensity rains (HIRs) are a recurrent problem for developing country cities
 - Seasonal occurrence frequency
 - ► HIRs + poor infrastructure ⇒ traffic disruption + floods + landslides
 - ▶ 40.6% of cities over 10 million inhabitants are in the tropic
- Extreme rainfall should increase in eastern South America due to climate change (Gutiérrez et al. 2021)
- Losses mainly incurred by the housing sector, followed by the transportation sector (World Bank 2014)
- This paper: Impact of HIRs on buses speed + public transportation demand
 - Novel GPS database covering the universe of buses in Rio
 - Contribution (literature)
 - ★ Transportation + rainfall \Rightarrow high frequency data
 - ★ High frequency data \Rightarrow public transportation.
 - ★ Direct policy relevance

Data

- Buses speed
 - ▶ GPS observations (15-minute intervals) for all buses in Rio between 2017-2018
 - Rush-hour only (4-10 am/pm)
 - Data mapped onto an one-square-kilometer grid
- Rains
 - 33 pluviometric/telemetric stations spread throughout the city stations
- Supply and Demand
 - Subway system hourly passengers transported
 - Train system daily passengers transported
 - Bus system fleet size and passengers transported descriptive statistics

Measuring HIRs

- I measure HIRs by using Sistema Alerta Rio (Rio Alert System, SAR) definition
 - Stage of Attention (SA): At least 15mm/15min or 20mm/30min or 25mm/1h
 - Stage of Crisis (SC): At least 40mm/30min or 55mm/1h in two or more stations
- SAR was created specifically to measure rainfall intensity and dispersion
- I use river level data to validate their definition 🔤

HIRs-Derived Buses Speed Loss

 $Speed_{ilt} = \beta^A SA_t + \beta^C SC_t + f(Time_t) + Line_l + Gridcell_i + \epsilon_{ilt}$

HIRs-Derived Buses Speed Loss

 $Speed_{ilt} = \beta^A SA_t + \beta^C SC_t + f(Time_t) + Line_l + Gridcell_i + \epsilon_{ilt}$

	Speed
Stage of Attention	-0.173***
	(0.030)
Stage of Crisis	-1.222***
	(0.129)
Mean Speed	16.746
Observations	76,338,604

Notes: ${}^{*}p < 0.10$, ${}^{**}p < 0.05$, ${}^{***}p < 0.01$. Robust standard errors in parentheses clustered at cell level. The dependent variable is Speed in km/h and Winsorized at 0.5%.

- Speed loss between 1.03% (SA) and 7.30% (SC)
- Local effects as high as 41.92%
- Control for interventions (Interventions)

Supply and Demand Considerations

 $Reaction_{itl} = \beta^{A}SA_{t} + \beta^{C}SC_{t} + f(Time_{t}) + Line_{l} + Station_{i} + \epsilon_{tl}$

Supply and Demand Considerations

	Buses		Subway	Train	
	Fleet Size	Passengers Transported	Passengers Transported	Passengers Transported	
Stage of Attention	-0.037^{***} (0.007)	-91.867^{***} (5.907)	-19.547^{***} (3.750)	-141.843^{***} (18.803)	
Stage of Crisis	0.060^{***} (0.017)	45.874^{***} (11.699)	30.716^{***} (9.643)	$\begin{array}{c} 199.944^{***} \\ (44.671) \end{array}$	
Dep. Var. Mean	9.98	4084.66	763.41	4286.68	
Station FE	No	No	Yes	Yes	

 $Reaction_{itl} = \beta^{A}SA_{t} + \beta^{C}SC_{t} + f(Time_{t}) + Line_{l} + Station_{i} + \epsilon_{tl}$

p < 0.10, p < 0.05, p < 0.05, p < 0.01. Robust standard errors in parentheses clustered at station level where applicable, otherwise at line level. Subway demand is measured at 1-hour intervals while the other variables at 1-day intervals.

• Evidence of substitution effect only in SC occurrences

Back-of-the-Envelope Welfare Cost

$$\Delta \textit{Cost}_l^r = d_l imes \left(rac{1}{s_l^{b,r}(1)} - rac{1}{s_l^{b,r}(0)}
ight) imes \sum_{i \in \mathcal{I}(l)} v_i imes \textit{Wages}_{il} imes \textit{Commuters}_{il}$$

- Data limitations.
- ▶ Upper Bound: the entire sample → inelastic demand
- Lower Bound: Census tracts without train or subway stations map
- Yearly wage opportunity cost of HIRs: \$57.43 \$97.82 million dollars
 - Equivalent to 0.82% 2.18% (Machado and Vianna 2017; Vianna and Young 2015) or 1.01% 1.72% (O custo dos deslocamentos: RJ 2015) of the total traffic-derived wage opportunity cost
 - Expected to increase by 25% by the end of the century (Gutiérrez et al. 2021)

