Economic Consequences of Climate Change: Evidence from the Philippines

> Radine Rafols, Syracuse University

Young Urban Economist Workshop 7th Urbanization and Poverty Reduction Workship, World Bank-IGC

January 31, 2023

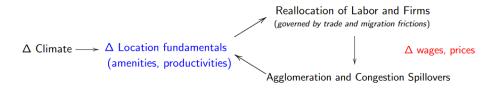
Climate matters to the Economy

- Relationship with economic growth (Nordhaus 1993, 2008, 2010)
- Climate and geography partly shaped institutions and cities of the past (Bleakley and Lin, 2012; Allen and Donaldson, 2018)

Rapidly changing environment \rightarrow disruptive in numerous outcomes

• Health outcomes, agriculture, conflict, productivity (Dell et all, 2014; Burke et. al 2015)

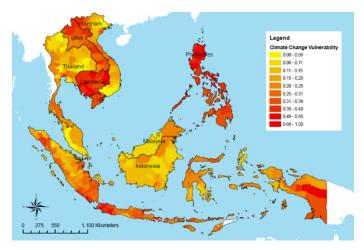
Heterogeneous effects: there can be winners


- Climate-induced migration \rightarrow higher urbanization (Barrios et al, 2006; Henderson and Storeygard, 2016)
- Siberia, Canada, and Alaska are expected to see gains (Cruz and Rossi-Hansberg, 2021)

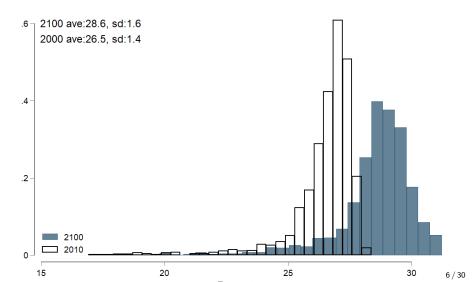
- 1 How to quantify the effects of climate change on output, welfare, and inequality?
- 2 What are the implications for lower-middle income countries?
- **3** What is the most cost-effective policy that can attenuate losses in the future?

Research Questions (1)

- 1 How to quantify the effects of climate change on output, welfare, and inequality?
 - Quantitative spatial general equilibrium model (Ahlfeldt et al., 2015; Allen and Arkolakis, 2018)
 - Heterogeneous workers of high- and low-skill types (Tsivanidis, 2019; Zárate, 2022)

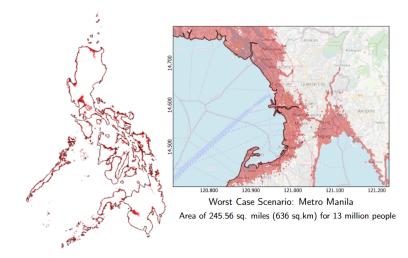

Model Sketch:

Research Questions (2)


3 What are the implications for lower-middle income countries?

- Ranks 5th in Global Climate Risk Index, 13th most populous country
- Approx. 70% of the population are exposed to multiple hazards

Research Questions (2)


- 3 What are the implications for lower-middle income countries?
 - Rising Temperatures (2010 vs 2100)

Research Questions (2)

3 What are the implications for lower-middle income countries?

- 5th longest coastline: 60% of the population live along the coasts
- At 1-meter SLR : 65% of municipalities affected

Research Questions (3)

- 3 What is the most cost-effective policy that can attenuate losses in the future?
 - Build up coastal resilience: 3 large coastal cities w/ a combined population of 19.7 million

flood walls and land reclaimation

sea dikes

mangroves

Research Questions (3)

- 3 What is the most cost-effective policy that can attenuate losses in the future?
 - Place-based policy: Developing land 9,450-hectares 80km away from Metro Manila (US\$ 12.9 billion)

- 109 million people with per-capita GDP \$9,061
- 70-30% split of low-skilled to high-skilled workers
- 55% in urban areas
- Internal migration: 15% have changed residence in last 5 years
- **Climate profile:** Dry season (Dec-May) and wet season (Jun-Nov). Within year variation of 3°C
- **Spatial unit:** Region \rightarrow Province \rightarrow Municipality \rightarrow Village
 - N municipalities: 1,627
 - Average municipal area: 180 sq. km \approx 70 sq. miles
 - Average municipal pop'n: 62,096 in 2015 Census

