Nailing Prediction

Experimental Evidence on The Impact of Tools in Predictive Model Development

lavor Bojinov (Harvard Business School, Technology & Operations Unit) With Daniel Yue and Paul Hamilton

Al is highly visible in key products in our society, but is unevenly implemented across businesses.

	Industry	Human Resources	Manufacturing	Marketing And Sales	Product and/or Service Development	Risk	Service Operations	Strategy and Corporate Finance	Supply-Chain Management	Q, DVD 🧩 🧖 -
олан (р. 1997) Сбрат (р. 1997) Та	All Industries	8%	12%	15%	21%	10%	21%	7%	9%	
1.	Automotive and Assembly	13%	29%	10%	21%	2%	16%	8%	18%	37
	Business, Legal, and Professional Services	13%	9%	16%	21%	13%	20%	10%	9%	
2.	Consumer Goods/Retail	1%	19%	20%	14%	3%	10%	2%	10%	TAN)
3.	Financial Services	5%	5%	21%	15%	32%	34%	7%	2%	INHERITANCE
	Healthcare/Pharma	3%	12%	16%	15%	4%	11%	2%	6%	
	High Tech/Telecom	14%	11%	26%	37%	14%	39%	9%	12%	

AI ADOPTION by INDUSTRY & FUNCTION, 2020

Source: McKinsey & Company, 2020 | Chart: 2021 Al Index Report

% of Respondents

How can AI be unevenly implemented across businesses if the <u>technology</u> is public knowledge?

An accepted explanation is *worker skills*.

Tambe 2014; Tambe and Hitt 2014

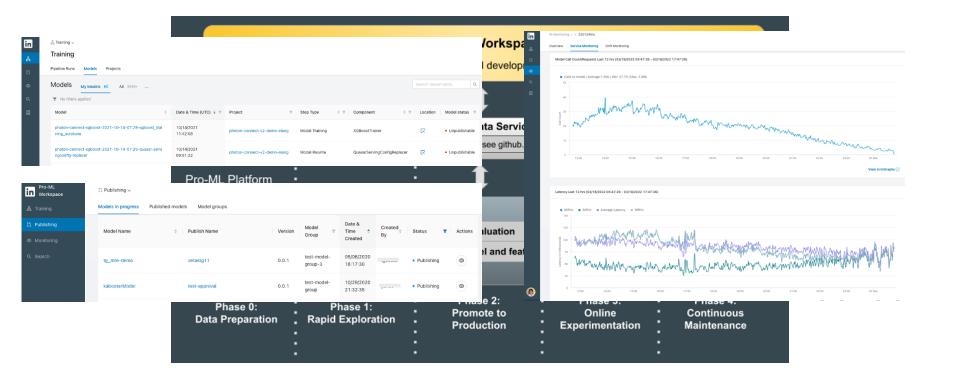
While skills are no doubt important, they cannot explain the prevalence of <u>tools</u> in AI systems. *Can tools be an (additional) answer to this puzzle?*

Cloud Infrastructure

Open Source Machine Learning Software

Internal Tools

LinkedIn's Pro-ML

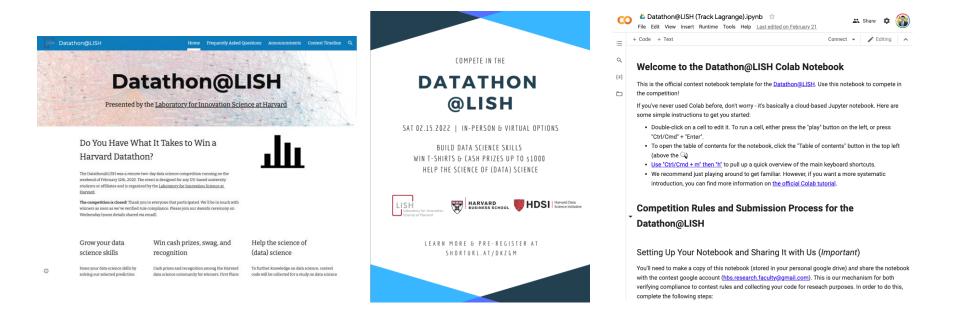


Research Questions

- What is the effect of <u>tooling</u> on <u>predictive model development</u>? How does its effect compare to the effect of <u>methodology</u> on predictive model development?
- 2. How does tooling interact with <u>skills</u>? Are tools and skills complements or substitutes?

