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Introduction 

Impact Evaluation in Practice (second edition) offers a comprehensive and accessible introduction to 
impact evaluation for policy makers and development practitioners.  The book is divided into four parts. 
Part 1 reviews how to prepare for an impact evaluation, what to evaluate, and why. Part 2 presents the 
basic concepts of impact evaluation by relying mostly on intuition and graphical representations. Part 3 
discusses how to choose an impact evaluation method in a given operational context, and how to 
manage impact evaluations. Part 4 reviews how to get data, including sampling, power calculations, and 
data sources for impact evaluation. The presentation in the book is nontechnical, and focuses on the 
intuition behind technical concepts and impact evaluation methods, as well as sampling and power 
calculation.  

In this technical companion, we include additional material for readers with a background in statistics 
and econometrics. The technical companion assumes a basic understanding of statistics, in particular 
key concepts such as regression analysis and hypothesis testing. The technical companion presents an 
introduction to the analysis of impact evaluation data. It summarizes the basic potential outcome 
framework that underpins the econometrics of impact evaluation, discusses how to represent the 
methods in a regression framework, and provides some applications using Stata. The technical 
companion also provides examples of how to undertake power calculations in Stata and Optimal Design. 
Applications are based on the case study of the Health Insurance Subsidy Program (HISP) presented in 
the book. Supplementary data and related do-files can be found on the book website 
(www.worldbank.org/ieinpractice), and can be used to replicate the results presented in the companion. 

While this technical companion presents an introduction to analyzing impact evaluation data, the 
objective is not to provide an in-depth discussion of the econometrics behind impact evaluation. If you 
would like additional details or a more comprehensive coverage, you are invited to read Angrist and 
Pischke (2009) or Angrist and Pischke (2014), on which this companion partly draws. Although we 
provide some examples and applications using Stata, this online companion is not a thorough empirical 
guide on how to apply the methods in practice. If you are interested in additional information and 
practical applications, you can consult, among other relevant material, the applied impact evaluation 
methods course at the University of California, Berkeley (http://aie.cega.org).   

1 Please cite this technical companion as: “Gertler, Paul J.; Martinez, Sebastian; Premand, Patrick; Rawlings, Laura 
B.; Vermeersch, Christel M. J.. 2016. Impact Evaluation in Practice, Second Edition, Technical Companion (Version 
1.0). Washington, DC: Inter-American Development Bank and World Bank.  
Marina Tolchinsky provided excellent research assistance in preparing this technical companion and related Stata 
material. Aakash Mohpal provided useful comments. This is version 1.0 (September 2016) of the technical 
companion. The authors welcome feedback and suggestions on how to improve this first version in the future. 
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Causal Inference and Counterfactuals: The Potential Outcome Framework 

In chapter 3 of Impact Evaluation in Practice, Second Edition, we noted that the answer to the basic 
impact evaluation question—What is the impact or causal effect of a program P on an outcome of 
interest Y?— is given by a basic impact evaluation formula:  

𝛿𝛿 = (𝑌𝑌 | 𝑃𝑃 = 1) − (𝑌𝑌 | 𝑃𝑃 = 0) 

𝛿𝛿 = 𝑌𝑌1 − 𝑌𝑌0 

This formula says that the causal impact (δ) of a program (P) on an outcome (Y) is the difference 
between the outcome (Y) with the program (in other words, when P=1) and the same outcome (Y) 
without the program (that is, when P=0). While this basic formula is quite simple and was presented 
intuitively in chapter 3, it captures deeper concepts in statistics and econometrics. The basic impact 
evaluation formula, and more generally the broader impact evaluation literature, trace back to the 
potential outcome framework.2  

Let’s assume that we are interested in measuring the impact of a program on an outcome in some 
population of interest. The population (or universe) constitutes a set (I) of units, each denoted by i. 
Depending on the context, the units may be individuals, households, or facilities. The outcome of 
interest is Y. For each unit (i) of the broader population, the outcome of interest takes a value Yi. The 
population is usually comprised of a very large number of units, so that it is typically impossible to 
observe the value of the outcome of interest for the entire population.  

In chapter 2 of the book3, we introduced the Health Insurance Subsidy Program (HISP). HISP aims to 
subsidize the purchase of health insurance among poor rural households. In the context of this program, 
the population of interest (I) is comprised of poor rural households (i) in the country, and the outcome 
of interest (Y) for the impact evaluation is household yearly out-of-pocket health expenditures.  