Conclusion

- HIRs do disrupt buses speed to a significant extent
 - ▶ The generalized effect can be as high as 7.3%
 - The localized effect can be as high as 41.92%
- Substitution effect between bus and rail systems during highly disruptive HIRs (SC occurrences)
- Mildly disruptive HIRs (SA occurrences) cause a reduction in demand for the public transportation system
 - Likely due to less non-essential trips
- HIRs welfare cost can grow up to \$122.27 million dollars by the end of the century

Thank you

Related literature

- Transportation + precipitation literature
 - Smith et al. (2020) and Hofmann and O'Mahony (2005).
 - Contribution: I contribute by isolating the impact of HIRs on buses + rail system substitution effect discussion
- High-frequency big data in urban transportation literature
 - Kreindler and Miyauchi (2021), Akbar et al. (2018), Gu et al. (2021), and Sun et al. (2020).
 - Contribution: I contribute by using high frequency (15 minute observations) buses GPS data to infer supply side considerations of HIRs.
- Public system weather assessment literature
 - Guo, Wilson, and Rahbee (2007), Zhou et al. (2017), and Hofmann and O'Mahony (2005)
 - Contribution: First, I identify supply-side effects on the bus system front. Second, I find evidence for both increase and decrease in both the rail system and buses demand depending on the intensity of the HIR (rush-hour).

Descriptive Statistics

back

	Bus Speed	Fleet Size	Bus Demand	Subway Demand	Train Demand
Mean	16.746	9.976	4084.657	763.409	4286.681
Std. Dev.	18.763	8.180	4124.524	1134.640	4589.092
Min.	0	1	81	0	330
Max.	72.970	30	14592	8234.000	18083.000
Obs.	7.63e + 07	$3.55e{+}5$	3.55e+5	6.28e + 05	$2.50e{+4}$
Pct. of SA Obs.	2.786	11.31	11.31	2.645	12.420
Pct. of SC Obs.	0.431	1.78	1.78	0.328	2.071
No. of Lines	492	409	409	3	5

Notes: All data is winsorized at 0.5%. Buses speed is measured at each 15-minute interval, subway demand at 1-hour intervals and the other variables at 1-day intervals.

River Level Results

back

	15 minutes	$01 \ \mathrm{hour}$	$01 \mathrm{day}$
Stage of Attention (1)	0.128*** (0.042)		
Stage of Crisis (1)	0.593*** (0.150)		
Stage of Attention (2)		0.098^{***} (0.031)	
Stage of Crisis (2)		0.499^{***} (0.123)	
Stage of Attention (3)			$\begin{array}{c} 0.045^{**} \\ (0.017) \end{array}$
Stage of Crisis (3)			$\begin{array}{c} 0.269^{***} \\ (0.071) \end{array}$
Observations	71151	71151	71151

 $^*p<0.10,\ ^{**}p<0.05,\ ^{***}p<0.01.$ Robust standard errors in parentheses clustered at day level. Dependent variable: River Level in meters.

HIRs-Derived Buses Speed Loss per PA

back

	PA 1	PA 2	PA 3	PA 4	PA 5
Stage of Attention	-0.651^{*}	-0.098^{*}	-0.836^{***}	-0.454^{***}	-0.957^{***}
	(0.322)	(0.057)	(0.126)	(0.116)	(0.212)
Stage of Crisis	-6.396^{***}	-2.343^{***}		-5.139^{***}	-0.343
	(1.821)	(0.398)	(.)	(1.107)	(0.322)
p-value (SA=SC)	0.003	0.000	0.000	$0.000 \\ 17.474 \\ 10570364$	0.079
Dependent Variable Mean	15.252	15.554	16.642		18.902
Observations	9034209	18855940	23637003		14241021

 *p < 0.10, $^{**}p$ < 0.05, $^{***}p$ < 0.01. Robust standard errors in parentheses clustered at cell level. The dependent variable is Speed in km/h and Winsorized at 0.5%.

Notes: The table shows the impact of high intensity rains (HIR) on the bus system during 2017/01 - 2018/08 by Planning Area (PA). All regressions are using the FE-4 specification. State of Attention and State of Crises are locally defined, applying the definition shown in Table 2 to each PA. The time window considered for these events is of 01 hour from the triggering of an operational stage.