(our terms will be better defined later...)

A field experiment with data scientists limiting access to key ML *software libraries*.

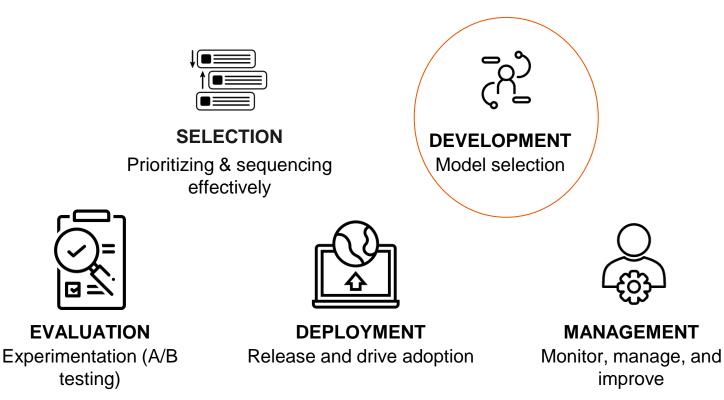


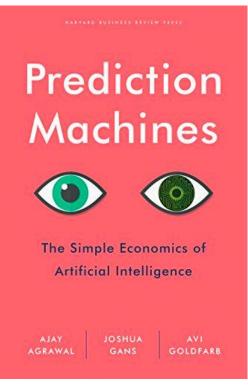
Outline

- 1. Conceptual Framework
- 2. Experiment Design
- 3. Results

Conceptual Framework

Typical ML Project Steps





Focus on:

Predictive Model Development

What are the *drivers* of predictive model development?

Typical Framework for Analyzing PMD

Data	Compute	Models
How an empirical reality is represented.	How computational resources are structured and employed.	How models are structured so as to capture empirical regularities in the data.

To better answer our questions, we extend a framework from the IT Productivity Literature.

- 1. The literature currently makes the distinction between *technology* and *skills* (Tambe 2014; Wu et al 2017).
- 2. We further separate technology into *methodology* and *tooling*.
 - Methodology is *abstract*, *conceptual knowledge* of how to solve a problem.
 - Tooling is an *implementation* of a methodology, through a combination of hardware and software.

	Data	Compute	Models
	How an empirical reality is represented.	How computational resources are structured an employed	How models are structured so as to capture empirical regularities in the data.
Methodology	Split Apply Combine One-hot encoding More Observations	Backpropagation / AutoDiff Accelerators (GPUs / TPUs) Infrastructure-as-a-Service	Random Forest BERT (Language Models) AutoML

Methodology is abstract, conceptual knowledge.

	Data	Compute	Models
	How an empirical reality is represented.	How computational resources are structured an employed	How models are structured so as to capture empirical regularities in the data.
Methodology	Split Apply Combine	Backpropagation / AutoDiff	Random Forest
	One-hot encoding	Accelerators (GPUs / TPUs)	BERT (Language Models)
	More Observations	Infrastructure-as-a-Service	AutoML
Tools	R's dplyr	PyTorch	Sci-kit Learn
	Python's pandas	NVIDIA's CUDA	Hugging Face Transformers
	PostgreSQL	Google Cloud Platform	AWS SageMaker AutoPilot

Tooling is a specific implementation / integration of known methods.

	Data	Compute	Models
	How an empirical reality is represented.	How computational resources are structured an employed	How models are structured so as to capture empirical regularities in the data.
Methodology	Split Apply Combine	Backpropagation / AutoDiff	Random Forest
	One-hot encoding	Accelerators (GPUs / TPUs)	BERT (Language Models)
	More Observations	Infrastructure-as-a-Service	AutoML
Tools	R's dplyr	PyTorch	Sci-kit Learn
	Python's pandas	NVIDIA's CUDA	Hugging Face Transformers
	PostgreSQL	Google Cloud Platform	AWS SageMaker AutoPilot

To better answer our questions, we extend a framework from the IT Productivity Literature.