The impact evaluation problem is to assess how the outcome of interest (Y) responds to being exposed 
to the program (P). To make things easier, we assume that exposure to the program is a binary random 
variable: each individual i can either be exposed to the program (in which case 𝑃𝑃𝑖𝑖=1), or not exposed to 
the program (in which case 𝑃𝑃𝑖𝑖=0).4 For now, we also assume that all units exposed to the program 
participate, and that all units not exposed to the program do not participate. 

In this context, there are two potential outcomes for each unit: either s/he is exposed and participates 
in the program [(𝑌𝑌𝑖𝑖| 𝑃𝑃𝑖𝑖 = 1) or 𝑌𝑌𝑖𝑖1] or s/he is not exposed to the program and does not participate 
[(𝑌𝑌𝑖𝑖| 𝑃𝑃𝑖𝑖 = 0) or 𝑌𝑌𝑖𝑖0]. For each unit in the population, the causal effect of the program is theoretically 
determined by a simple difference between the potential outcome with the program and the potential 
outcome without the program: 

𝛿𝛿 = 𝑌𝑌𝑖𝑖1 − 𝑌𝑌𝑖𝑖0 

2 See Rubin (1974); Holland (1986).  
3 See p. 39 in the book for a first description of the HISP case study. 
4 Issues related to noncompliance will be discussed further below. 
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The basic problem of causal inference is that we cannot observe the same unit in both states of the 
world at the same time, so it is impossible to observe program effects for each unit. We do not observe 
the counterfactual outcome for that same unit in another state of the world. For a unit i exposed to the 
program, we cannot observe what would have happened to that same unit i in the absence of that 
program. In the context of the Health Insurance Subsidy Program (HISP), a given poor household is 
either participating in the program or not participating in the program.  

Since causal effects cannot be measured for each unit i, let us go back to the population (I) to see how to 
identify the average treatment effect (ATE). At the population level, the average treatment effect is the 
difference between the expected value of the outcome when the population is exposed to the program 
and the expected value of the outcome when the population is not exposed to the program: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼 = 𝐴𝐴𝐼𝐼(𝑌𝑌𝑖𝑖1 − 𝑌𝑌𝑖𝑖0) = 𝐴𝐴𝐼𝐼(𝑌𝑌𝑖𝑖1) − 𝐴𝐴𝐼𝐼(𝑌𝑌𝑖𝑖0) 

We are interested in using a sample generated through an impact evaluation design to estimate the 
average treatment effect  for the population. Econometric methods help to find consistent estimators of 
the average treatment effect. When applied to a sample, consistent estimators tend to generate 
accurate estimates of the average treatment effect for the population.   

One potential estimator that can help infer the average treatment effect for the population is to take 
the difference in the average outcome of units in a sample exposed to the program and the average 
outcome of units in a sample not exposed to the program: 

𝛿𝛿 = (𝑌𝑌�  | 𝑃𝑃 = 1) − (𝑌𝑌� | 𝑃𝑃 = 0) 

While the average treatment effect above (ATEI) is for the whole population, the estimator is applied to 
an observed sample of units. The estimator produces an estimate of the average treatment effect by 
taking the difference between the mean sample outcomes among units exposed to the program and the 
mean sample outcomes among units not exposed to the program.  

In the case of HISP5, the average treatment effect obtained from this estimator would be the estimated 
difference in household yearly out-of-pocket health expenditures for poor rural households receiving 
the subsidies and poor rural households not receiving these subsidies. 

This estimator of the average treatment effect is only consistent, meaning that, based on the sample, it 
tends to generate accurate estimates of the average treatment effect for the population, under specific 
conditions. The main condition is that exposure to the program should be independent of the 
distribution of potential outcomes. This condition has two parts: 

• The average outcome of program beneficiaries and nonbeneficiaries should be the same if 
neither of them was exposed to the program.6 

5 For now, we still focus on the scenario where all units exposed to the program participate, and that all units not 
exposed to the program do not participate 
6 Formally, (𝑌𝑌1� |𝑃𝑃 = 1) = (𝑌𝑌1� |𝑃𝑃 = 0). 
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• The average outcome of the program beneficiaries and nonbeneficiaries should be the same if 
they were both exposed to the program.7  

Selection bias is one case when the condition of independence of potential outcomes does not hold. A 
selection bias may arise when the units that participate in the program are different or react differently 
to the program than units that do not participate in the program. In the case of the HISP program, a 
selection bias may occur if households deciding to sign up for the health insurance subsidy program are 
intrinsically different compared to households that do not sign up, and if these intrinsic differences are 
correlated with the outcome of interest. For instance, if households that decide to sign up are more 
prone to illness than households that decide not to sign up, comparing the average health expenditures 
between these two groups of households will mix the effect of participation in the program with the 
differences in expenditures driven by intrinsic differences between the two groups. Box 1 presents a 
theoretical discussion of the selection bias. We provide a more practical discussion of the selection bias 
below when introducing the regression framework.       