Collected at consistent geographic units at the municipality

- Temperature, Precipitation
 - i. TerraClimate: monthly historical data since 1958
 - ii. NASA Earth Exchange GDDP: monthly projections under RCP 4.5 and RCP 8.5 (IPCC, 2014)
- Population, Migration Flows, Wages
 - i. Censuses: 1990, 2000, 2010
 - ii. Labor Force Surveys: triennial from 2004 to 2016
 - iii. Family Income Expenditure Surveys: triennial from 2003 to 2015
- Amenities:
 - i. Various from GIS: Soil quality, elevation, topography, slope, distance to water
 - ii. Census village module for endogenous amenities

Reduced-form evidence: climate-induced migration

Did locations with unpredictable climate lose population?

$$y_{nt} = \alpha + \gamma W_{nt} + \beta X_{nt} + \delta_n + \delta_t + \epsilon_{nt},$$

- y_{nt} : out-migration rates in municipality n at year t
- W_{nt}: temperature deviation

- X_{nt} : size of prior migrant stocks, lagged population levels
- δ_n : municipal fixed effects
- δ_t : year fixed effects

Reduced-form evidence: climate-induced migration

Did locations with unpredictable climate lose population?

$$y_{nt} = \alpha + \gamma W_{nt} + \beta X_{nt} + \delta_n + \delta_t + \epsilon_{nt},$$

	All	Skilled	Unskilled
Δ Temperature (°C)	$\begin{array}{c} 0.2384^{**} \\ (0.1136) \end{array}$	0.1645^{*} (0.0846)	0.2443^{**} (0.1168)
Pseudo R^2	0.541	0.653	0.542
Observations	3,252	3,252	3,252
With lag controls	Y	Y	Y
With basic controls	Y	Y	Y
Year FE (2)	Y	Y	Y
Municipal FE (1626)	Y	Y	Y

Clustered standard errors at municipality-level p < 0.1; p < 0.05; p < 0.01.

Model Environment

- QSM similar to Ahlfeldt et al. (2015), and Allen and Arkolakis (2018).
- Discrete locations $n, d \in \{1, ..., N\}$ that are unique:
 - amenities
 - productivities
 - access to other locations (trade and migration cost)
- Two skill- and sector- groups $s, g \in \{$ skilled, unskilled $\}$
- Firms specialize in one sector s costly trade output across locations.
- Workers move from *n* to *d* to enjoy location-specific wages and amenities
 - Receives a Fréchet distributed idiosyncratic preference shock $\epsilon_n dg$
 - Fréchet parameter θ^g : nice properties
 - $\theta^{\text{skilled}} < \theta^{\text{unskilled}}$: e.g. Tsivanidis, 2020; Lee 2015; Hsieh et. al. 2016; Galle et. al. 2017

Climate Impacts in Consumer Preferences

Indirect utility of agent *i* of skill-type g is a function of wages w, prices P, amenities B:

$$\mathcal{V}_{ndg}(i) = rac{B_{dg} w_{dg} \epsilon_{ndgi}}{\mu_{ndg} P_d}$$

Local amenity is defined as:

$$B_{dg} = \overline{B}_{dg} \left(\frac{L_d}{T_d}\right)^{-\eta},$$

- Type-specific allows for heterogeneity in tastes and preference-based sorting.
- \overline{B}_{dg} : exogenous component (i.e. climate, topography, distance to coast, soil quality).
- $T_d \ [\leftarrow SLR \ impact \ here]$ is municipality area \implies affects congestion externalities (η) .