- 1. The literature currently makes the distinction between *technology* and *skills* (Tambe 2014; Wu et al 2017).
- 2. We further separate technology into *methodology* and *tooling*.
 - Methodology is *abstract*, *conceptual knowledge* of how to solve a problem.
 - Tooling is an *implementation* of a methodology, through a combination of hardware and software.

	Data	Co	mpute	M	lodels
	How an empirical reality is represented.		v computational resources structured an employed	so	ow models are structured as to capture empirical gularities in the data.
Methodology	Split Apply Combine One-hot encoding	Backpropagation / AutoDiff Accelerators (GPUs / TPUs)			andom Forest ERT (Language Models)
Wiethodology	More Observations	Infrastructure-as-a-Service		1	utoML
	m R's dplyr	PyTorch		Sc	ci-kit Learn
Tools	Python's pandas	NVIDIA's CUDA		H	ugging Face Transformers
	PostgreSQL	Google Cloud Platform		A	WS SageMaker AutoPilot
Skill	Domain-Specific Skill	Computer-Specific Skill		Μ	odeling-Specific Skill
JKIII			General Skill		

Skill is further broken into specific skills and general skills.

Research Questions 1

What is the effect of tooling on predictive model development? How does its effect compare to the effect of methodology on predictive model development?

Restricting access to tools reduces log-loss score by ~30% of the gains over baseline. This corresponds to reducing the training data set to 10-15% of its original size (a reduction of 85%!)

Research Question 2

How does tooling interact with skills? Are tools and skills complements or substitutes?

Tooling does not interact with an aggregate measure of skill. BUT Tools are complementary to **specific skills**, but *substitutable* with **general skills**.

Mechanism: *tools encodes general skills*, changing the type of skills needed to develop effective models.

Experiment Design

Experimental Design

kaggle

Experimental Setting.

We created a (private) contest on Kaggle, a leading platform for coordinating data science competitions. We recruited teams of either one or two participants from leading US universities for a 48-hour Datathon.

DRIVENDATA

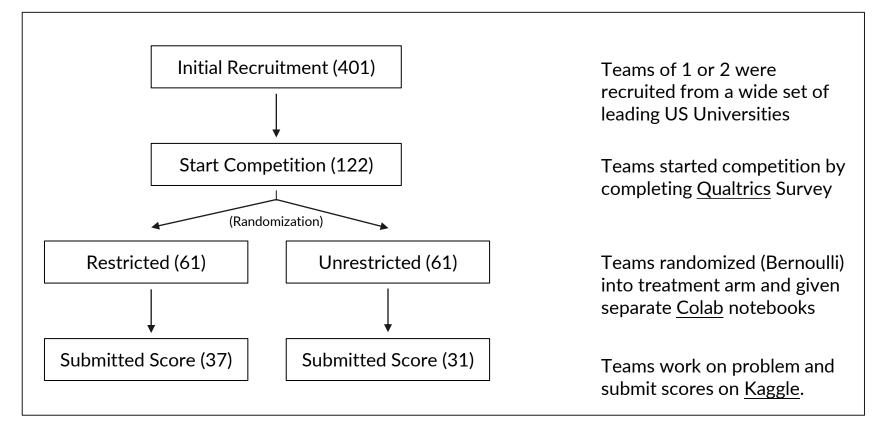
Experimental Task. We tasked teams with solving a statistical prediction problem from DrivenData. We awarded prizes to participants based on the final loss score of their best submitted model.

colab

Treatment: Teams are restricted from using machine learning modeling functions from software libraries (importantly, *they are free to reimplement* or use standard GLM approaches).

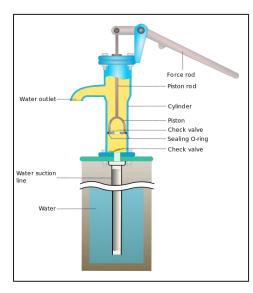
Control: Teams are unrestricted in use of libraries.

Recruitment & Randomization



The Task: Taarifa's Pump Repairs (Binary Classification)

A smart understanding of which waterpoints will fail can improve maintenance operations and ensure that clean, potable water is available everywhere. In this competition, you will develop a predictive model that solve binary classification task focused on predicting the operational status of water pumps throughout Tanzania, based on some the provided information about their installation context.