When the condition of independence of potential outcomes holds, no baseline differences would 
generally be expected between the group exposed to the program and the group not exposed to the 
program. In addition, both groups should react to the program in the same way if they are exposed to it. 
If this is the case, the average causal effect of the program over the population can be estimated from 
the difference in average outcomes between the sample units exposed to the program and the sample 
units not exposed to the program. This means that we can replace the theoretical and unmeasurable 
treatment effect of the program on a specific individual unit i with the estimated average treatment 
effect of the program for a sample of units drawn from a population of such units.   

In the case of HISP, if the condition of independence of potential outcomes holds and there is no 
selection bias, the average causal effect of providing health insurance subsidies to poor rural households 
is the difference in household yearly out-of-pocket health expenditures for poor rural households 
participating in the subsidy program and poor rural households not participating in the subsidy program. 

How can we ensure that the condition of independence of potential outcomes is fulfilled, and rule out 
selection bias? Randomized assignment of the program provides one solution. When implemented 
properly with a large number of units, randomized assignment ensures that the average characteristics 
of the treatment group are similar to the average characteristics of the comparison group. As the 
number of units used for randomized assignment grows, on average the treatment and comparison 
groups will look more and more like the original population they are drawn from.  The two groups will 
be expected to have the same baseline outcomes, and to react to the treatment in the same ways. As 
such, randomized assignment of the program (given a sufficiently large number of units) is one way to 
ensure that the condition of independence of potential outcomes is fulfilled, and rule out selection bias. 
In this case, the difference in average outcomes between the randomized treatment and comparison 
groups is a consistent estimator of the average treatment effect for the population. 

 

7 Formally, (𝑌𝑌0� |𝑃𝑃 = 1) = (𝑌𝑌0� |𝑃𝑃 = 0). 
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Randomized Assignment in a Regression Framework 

In the potential outcome framework discussed above, the observed outcome for a unit is either one of 
two potential outcomes. The potential outcome for unit i is 𝑌𝑌𝑖𝑖1 when exposed to the program, which 
happens with probability pi. By contrast, the potential outcome for that same unit i is 𝑌𝑌𝑖𝑖0 when it is not 
exposed to the program, which happens with a probability 1-pi. The observed outcome for unit i can be 
written as the following average of the two potential outcomes: 

 

𝑌𝑌𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑌𝑌𝑖𝑖1 + (1 − 𝑝𝑝𝑖𝑖)𝑌𝑌𝑖𝑖0 = 𝑌𝑌𝑖𝑖0 + (𝑌𝑌𝑖𝑖1 − 𝑌𝑌𝑖𝑖0)𝑝𝑝𝑖𝑖  

 

Box 1. The Selection Bas 

To see when the difference in average outcomes between the treatment and comparison groups can 
consistently estimate the average treatment effect, we can rewrite the average treatment effect of 
the program over the population as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼 = 𝐴𝐴𝐼𝐼(𝑌𝑌𝑖𝑖1) − 𝐴𝐴𝐼𝐼(𝑌𝑌𝑖𝑖0) = 𝐴𝐴𝐼𝐼(𝑌𝑌𝑖𝑖1|𝑃𝑃 = 1) − 𝐴𝐴𝐼𝐼(𝑌𝑌𝑖𝑖0|𝑃𝑃 = 0)   

= 𝐴𝐴𝐼𝐼(𝑌𝑌𝑖𝑖1|𝑃𝑃 = 1) − 𝑬𝑬𝑰𝑰(𝒀𝒀𝒊𝒊𝒊𝒊|𝑷𝑷 = 𝟏𝟏)  + 𝑬𝑬𝑰𝑰(𝒀𝒀𝒊𝒊𝒊𝒊|𝑷𝑷 = 𝟏𝟏)  − 𝐴𝐴𝐼𝐼(𝑌𝑌𝑖𝑖0|𝑃𝑃 = 0) 

= 𝐴𝐴𝐼𝐼((𝑌𝑌𝑖𝑖1 − 𝑌𝑌𝑖𝑖0)|𝑃𝑃 = 1)  +𝐴𝐴𝐼𝐼(𝑌𝑌𝑖𝑖0|𝑃𝑃 = 1) − 𝐴𝐴𝐼𝐼(𝑌𝑌𝑖𝑖0|𝑃𝑃 = 0)  