- In each location, many firms produce the same differentiated product under perfect competition.
- Firms in sector g only hire workers of skill-type g with production function:

$$Y_{dg} = A_{dg} L_{dg},$$

where A_d^g is the sector-specific productivity in location d:

$$A_{dg} = \overline{A}_{dg} \left(\frac{L_d}{T_d}\right)^{\alpha}.$$
 (1)

- Climate affects the model through:
 - Temperature: \overline{A}_{dg} .
 - Sea-level rise: agglomeration economies (α) from local density

Climate Elasticities on Fundamental Amenity and Productivity

	Amenity		Productivity	
	(1) Skilled	(2) Low-Skilled	(3) Skilled	(4) Low-Skilled
Δ °C relative to long-run average	-0.4782^{*} (0.2577)	-0.2219 (0.2013)	-0.5912^{**} (0.2740)	-0.8801^{**} (0.3547)
Pseudo R^2	0.406	0.356	0.417	0.403
Observations	3,252	3,252	3,252	3,252
No. Municipalities	1626	1626	1626	1626
Year Fixed Effects	Y	Υ	Y	Υ
Region Fixed Effects	Y	Y	Y	Υ
Controls: Natural Amenities	Υ	Υ	Υ	Y

Clustered standard errors at region-level in parentheses. $\ast p < 0.1; \ast \ast p < 0.05; \ast \ast \ast p < 0.01$

Natural amenities include: elevation, slope, soil bulk density, soil water content, latitude, and ruggedness

Counterfactual Procedures

Recover baseline spatial distribution of exogenous productivities and amenities: $\{A_{dg}, B_{dg}\}$:

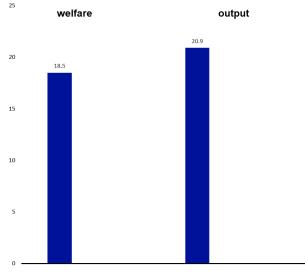
1 Migration gravity: type-specific migration elasticities

Estimation: PPML Migration Gravity

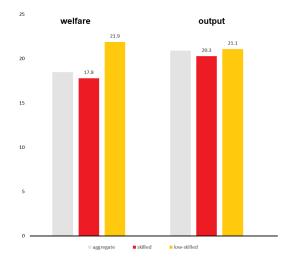
	All	Skilled	Unskilled
Log distance	-1.217***	-1.174***	-1.227***
	(0.042)	(0.049)	(0.043)
Same island	0.259^{***}	0.255^{**}	0.254^{***}
	(0.080)	(0.105)	(0.077)
Same province	1.130^{***}	1.361^{***}	1.085^{***}
	(0.091)	(0.109)	(0.092)
Hometown bias	3.845^{***}	3.893^{***}	3.862^{***}
	(0.113)	(0.127)	(0.115)
Absolute difference in longitude	0.117^{***}	0.029	0.146^{***}
	(0.034)	(0.031)	(0.035)
Absolute difference in latitude	-0.098***	-0.062**	-0.108***
	(0.021)	(0.026)	(0.020)
Origin x Year FE	Y	Y	Y
Dest. x Year FE	Y	Y	Y
N municipality pairs	$7,\!941,\!387$	$7,\!941,\!387$	$7,\!941,\!387$
N municipalities	$1,\!627$	1,627	$1,\!627$
N years	3	3	3
Wald χ^2	57,727	$46,\!594$	$57,\!353$
Pseudo R^2	0.824	0.815	0.826

Two-way clustered standard errors in parentheses. p < 0.1; p < 0.05; p < 0.05; p < 0.01.

Recover baseline spatial distribution of exogenous productivities and amenities: $\{A_{dg}, B_{dg}\}$:


- 1 Migration gravity: type-specific migration elasticities
- 2 Calibrated parameters

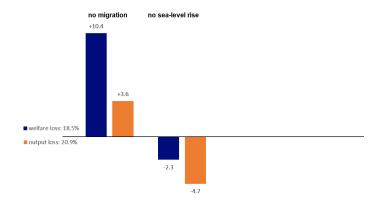
Parameter Description


$\beta^{\rm ag}=0.352$	Share parameter for agricultural consumption bundle (FIES 2003,06,09)
$\sigma = 5$	Elasticity of substitution between goods (Allen and Arkolakis, 2014)
$\theta^H = 2.054$	Fréchet parameter (Tsivanidis, 2019)
$\theta^U = 2.840$	Fréchet parameter (Tsivanidis, 2019)
$\eta = -0.10$	Congestion parameter (Ahlfeldt et al., 2015)
lpha = 0.076	Agglomeration Externalities (Chauvin et al., 2017)
$ au_{nd} = -1$	Trade cost elasticity (Head and Mayer, 2014)