Data Given:

- Pump Status
- Type (Funder, Water Source, Installation Details)
- Management
 (Organization,
 Payments)
- Location (Region, Lat/Long)
- Geography (Altitude)
- Demographics

Treatment definition

Restricted use of advanced ML python libraries.

- No libraries that implement anything more advanced than constrained generalized linear models. (So no random forest, neural networks, etc.)
- BUT, can use any functions for feature engineering or other non-modeling related tasks (test-train split etc.).

Automatic checks for compliance—no one broke the rules.

Data Sources

LI	SH	
	Laborator, Science of	y for Innova Horvard

Welcome to the Datathon@LISH Pre-Contest Survey! Fill out this survey to get started on the contest - it will only take about 10 minutes to complete.

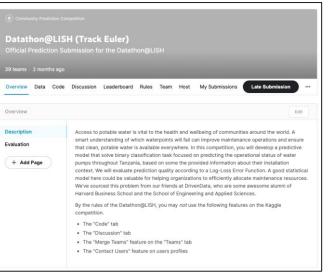
In addition to being a contest, the Datathon@LISH is a research project aimed at advancing scientific understanding of data science problem solving. Our research is supervised under <u>Harvard</u> <u>University's Institutional Review Board</u>. Please read through <u>this</u> <u>consent document</u> before proceeding. Have you opened the document?

Yes	0
I have questions about this and want to talk to someone	0
The consent document (linked above) describes the pur goals of the study; in summary, the document emphasi	

Participation is voluntary

File Edit View Insert Runtime Tools Help Last edited on February 21	
Code + Text	Connect 👻 🎤 Editing 🖍
	↑↓∞日/』 ▮ :
Welcome to the Datathon@LISH Colab Notebo	ook
his is the official contest notebook template for the Datathon@LISH. Use t	this notebook to compete in the competition!
f you've never used Colab before, don't worry - it's basically a cloud-based . nstructions to get you started:	Jupyter notebook. Here are some simple
Double-click on a cell to edit it. To run a cell, either press the "play" but To open the table of contents for the notebook, click the "Table of con <u>Use "Ctrl/Cmd + m" then "h</u> " to pull up a quick overview of the main ke We recommed just playing around to get familiar. However, if you wa	itents" button in the top left (above the \square) yboard shortcuts.
more information on the official Colab tutorial.	
	or the Datathon@LISH
Competition Rules and Submission Process for	
more information on the official Colab tutorial. Competition Rules and Submission Process for Setting Up Your Notebook and Sharing It with Us (Im You'll need to make a copy of this notebook (stored in your personal google google account (<u>bbs research faculty@gmail.com</u>). This is our mechanism and collecting your code for reseach purposes. In order to do this, complete	portant) drive) and share the notebook with the contest for both verifying compliance to contest rules

(hbs.research.faculty@gmail.com) as an 'Editor'. Note that we will only use code for verifying rule compliance and research analysis, but will not be editing or monitoring the code during the contest - so please feel free to develop code



Qualtrics (Background)

Colab (Code)

Kaggle (Submissions)

Primary Variable Construction

 Treatment: Restricted use of advanced ML python libraries.
 A dummy variable called "Unrestricted" that takes a value 1 if team can use modeling libraries and 0 otherwise.

 Primary Outcome: A normalized <u>Score</u> obtained by applying an affine transformation such that the best score is 1 and the baseline score is 0. [Kaggle]

Additional Data

👝 🛛 🔺 🗠 🗠 🍐 🍐 🍐 🖒 🍐 🍐

File Edit View Insert Runtime Tools Help Last edited on February 21

🚓 Share 🏟 🎲

Connect 👻 🧪 Editing 🔥

⊞ Q

 $\{x\}$

+ Code + Text

Welcome to the Datathon@LISH Colab Notebook

This is the official contest notebook template for the <u>Datathon@LISH</u>. Use this notebook to compete in the competition!