= (Average treatment effect on the treated) +  (Selection bias) 

In other words, the difference in average outcomes between a group exposed to the program and a 
group not exposed to the program is the sum of the average treatment effect on the treated (i.e. on 
those participating in the program) plus the selection bias. The selection bias is zero when there is no 
difference in average 𝑌𝑌𝑖𝑖0 between those who did and did not receive the program: namely, when 
𝐴𝐴𝐼𝐼(𝑌𝑌𝑖𝑖0|𝑃𝑃 = 1) − 𝐴𝐴𝐼𝐼(𝑌𝑌𝑖𝑖0|𝑃𝑃 = 0) = 0. When there is no selection bias, the difference in average 
outcomes between groups provides a consistent estimate of the average treatment effect in the 
population. This is achieved under the conditional independence assumption, in which case:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼 = 𝐴𝐴𝐼𝐼((𝑌𝑌𝑖𝑖1 − 𝑌𝑌𝑖𝑖0)|𝑃𝑃 = 1) 

 

Source: Angrist and Pischke (2009). 
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This relationship between the outcome of interest and exposure to the program can be rewritten in a 
linear regression framework: 

𝑌𝑌𝑖𝑖 = α + 𝛿𝛿𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖     (1) 

In the regression framework, α represents the average outcome for the group not exposed to the 
program (that is, when Pi=0). δ represents the difference in average outcomes between the group 
exposed to the program and the group not exposed to the program. Lastly, the error term (𝜀𝜀𝑖𝑖) captures 
any other individual factors that may affect the relationship between the program and the outcome of 
interest. 

This reformulation is akin to testing the difference in average outcomes between two groups. To see 
why, consider the group of individuals exposed to the program (Pi =1), and the group of individuals not 
exposed to the program (Pi =0). We can measure the average outcomes for each group as follows: 

• For the group of individuals not exposed to the program: 𝐴𝐴(𝑌𝑌𝑖𝑖|𝑃𝑃𝑖𝑖 = 0) = α + 𝐴𝐴(𝜀𝜀𝑖𝑖| 𝑃𝑃𝑖𝑖 = 0) 
• For the group of individuals exposed to the program:  𝐴𝐴(𝑌𝑌𝑖𝑖|𝑃𝑃𝑖𝑖 = 1) = α + 𝛿𝛿 + 𝐴𝐴(𝜀𝜀𝑖𝑖| 𝑃𝑃𝑖𝑖 = 1) 

Taking the difference between the two groups gives the following: 

𝐴𝐴(𝑌𝑌𝑖𝑖|𝑃𝑃𝑖𝑖 = 1) − 𝐴𝐴(𝑌𝑌𝑖𝑖|𝑃𝑃𝑖𝑖 = 0) = 𝛿𝛿 + 𝐴𝐴(𝜀𝜀𝑖𝑖| 𝑃𝑃𝑖𝑖 = 1) − 𝐴𝐴(𝜀𝜀𝑖𝑖| 𝑃𝑃𝑖𝑖 = 0) 

This illustrates that δ provides an estimate of the average treatment effect through the difference in 
average outcomes between program beneficiaries and nonbeneficiaries. However, this estimate is 
consistent only if there is no selection bias: that is, when unobserved differences between treated and 
nontreated groups cancel out, in which case 𝐴𝐴(𝜀𝜀𝑖𝑖| 𝑃𝑃𝑖𝑖 = 1) = 𝐴𝐴(𝜀𝜀𝑖𝑖| 𝑃𝑃𝑖𝑖 = 0). If there is a selection bias, 
then the difference in outcomes between beneficiaries and nonbeneficiaries will include the effect of 
the program plus a selection bias.  

Through impact evaluations, we aim to estimate the causal effect of the program and rule out any 
potential selection bias. In cases when the program is randomly assigned, and randomization is 
performed on a sufficiently large number of units, then the error terms in the regression are expected to 
be distributed randomly. This is equivalent to saying that the difference in the error terms between 
treatment and comparison groups will cancel out. In other words, when the assumption of 
independence of potential outcomes holds, then the impact of the program can be estimated by a 
difference in average outcomes in the treatment and comparison groups. In a regression framework 
such as equation (1) above, this difference is captured by the parameter of interest (δ).  

We now discuss how this can be implemented in practice in the presence of a randomized program 
(with full compliance) and follow-up data. In this case, the impact of a program can be estimated 
through an ordinary least squares (OLS) regression of the outcome of interest on a binary variable that 
takes the value of 1 if the individual is exposed to the program, and 0 otherwise.  

