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My Plan for my Keynote

1. Some motivation
2. Some data
3. Some provocative conclusions



How do economists think about Al?
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What is Algorithmic Bias?




1. Introduction

3. Sparse Data

4. Fragmented Data

5. What are the effects?

6. Provocative Conclusions
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2. Algorithmic Exclusion?



Algorithmic Exclusion
When Algorithms err because data is missing due to differences in
privilege

e Sparsity

¢ Fragmentation









Outline

3. Sparse Data



Sparse Data




More general point that a broad digital footprint is a matter of privilege

e Computer Work
e Mobile Data
¢ Internet of Things



The idea of data deserts is neglected







Fragmented Data

e Algorithmic data is not usually from single source
e Datasets have to be matched a
e How do you match? Cell phones..Email addresses...Names






Based on Algorithms of Data Brokers
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Other data brokers
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What Kind of Predictions are bought by data broker clients (Lotme)

e Age (76%)

e Gender (61%)

e Income (50%)

e Education (40%)
e Children (32%)



But how do Data Brokers Know Age and Gender?



Simple prediction task

e Data on Browsing behavior

e May tell us whether someone is a female (if | browse sanitary
products)

e May tell us age (if | browse retirement homes)



We asked how good data brokers are at this



What we did

e We identified cookies from ‘pureprofile’ panel survey.
e We asked data brokers to tell whether they were male or (25-34)



Results

Data Broker Number of Cookies Gender Accuracy

A 1396 27.5
B 408 257
C 1777 35.2
D) 495 56.4
E 527 48.8
F 480 479
G 562 46.8
H 1016 33.2
| 2336 33.6
J 14342 42.4
K 346 30.6
L 547 51.9
M 456 49.1
N 5099 62.7




We went out and got new data on the people who were profiled
e We wanted to know if this was related to income inequality






And Race..

whie | 60.4%
eiack | 54.0%
psian - 50.7%
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But should we care if people are poorly profiled by algorithms as they
have missing data?



Summary

e Data is often sparse
e Data is often fragmented

e This leads to algorithmic exclusion where algorithms work
poorly

e Interaction with inequality appears important outside of
advertising
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