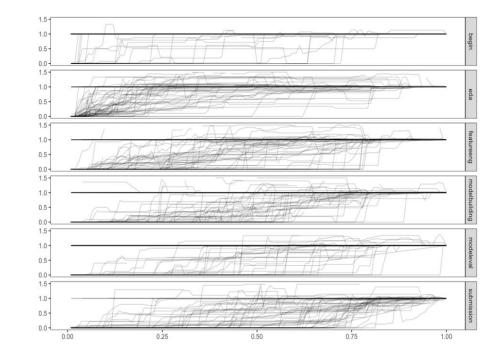
If you've never used Colab before, don't worry - it's basically a cloud-based Jupyter notebook. Here are some simple instructions to get you started:

- Double-click on a cell to edit it. To run a cell, either press the "play" button on the left, or press
 "Ctrl/Cmd" + "Enter".
- To open the table of contents for the notebook, click the "Table of contents" button in the top left (above the
- Use "Ctrl/Cmd + m" then "h" to pull up a quick overview of the main keyboard shortcuts.
- We recommend just playing around to get familiar. However, if you want a more systematic introduction, you can find more information on the official Colab tutorial.

Competition Rules and Submission Process for the Datathon@LISH

Setting Up Your Notebook and Sharing It with Us (Important)

You'll need to make a copy of this notebook (stored in your personal google drive) and share the notebook with the contest google account (hbs.research.faculty@gmail.com). This is our mechanism for both verifying compliance to contest rules and collecting your code for reseach purposes. In order to do this, complete the following steps:



Variable	N = 100
Year Finished Undergrad	2021 (2016, 2022)
Current or Most Recent Degree	
Undergraduate	29%
Masters	49%
PhD	22%
Undergraduate Major	
Data Science	27%
Physical Science or Engineering	56%
Social Science	17%
Current Employment Status	
Student (full-time)	83%
Employed (full-time)	11%
Other	6%
Prior Jobs in Software, Research, or Data Scie	nce
None	21%
Internship	43%
Full Time Work	36%
Prior Jobs in (Only) Data Science	
None	53%
Internship	32%
Full Time Work	15%
Gender	
Male	57%
Female	42%
Prefer Not to Say	1%

Question 1 — Analytic Approach

1. What is the effect of tools [modeling libraries] on predictive model development? How does its effect compare to the effect of methodology [training set size] on predictive model development?

Nonparametric analysis & regression

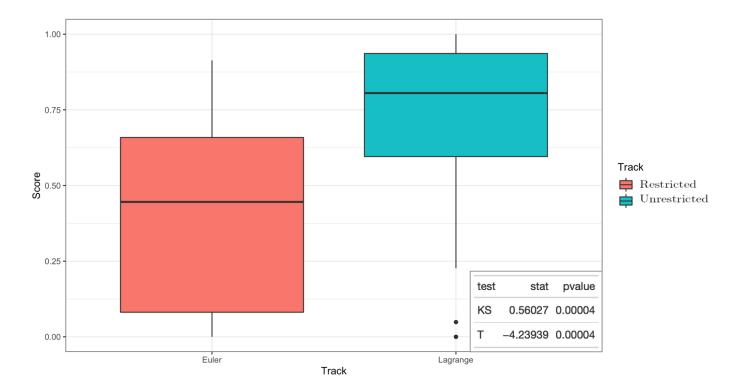
We rerun the models from the winner's of each track on progressively smaller training data sets to compare our estimate to the effect of data set size on predictive model performance.

1.5 -Density Track Restricted Unrestricted 0.5-0.0-0.25 0.750.00 0.501.00 Score

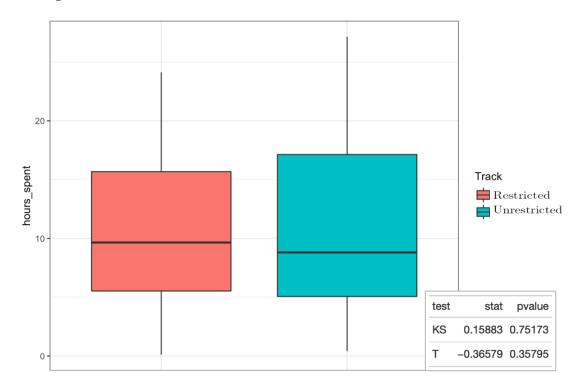
Density Plot of Scores by Contest Track

	Model 1	Model 2
Dependent Var.:	Score	Score
Unrestricted	$0.2949^{***} (0.0719)$	$0.2879^{***} (0.0715)$
Team is Pair		0.0889 (0.0841)
Comfortable with sklearn		-0.0380(0.0989)
Comfortable with Feature Engineering		0.1238(0.0869)
Comfortable with SQL		-0.1503^{**} (0.0710)
Had Prior Data Science Job		-0.0161(0.0781)
(Intercept)	$0.4171^{***} (0.0479)$	0.4118^{***} (0.0924)
S.F. turno	Heteroskedasrob.	Heteroskedasrob.
S.E. type		
Observations	68	68
$\mathbf{R2}$	0.20372	0.25584
Adj. R2	0.19166	0.18265