In the HISP case, we can estimate the difference in average outcomes between two groups by running a 
regression of household yearly out-of-pocket health expenditures on a binary variable capturing 
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exposure to the (randomized) program. This can be done among the group of eligible households in the 
treatment and comparison groups. 

The estimated regression coefficient of δ (see equation 1) provides an estimate of the program impact. 
The statistical significance of the program impact can be assessed by a standard t-test for that 
regression coefficient. Specifically, significance of the program impact is assessed by testing the null 
hypothesis that 𝛿𝛿 = 0 against the alternative hypothesis that 𝛿𝛿 ≠ 0. This test yields a t-statistic, and 
related p-value, that can be used to report on the results.  

To implement this in Stata (see Stata Example 1), we regress our outcome of interest (health 
expenditures) on a binary treatment variable (treatment_locality), which is equal to 1 if the household is 
located in a treatment area. We run this regression on the sample of households that were eligible for  
HISP and based on data collected after the program has been administered (round = 1). The estimated 
regression coefficient for δ is -10.14, indicating that eligible households exposed to HISP spent $10.14 
less on health expenditures than eligible households in the comparison group. The standard error of the 
coefficient is 0.396.8 The t-statistic calculated in the regression, -25.63, shows that this coefficient is 
statistically significant at the 1 percent level.  

 

Stata Example 1. Randomized Assignment in a Regression Framework (Linear Regression) 

* In this context, the program is randomized at the village level, and you compare 
follow-up situation of eligible households in treatment and comparison villages. 
 
*Select the relevant data 
use "evaluation.dta", clear 
keep if eligible==1 
 
reg health_expenditures treatment_locality if round ==1, cl(locality_identifier) 
 
Linear regression                        Number of obs =    5629 
                                         F(  1,   196) =  656.77 
                                         Prob > F      =  0.0000 
                                         R-squared     =  0.3004 
                                         Root MSE      =  7.7283 
 
                      (Std. Err. adjusted for 197 clusters in locality_identifier) 
------------------------------------------------------------------------------------ 
                   |               Robust 
health_expenditu~s |     Coef.    Std. Err.    t      P>|t     [95% Conf. Interval] 
-------------------+---------------------------------------------------------------- 
treatment_locality |  -10.14037   .3956824   -25.63   0.000    -10.92071    -9.36003 
             _cons |   17.98055   .3066373    58.64   0.000     17.37582    18.5852 
 
 

 

8 Because the treatment is assigned by village and outcomes are observed at the household level, we cluster the 
standard errors by village.  
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Testing Baseline Balance in a Regression Framework 

As mentioned, independence of potential outcomes is one of the most crucial assumptions to ensure 
that the difference in average outcomes between program beneficiaries and nonbeneficiaries provides a 
consistent estimate of the average treatment effect. While this assumption cannot generally be verified, 
some falsification tests can be implemented to identify cases when it does not hold.  

For instance, if data are available on program beneficiaries and nonbeneficiaries before the program, 
the same regression framework can be used to test that both groups are indeed similar prior to the 
program. We denote the time period prior to the program as t=0. In this context, the difference in 
means can be estimated between the two groups prior to the program through a regression similar to 
the one above, although for outcomes measured prior to the program: 

𝑌𝑌𝑖𝑖,𝑡𝑡=0 = α + 𝛿𝛿𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖  

In this regression, we focus on baseline data collected before the program is rolled out (round = 0) to 
compare pre-program outcomes among eligible households in the treatment and comparison groups. 
Stata Example 2 illustrates the approach and results. When the baseline outcome is regressed on a 
binary variable capturing exposure to treatment, the estimated coefficient is very small (-0.084) and not 
statistically significant (p value of 0.693). This indicates that eligible households in the treatment and 
comparison groups have similar levels of health expenditures prior to the intervention9.  
 