Buses Distribution

back

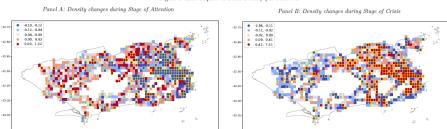


Figure 3: HIRs Impact on Buses Density per Grid Cell

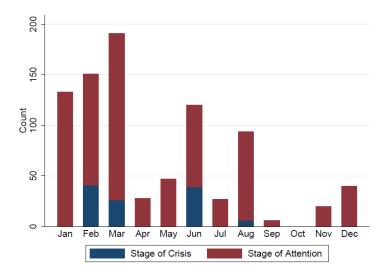
 $-\frac{1}{2}$ $-\frac{1}{2}$

Rail System - Line Effects back

	Whole System	Line 1	Line 2	Line 3	Line 4
	Panel A: Subw	ay System De	mand		
morning Stage of Attention	-77.602^{***} (14.615)	-75.650^{***} (18.194)	-88.436^{***} (28.523)	-46.841 (33.145)	
morning Stage of Crisis	19.286 (13.215)	-5.315 (23.201)	28.039^{**} (10.441)	95.544** (24.766)	
non-morning of Attention	-3.452 (3.032)	-5.436 (5.373)	-4.919** (1.786)	7.768 (11.662)	
non-morning Stage of Crisis	33.089*** (12.221)	49.357^{**} (22.724)	$\begin{array}{c} 0.366 \\ (5.858) \end{array}$	93.629^{**} (22.504)	
Dependent Variable Mean Observations	$1043.319 \\ 295235$	$1361.195 \\ 143503$	$672.821 \\ 115772$	967.598 35960	
	Panel B: Train	n System Den	nand		
Stage of Attention	-207.094*** (37.471)	-185.217*** (35.179)	-213.152** (66.584)	-135.450*** (28.333)	-58.635^{**} (24.089)
Stage of Crisis	350.234^{**} (127.019)	227.694^{***} (61.350)	305.474^{*} (136.637)	206.177*** (53.867)	86.635 (56.155)
Dependent Variable Mean Observations	$6567.406 \\ 7581$	6613.302 9121	9870.129 2596	$4779.782 \\ 5655$	$3087.313 \\ 6090$

*p < 0.10, *p < 0.05, ***p < 0.01. Robust standard errors in parentheses clustered at station level. The dependent variable in Panel A is the number of passengers per hour and station, while in Panel B is the daily number of passengers per station.

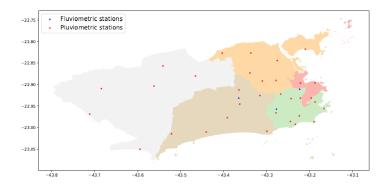
Welfare Analysis

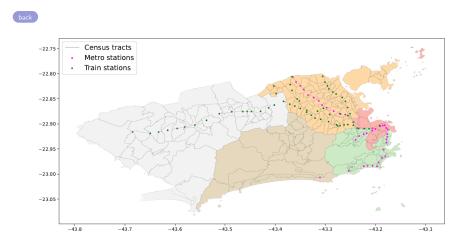

bac

	PA 1	PA 2	PA 3	PA 4	PA 5	RJ
	Panel A	: General	Terms			
Distance (Km)	4.671	5.989	8.499	9.503	12.818	9.076
Stage of Attention	246	475	249	379	228	814
Stage of Crisis	3	77	0	34	5	112
	Panel I	B: Upper I	Bound			
$\begin{array}{l} \Delta Cost^{a}(\mathrm{d=1})(\mathrm{thousand}\ \mathrm{R\$})\\ \Delta Cost^{c}(\mathrm{d=1})(\mathrm{thousand}\ \mathrm{R\$}) \end{array}$	$6.254 \\ 101.300$	$6.351 \\ 177.639$	48.275.	$15.609 \\ 243.796$	$24.729 \\ 8.570$	$32.351 \\ 243.954$
Total Cost (millions R\$)	8.606	99.986	102.162	134.989	72.820	486.987
Panel C: Lower Bound						
$\begin{array}{l} \Delta Cost^{a}(\mathrm{d=1})(\mathrm{thousand}\ \mathrm{R\$})\\ \Delta Cost^{c}(\mathrm{d=1})(\mathrm{thousand}\ \mathrm{R\$}) \end{array}$	$3.664 \\ 59.358$	$3.850 \\ 107.687$	21.415	$14.186 \\ 221.572$	$17.744 \\ 6.149$	$20.582 \\ 155.206$
Total Cost (millions R\$)	5.042	60.613	45.320	122.683	52.251	309.826

Notes: The table presents in Panel A both the total number of occurrences of Stage of Attention and Stage of Crisis (as defined in Table 2 and using 01 hour time window) and the distances considered for each PA. In Panels B and C is presented the HIR total welfare cost (both upper and lower bounds), where $TotalCost = \Delta Cost^a \cdot SA + \Delta Cost^c \cdot SC$. There are 18 months in my analysis (01/2017 - 08/2018) and $\Delta Cost^a$ and $\Delta Cost^a$ are as in Table A.4 (where the distance d is equal to 1).