The restrictions reduce the normalized score by almost 30% of the possible gains baseline



The effect was not driven by differences in rate of participation or effort



Research Questions 1

What is the effect of tooling on predictive model development? How does its effect compare to the effect of methodology on predictive model development?

Restricting access to tools reduces log-loss score by ~30% of the gains over baseline. This corresponds to reducing the training data set to 10-15% of its original size (a reduction of 85%!)

The result is not driven by "effort" or time-spent.

Question 2 — Analytic Approach

2. How does technology interact with skills? Are technology and skills complements or substitutes?

We form <u>skill</u> indexes aggregating prior experiences of participants. We distinguish further between <u>general</u> and <u>specific</u> skills. General indicates statistical problem solving abilities (e.g. prior employment as DS). Specific indicates knowledge of modeling and modeling tools (e.g. experience with sklearn).

We convert the measures into binary indicators and estimate interactions with treatment.

	Model 1
Dependent Var.:	Score
Unrestricted	$0.3596^{**}(0.1065)$
Unrestricted x High Skill (Total)	-0.1080 (0.1443)
High Skill (Total)	$0.0817 \ (0.1012)$
(Intercept)	0.3685*** (0.0829)
S.E. type	Heteroskedasrob.
Observations	68
$\mathbf{R2}$	0.21269
Adj. R2	0.17578

	Model 3
Dependent Var.:	Score
Unrestricted	0.2196. (0.1139)
Unrestricted x High Skill (General) High Skill (General) Unrestricted x High Skill (Specific) High Skill (Specific) High Skill (General) x High Skill (Specific)	-0.2586* (0.1264) 0.0983 (0.1203) 0.3422** (0.1262) -0.0361 (0.1221) -0.1426 (0.1294)
(Intercept)	0.4478*** (0.0993)
S.E. type	Heteroskedasrob.
Observations	68
R2	0.31640
Adj. R2	0.24916

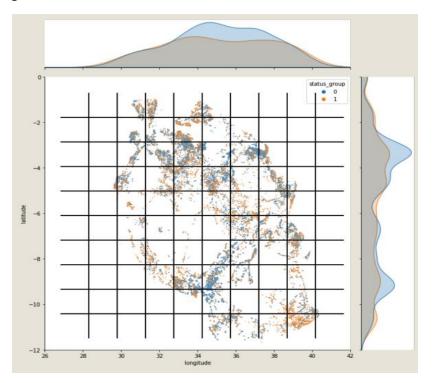
Research Question 2

How does tooling interact with skills? Are tools and skills complements or substitutes?

Tooling does not interact with an aggregate measure of skill. BUT Tools are complementary to **specific skills**, but *substitutable* with **general skills**.

Contest Results - Solution Approaches

Different tree-based and Boosting models such as Random Forest, XGBoost, LightGBM, CATBoost were tested and <u>the best model</u> (CATBoost) was selected based on the validation accuracy... The model with the best validation log-loss was considered for the final submission on Kaggle.



Unrestricted 1st: Focus on Model Approaches

Restricted 1st: Focus on Feature Engineering

Mechanism – Tools-as-Skills

Modeling libraries act as *substitute* for general skills (like intuitive feature development) – but only when teams had the *complementary* modeling-specific skills needed to use them.

Implication: tools allows for targeted training that can lower the cost of predictive model development for firms.

Implications

- IT Productivity: we extend the technology-skills framework by distinguishing technology into methodology and tooling. We conceptualize the mechanism by which tools drive predictive model development ("tools as skills") and present experimental evidence in support of that mechanism.
- 2. Economics of AI: we are the first to frame predictive model development as a theoretical problem and to contribute a novel conceptual framework and empirical methodology to studying it.