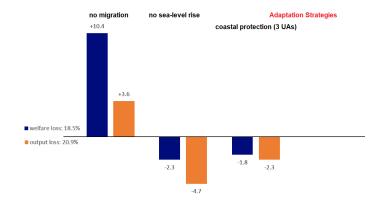
- 3 Take the model to data (using observed labor flows, wages, output)
- 4 Plug-in to the model: Inundated land from sea-level rise + municipality temperatures at 2100

New Economic Geography at 2100: % Losses

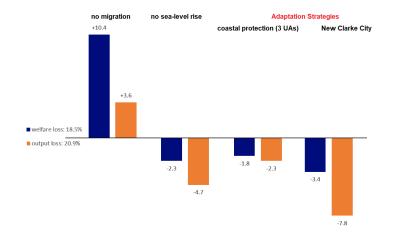
Distributional Effects: % Losses, Low-skilled vs skilled


Movement to *poor* areas: ↑18.9% low-skilled; ↑ skilled ↑12.7%
Inequality: ↑ 5.4%

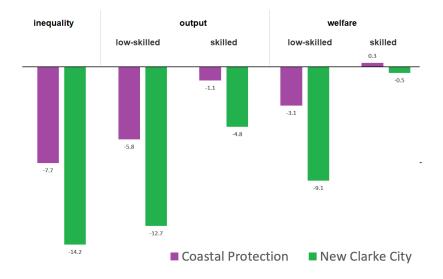
Δ percentage points relative to baseline losses


Larger losses from low-skilled sector \implies inequality rises to 12.7%

Δ percentage points relative to baseline losses


• Mechanism: Reduces displacement to *poor* areas, abated by 2% of low-skilled and 5% of skilled workers

Δ percentage points: Adaptation strategies


 Protect Metro Manila, Metro Cebu, and Metro Davao: local agglomeration economies from high-density coastal areas are preserved.

Δ percentage points: Adaptation strategies

 Implementation: replicated amenity and productivity values of Metro Manila to new city (NPV cost US\$ 12.9 billion)

Distributional Implications of Adaptation Strategies

1 Coastal Protection

- Benefit: US\$ 5 billion
- Buffer cost to protect 1,000 kilometers of coastline: \$5 million
 - \$ 51,000 per-km using a nature-based apprach (ADB, 2017)
 - \$ 2.2 million per-km for engineering approach (Min et al., 2016)

2 New Clarke City

- Capital outlay: US\$ 12.9 billion
- Benefit: US\$ 9.8 billion (calculated from output gains of 7.8%)
- <u>Main concern</u>: Can new places be as productive? Feasible to replicating agglomeration spillovers?

Option 1 is more cost-effective

- 1 New climate environment in 2100 \implies Δ economic geography
 - $\bullet\,$ Aggregate welfare loss of 18.5%, while output decreases by 20.9%
 - Extreme no-adjustment case: ↑ losses by 10% for welfare, 4.5% for output
 - Effects are driven by rising temperatures as opposed to sea-level rise
- 2 Distributional effects
 - Inequality rises by 5.4%.
 - Trade-offs: largely responds to climate changes to local amenities
 - Low-skilled-workers: are sensitive to temperature effects on productivity
- 3 Policy Evaluation: New city inland vs Coastal Protection
 - Losses are mitigated by 7% when a new mega-city is generated
 - But introducing costs: coastal protection becomes more attractive

- Quantify GE-effects of temperatures + sea-level rise
- Approx. 20% losses, with burden on low-skilled workers
- Restricting mobility will have dire effects
- Baseline losses can be mitigated with strategic policy interventions.
 - Responsiveness of low-skilled workers to interventions \implies possible \downarrow inequality
 - Gains in narrowing large amenity distortions to erode strong coastal preferences of skilled workers
- <u>Future work</u>: Explore other model assumptions, robustness, sophisticated cost-benefit analysis