Stata Example 2. Testing for Balance in a Baseline Outcome  

reg health_expenditures treatment_locality if round ==0, cl(locality_identifier) 
 
Linear regression                                      Number of obs =    5628 
                                                       F(  1,   196) =    0.16 
                                                       Prob > F      =  0.6933 
                                                       R-squared     =  0.0001 
                                                       Root MSE      =  4.3012 
 
                        (Std. Err. adjusted for 197 clusters in locality_identifier) 
------------------------------------------------------------------------------------ 
                   |               Robust 
health_expenditu~s |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------------+---------------------------------------------------------------- 
treatment_locality |  -.0841528   .2130966    -0.39   0.693    -.5044093    .3361037 
             _cons |   14.57385   .1560665    93.38   0.000     14.26606    14.88163 
------------------------------------------------------------------------------------ 

 
By the same token, the regression framework can be used to check that other characteristics observed 
prior to the program are indeed similar across beneficiaries and nonbeneficiaries. If X is another such 
characteristic, balance in this other observed pre-program characteristic can be estimated as follows: 

𝑋𝑋𝑖𝑖,𝑡𝑡=0 = α + 𝛿𝛿𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖  

9 You may notice that there is a small difference in the number of observations in Stata Example 2 compared to 
Stata Example 1. This is because there is one observation with data at follow-up but not at baseline, so it is 
dropped from Stata Example 2. 
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This regression is essentially the same as the one displayed in Stata Example 2, only with a different 
dependent variable. In example 3 below, the treatment variable is regressed on the age of the head of 
household. The estimated coefficient is again not significant, indicating that the age of the head of 
household is not statistically different between eligible households in the treatment and comparison 
groups.  
 

Stata Example 3. Testing for Balance in a Baseline Covariate 

reg age_hh treatment_locality if round ==0, cl(locality_identifier) 
 
Linear regression                                      Number of obs =    5628 
                                                       F(  1,   196) =    1.42 
                                                       Prob > F      =  0.2341 
                                                       R-squared     =  0.0005 
                                                       Root MSE      =  14.044 
 
                        (Std. Err. adjusted for 197 clusters in locality_identifier) 
------------------------------------------------------------------------------------ 
                   |               Robust 
            age_hh |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------------+---------------------------------------------------------------- 
treatment_locality |  -.6354625   .5324145    -1.19   0.234    -1.685459    .4145341 
             _cons |   42.29204   .4300065    98.35   0.000     41.44401    43.14008 
------------------------------------------------------------------------------------ 

 
 

The estimation can be repeated over a large set of pre-program characteristics. An alternative is to run a 
regression of a variable capturing exposure to the program on a range of baseline characteristics. 

 

Multivariate Regression  

Let us assume that, in addition to the outcome variable (Yi), you also observe a range of other 
characteristics for individuals (Xi) in the sample. These can be added as control variables in the 
regression above. To do so, you can run a multivariate regression including a set of control variables: 

𝑌𝑌𝑖𝑖 = α + 𝛿𝛿𝑃𝑃𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 

Stata Example 4 illustrates how to implement this regression. The dependent variable remains the 
outcome of interest, health expenditures. In addition, we include a range of control variables: age of 
household head (age_hh), age of spouse (age_sp), education level of household head (educ_hh), 
education level of spouse (educ_sp), whether the head of household is a female (female_hh = 1), 
whether the household is a member of an indigenous group (indigenous = 1), the household size 
(hhsize), whether the household home has a dirt floor (dirtfloor = 1), whether the home has a bathroom 
(bathroom = 1), how many hectares of land the household owns (land), and the distance to the closest 
hospital (hospital_distance). The estimated regression coefficient for δ is -10.01, indicating that eligible 
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households exposed to HISP in a treatment community spent $10.01 less on health expenditures than 
eligible households in communities not exposed to the program, holding all the control variables 
constant. The t-statistic calculated in the regression shows that this coefficient is statistically significant 
at the 1 percent level.  

 

Stata Example 4. Randomized Assignment in a Regression Framework (Multivariate 
Regression) 

reg health_expenditures treatment_locality age_hh age_sp educ_hh educ_sp female_hh 
indigenous hhsize dirtfloor bathroom land hospital_distance if round ==1, 
cl(locality_identifier) 
 
Linear regression                                      Number of obs =    5629 
                                                       F( 12,   196) =  135.95 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.4297 
                                                       Root MSE      =  6.9844 
 
                        (Std. Err. adjusted for 197 clusters in locality_identifier) 
------------------------------------------------------------------------------------ 
                   |               Robust 
health_expenditu~s |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------------+---------------------------------------------------------------- 
treatment_locality |  -10.01032   .3412294   -29.34   0.000    -10.68327   -9.337363 
            age_hh |   .0411975   .0146714     2.81   0.005     .0122635    .0701316 
            age_sp |   .0031789   .0171833     0.18   0.853    -.0307089    .0370667 
           educ_hh |  -.0389384   .0468306    -0.83   0.407    -.1312951    .0534182 
           educ_sp |  -.0223849    .049144    -0.46   0.649    -.1193038    .0745339 
         female_hh |   .6430682   .4442419     1.45   0.149    -.2330395    1.519176 
        indigenous |  -1.905311   .3496098    -5.45   0.000    -2.594791   -1.215831 
            hhsize |  -1.603432   .0655058   -24.48   0.000    -1.732619   -1.474245 
         dirtfloor |  -1.849394   .2776092    -6.66   0.000    -2.396878   -1.301909 
          bathroom |   .2850031   .2463569     1.16   0.249    -.2008474    .7708537 
              land |   .0380483   .0376021     1.01   0.313    -.0361083     .112205 
 hospital_distance |  -.0026034   .0042288    -0.62   0.539    -.0109431    .0057363 
             _cons |   27.56544   .8635174    31.92   0.000     25.86246    29.26841 
----------------------------------------------------------------------------------------------- 
 