Managerial Implications

Foundational Understanding

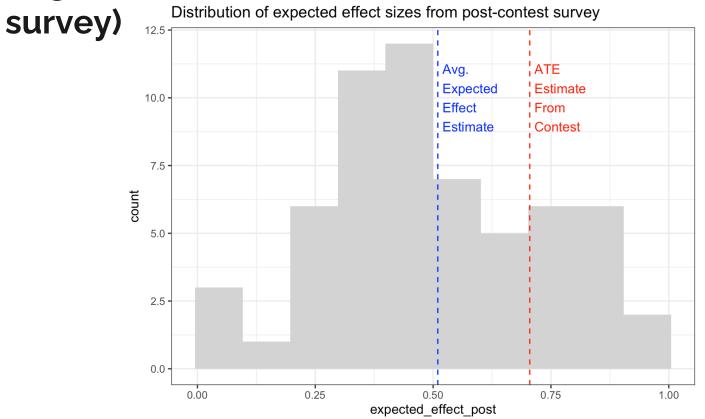
Data literacy, use data for judgment and judgment for data

Tool-Specific Skills

Experience with tools for implementing AI/ML models

Questions or suggestions? Email: ibojinov@hbs.edu

Expectation result: The participants expected a larger effect than was observed (from post-



	Model 1	Model 2	Model 3
Dependent Var.:	Score	Percent Accuracy	Work Hours
Unrestricted	$\begin{array}{c} 0.2949^{***} \\ (0.0719) \end{array}$	0.1237^{***} (0.0250)	-0.5745 (1.519)
(Intercept)	$\begin{array}{c} 0.4171^{***} \\ (0.0479) \end{array}$	0.7691^{***} (0.0227)	7.237^{***} (0.9974)
Observations	68	68	63
R2	0.20372	0.24746	0.00236
Adj. R2	0.19166	0.23606	-0.01400

Track	Overall, N = 68 ¹	euler , N = 37 ¹	lagrange, N = 31 ¹	p-value ²
year_undergrad	2,021.0 (2,016.0, 2,022.1)	2,020.0 (2,015.5, 2,022.0)	2,021.0 (2,016.0, 2,022.5)	0.5
info_educ				0.13
Masters	31 (46%)	21 (57%)	10 (32%)	
PhD	17 (25%)	7 (19%)	10 (32%)	
Undergraduate	20 (29%)	9 (24%)	11 (35%)	
info_employ				0.7
Employed (full-time)	9 (13%)	6 (16%)	3 (9.7%)	
Other	5 (7.4%)	3 (8.1%)	2 (6.5%)	
Student (full-time)	54 (79%)	28 (76%)	26 (84%)	
info_major				0.8
DataSci	19 (28%)	11 (30%)	8 (26%)	
SocSci	10 (15%)	6 (16%)	4 (13%)	
STEM	39 (57%)	20 (54%)	19 (61%)	
nfo_gender				0.2
Female	35 (51%)	16 (43%)	19 (61%)	
Male	32 (47%)	20 (54%)	12 (39%)	
Prefer Not to Say	1 (1.5%)	1 (2.7%)	0 (0%)	

<u>Team-Level Summary</u> <u>Statistics (Demographics)</u>

Most teams graduated after 2015.

Primarily masters students participated. Many had prior work or internship experiences in data science.

The majority of participants are currently students

Most students came from STEM or data science majors.

The gender composition skewed male, reflecting general trends in STEM.

Track	Overall , $N = 68^{1}$	euler, N = 37 ¹	lagrange, N = 31 ¹	p-value ²
priorcourses_os				0.3
None	42 (62%)	23 (62%)	19 (61%)	
One Course	17 (25%)	11 (30%)	6 (19%)	
Two Courses or More	9 (13%)	3 (8.1%)	6 (19%)	
prioremploy_datascience				0.6
Full Time Work	14 (21%)	6 (16%)	8 (26%)	
Internship	25 (37%)	14 (38%)	11 (35%)	
None	29 (43%)	17 (46%)	12 (39%)	
None	22 (32%)	16 (43%)	6 (19%)	
prioremploy_softwaredev				0.4
Full Time Work	10 (15%)	4 (11%)	6 (19%)	
Internship	15 (22%)	7 (19%)	8 (26%)	
None	43 (63%)	26 (70%)	17 (55%)	
priorlanguages_sql				0.8
Comfortable	31 (46%)	16 (43%)	15 (48%)	
Heard of it but unfamiliar	15 (22%)	9 (24%)	6 (19%)	
Never heard of it	1 (1.5%)	0 (0%)	1 (3.2%)	
Used / Done Before	21 (31%)	12 (32%)	9 (29%)	
¹ n (%); Median (IQR)				

Team-Level Summary Statistics (General Exp)

Team had significant prior experiences in employment as both data scientists and software engineers.