HIRs Distribution


back


Notes: The figure show the number of occurrences, measured at 15 minutes intervals, of Stage of Attention or Stage of Crisis between 2017/01 - 2018/08 in Rio de Janeiro.

SAR Stations

back

Census Tracts and Rail System Stations

COR Action

back					
	Reference	COR Action			
Stage of Attention	-0.435^{***} (0.061)	-0.359^{***} (0.098)			
Stage of Crisis	-1.237^{***} (0.127)	-1.130^{***} (0.153)			
COR Action # Any Stage		-0.109 (0.128)			
Observations	6213938	6213938			

 $p^* < 0.10, p^* < 0.05, p^* < 0.01$. Robust standard errors in parentheses clustered at cell level. The dependent variable is speed in km/h and Winsorized at 0.5%.

Bibliography I

- Akbar, Prottoy A. et al. (2018). *Mobility and Congestion in Urban India*. DOI: 10.3386/w25218.
- Gu, Yizhen et al. (2021). "Subways and Road Congestion". In: American Economic Journal: Applied Economics 13.2, pp. 83–115. ISSN: 1945-7782. DOI: 10.1257/app.20190024.
- Guo, Zhan, Nigel Wilson, and Adam Rahbee (2007). "Impact of Weather on Transit Ridership in Chicago, Illinois". In: *Transportation Research Record* 2034, pp. 3–10. DOI: 10.3141/2034–01.
- Gutiérrez, J.M et al. (2021). "Atlas". In: *Climate Change 2021: The Physical Science Basis.* Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, pp. 1927–2058.
 - Hofmann, M. and M. O'Mahony (2005). "The impact of adverse weather conditions on urban bus performance measures". In: *Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.* Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005. ISSN: 2153-0017, pp. 84–89. DOI: 10.1109/ITSC.2005.1520087.

Bibliography II

- Kreindler, Gabriel E. and Yuhei Miyauchi (2021). "Measuring Commuting and Economic Activity Inside Cities with Cell Phone Records". In: *The Review of Economics and Statistics*, pp. 1–48. ISSN: 0034-6535. DOI: 10.1162/rest_a_01085.
- Machado, Danielle Carusi and Guilherme Szczerbacki Besserman Vianna (2017). "Uma Análise dos Custos da Mobilidade Urbana no Brasil: Perdas do PIB com Deslocamentos". In: *Revista Brasileira de Estudos Regionais e Urbanos* 11.2. Number: 2, pp. 152–172. ISSN: 2447-7990.
- O custo dos deslocamentos: RJ (2015). O custo dos deslocamentos nas áreas metropolitanas: Rio de Janeiro. Rio de Janeiro, Brazil: Federação das Indústrias do Estado do Rio de Janeiro (FIRJAN), p. 2.
- Smith, Brian L. et al. (2020). An Investigation into the Impact of Rainfall on Freeway Traffic Flow. type: article. Engineering Archive. DOI: 10.31224/osf.io/9xnzc.
- Sun, Jian et al. (2020). "Quantifying the Impact of Rainfall on Taxi Hailing and Operation". In: *Journal of Advanced Transportation* 2020. Ed. by Guohui Zhang. Publisher: Hindawi, p. 7081628. ISSN: 0197-6729. DOI: 10.1155/2020/7081628.

Bibliography III

Vianna, Guilherme Szczerbacki Besserman and Carlos Eduardo Frickmann Young (2015). "Em Busca do Tempo Perdido: Uma Estimativa do Produto Perdido em Trânsito no Brasil". In: *Revista de Economia Contemporânea* 19.3, pp. 403–416. ISSN: 1415-9848. DOI: 10.1590/198055271933.

World Bank (2014). Coping with Losses: Options for Disaster Risk Financing in Brazil. Accepted: 2018-02-28T20:04:15Z Journal Abbreviation: Lidando com perdas : opções de proteção financeira contra desastres no Brasil. Washington, DC: World Bank. DOI: 10/Coping-with-losses-options-for-disasterrisk-financing-in-Brazil.

Zhou, Meng et al. (2017). "Impacts of weather on public transport ridership: Results from mining data from different sources". In: *World Transit Research*.