 

In the case of HISP, the coefficient estimated by multivariate regression in Stata Example 4 (-10.01) is 
very similar to the coefficient estimated by bivariate regression in Stata Example 1 (-10.14). This is 
because the HISP program was randomized in the first place, so that the additional covariates do not 
affect the consistency of the estimator. 

Generally, if the program is randomized, most other characteristics would be expected to be balanced in 
the treatment and comparison groups. As such, controlling for them is not expected to affect the impact 
estimates. When randomized assignment is performed, a few rare baseline differences may still be 
observed. In this case, the multivariate regression can help control for them.  

While adding control variables in the regression model should does not affect the consistency of the 
estimates under randomized assignment, their inclusion may increase the precision of the estimation 
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and the overall statistical power of the estimation.10 For instance, the standard error in Stata Example 1 
is 0.396, while the standard error in Stata Example 4 is 0.341. In this case, the estimates from the 
multivariate regression are slightly more precise.  

When a program is not randomized, a common approach (mis)-used to attempt to estimate treatment 
effects is to run a multivariate regression with program participation as a dependent variable, and a 
range of control variables as regressors. However, this approach is often fraught with selection bias and 
is unreliable. Indeed, in this case, the regression analysis does not necessarily represent a causal 
relationship between participation in the program and the outcome variable. For instance, some 
differences may be observed between the treatment and comparison group at baseline. To give an 
example, households choosing to participate in the Health Insurance Subsidy Program may be more 
likely to be sick than households that choose not to participate. Yet such differences in health can also 
affect households’ health expenditures, which is the outcome of interest. If there are such omitted 
variables that also explain part of the outcomes of interest, the regression coefficient will capture an 
association that may not be entirely causal: the estimated coefficient of the treatment variable 
confounds the effect of the program, along with the indirect effect of the omitted variable.  

If the program is not randomized, controlling for observed characteristics may not be sufficient. Indeed, 
we can never be sure that proxy variables are included in the regression for all the unobserved or 
unobservable characteristics that can mediate the relationship between the program and final 
outcomes. In the HISP example, we may be able to control for household characteristics such as 
households’ head and gender. However, we may not have a variable in the dataset that measures the 
household head’s health status. This unobserved variable may confound program impacts in cases 
where the program has not been successfully randomized. As such, adding control variables to a 
regression does not provide assurance that all relevant variables have been accounted for. A potential 
selection bias cannot be fully ruled out. We return to these issues below. Specifically, we discuss what 
do to in cases when the program has not been randomized. For instance, one option is to use a 
difference-in-differences approach that accounts for unobserved time-invariant characteristics. Before 
turning to the difference-in-differences method, we discuss what happens when not all units eligible and 
exposed to a program take it up. 

 

Instrumental Variables 

Estimation of Intent-to-Treat and Local Average Treatment Effect in the Presence of Noncompliance 

Up to now, we have not distinguished between exposure to the program and participation in the 
program. We have assumed that all units eligible and exposed to the program participate in the 
program. We have also assumed that we could identify the sets of units eligible for the program in both 
the treatment and comparison groups. If this is the case, and when the program is successfully 
randomized, an equation of the following form can be estimated: 

10 Bruhn and McKenzie (2009).  
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𝑌𝑌𝑖𝑖 = α + 𝛿𝛿𝑃𝑃𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 

The estimate of δ provides a consistent estimate of the average treatment effect. In the case of the 
randomized Health Insurance Subsidy Program (HISP), we obtained this estimate by comparing average 
outcomes among eligible households that are exposed to the program and participate in the program in 
the treatment group, and eligible households in the comparison group that are not exposed and cannot 
participate in the program.  