Some had key related general skills such as operating systems and SQL knowledge.

² Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test

Track	Overall, N = 68 ¹	euler, N = 37 ¹	lagrange, N = 31 ¹	p-value ²
priorstatmodels_regul				0.6
Comfortable	45 (66%)	22 (59%)	23 (74%)	
Heard of it but unfamiliar	4 (5.9%)	3 (8.1%)	1 (3.2%)	
Never heard of it	4 (5.9%)	3 (8.1%)	1 (3.2%)	
Used / Done Before	15 (22%)	9 (24%)	6 (19%)	
priormlstages_modelbuild				0.5
Comfortable	41 (60%)	22 (59%)	19 (61%)	
Heard of it but unfamiliar	5 (7.4%)	4 (11%)	1 (3.2%)	
Never heard of it	1 (1.5%)	1 (2.7%)	0 (0%)	
Used / Done Before	21 (31%)	10 (27%)	11 (35%)	
priorlibraries_scipy				0.8
Comfortable	41 (60%)	21 (57%)	20 (65%)	
Heard of it but unfamiliar	6 (8.8%)	4 (11%)	2 (6.5%)	
Used / Done Before	21 (31%)	12 (32%)	9 (29%)	
priorlibraries_sklearn				0.2
Comfortable	51 (75%)	29 (78%)	22 (71%)	
Heard of it but unfamiliar	3 (4.4%)	0 (0%)	3 (9.7%)	
Used / Done Before	14 (21%)	8 (22%)	6 (19%)	

² Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test

Team-Level Summary Statistics (Specific Exp)

Many participants had specific experience in tools and methods most closely associated with data science problem solving.

For example, about 60% of participants were comfortable with modeling building.

60% of participants were comfortable with scientific computing tools like scikitlearn.

	Model 3	Model 4
Dependent Var.:	Percent Accuracy	Percent Accuracy
Unrestricted	$0.1237^{***} (0.0250)$	$0.1185^{***} (0.0258)$
Team is Pair		$0.0287 \ (0.0266)$
Comfortable with sklearn		-0.0209(0.0362)
Comfortable with Feature Engineering		0.0311 (0.0359)
Comfortable with SQL		-0.0252(0.0256)
Had Prior Data Science Job		0.0150(0.0287)
(Intercept)	$0.7691^{***} (0.0227)$	0.7582^{***} (0.0360)
S.E. type	Heteroskedasrob.	Heteroskedasrob.
Observations	68	68
R2	0.24746	0.27237
Adj. R2	0.23606	0.20080

Note: baseline Percent Accuracy is 0.55.

	Model 1	Model 2	Model 3
Unrestricted	$\begin{array}{c c} 0.2936^{**} \\ (0.0732) \end{array}$	0.3134^{**} (0.0670)	0.2295^{**} (0.0622)
High Skill (Total)	-0.0359 (0.0732)		
Unrestricted x High Skill (Total)	-0.0803 (0.1463)		
High Skill (General)		-0.0876 (0.0815)	-0.0784 (0.0622)
Unrestricted x High Skill (General)			-0.3028* (0.1243)
High Skill (Specific)		$0.0645 \\ (0.0842)$	0.0499 (0.0622)
Unrestricted x High Skill (Specific)			0.3309^{**} (0.1243)
High Skill (General) x High Skill (Specific)			-0.2656^{*} (0.1243)
Unrestricted x High Skill (General) x High Skill (Specific)			0.5071* (0.2487)
(Intercept)	0.5639^{**} (0.0366)	0.5642^{**} (0.0421)	0.5770^{**} (0.0311)
Observations	68	68	68
R2	0.20996	0.26470	0.34072
Adj. R2	0.17293	0.21801	0.26380

Checks for Experiment Validity

• Balance Checks [seems like no difference from drop-outs]