We now consider the case where there is noncompliance: that is, when some units exposed to the 
program do not participate in the program (noncompliance in the treatment group), or some units not 
exposed to the program participate (noncompliance in the comparison group). In the presence of 
noncompliance, different parameters can be estimated. An important distinction is between “intent-to-
treat” (ITT) estimates and “local average treatment effect” (LATE) estimates. In the presence of full 
compliance, these two estimates are equivalent to the “average treatment effect” (ATE) discussed 
earlier. However, in the presence of noncompliance, they are different and need to be interpreted as 
such. In the rest of this section, we discuss how to obtain these two types of estimates, and how to 
interpret what they mean. In particular, we illustrate the difference between ITT and LATE estimates in 
the context of the HISP example.  

In the second section, we illustrated how to estimate treatment effects in a specific case. We assumed 
that we could observe households that were eligible for the program in the treatment and comparison 
communities. In addition, we also assumed full compliance with treatment assignment: we assumed 
that all eligible households in the treatment group participated in the program, and no eligible 
households in the comparison group participated. In this context, we obtained an estimate of program 
impacts by comparing eligible households in the treatment and comparison groups. However, in real-life 
contexts, we often do not know exactly who in the treatment group will participate in the program, and 
who in the comparison group would participate in the program if that program was offered. In addition, 
when a program is randomized, not all households offered the program will take it up, and imperfect 
compliance with treatment assignment is common.  

Let’s assume that we randomize a program by randomly assigning villages to the treatment and 
comparison groups. Let’s further assume that all households in treatment villages can participate in the 
program if they so wish, but that some decide to participate and others choose not to do so. In this 
context, there is some noncompliance in the treatment group where some households offered the 
program do not take it up. In the case of HISP, approximately 59 percent of households participate, and 
41 percent do not participate in treatment village. For simplicity, we still assume there is no 
noncompliance in the comparison group, where no one participates in the program. 

How can we estimate the treatment effects in this case? One option is to run the same regression as the 
one described above, where Pi describes exposure to the program, independently of whether a unit 
participates in the program or not. In this case, an estimate of the treatment effect δ can be obtained. 
By relying on randomization of the program, the condition of independence of potential outcomes 
remains, so that we still obtain a consistent estimate. However, the interpretation of the estimate will 
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change. Indeed, we are now comparing all units in the treatment groups to all units in the comparison 
group, independently of whether they participate in the program or not. This estimate represents an 
“intent-to-treat” estimate (δITT) capturing the impact of offering a program to an average unit in the 
treatment group, whether this unit participates or not in the program.  

Stata Example 5 illustrates how to obtain the ITT estimates in a regression framework for the HISP 
example. We regress our outcome of interest, health expenditures, on the binary variable 
treatment_locality (which equals 1 if the household is in a treatment area, independently of whether or 
not it took up the program). For the regression, we use data collected after the program has been 
administered (round = 1). The estimate for the regression coefficient (δ) is -6.4, indicating that 
households in villages where HISP was offered on average spent $6.4 less on health expenditures than 
households in villages where HISP was not offered. This is the ITT estimate for the impact of offering the 
program to the treatment group. Remember that the program “intended to treat” or offered the 
treatment to all households in treatment communities. However, 59 percent of households enrolled, 
but 41 percent of households did not participate. Therefore, when computing average outcomes in the 
treatment group, we obtain a weighted average of outcomes among the 59 percent of households that 
participated in the program and the 41 percent of households that chose not to participate in the 
program. The “intent-to-treat” (ITT) estimate is then obtained by taking the difference between the 
weighted average in the treatment group and the same weighted average of outcomes in the 
comparison group.  As a result, it captures the “intent-to-treat” impacts of offering the program to an 
average household in a treatment locality, independently of who participates within the locality. 

 

Stata Example 5. “Intent-to-Treat” (ITT) Estimates 

* In this context, the program is randomized at the village level. 
* While everyone is eligible for the program in treatment communities, not everyone 
participates.  
 
*Select the relevant data 
use "evaluation.dta", clear 
drop eligible 
 
* You can estimate 'intent-to-treat estimates', i.e. program impact at the village-
level irrespective of who takes up the program or not. 
 
reg health_expenditures treatment_locality if round ==1, cl(locality_identifier) 
 
Linear regression                                      Number of obs =    9914 
                                                       F(  1,   199) =  163.93 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.0726 
                                                       Root MSE      =  11.451 
 
                        (Std. Err. adjusted for 200 clusters in locality_identifier) 
------------------------------------------------------------------------------------ 
                   |               Robust 
health_expenditu~s |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
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-------------------+---------------------------------------------------------------- 
treatment_locality |  -6.406008   .5003313   -12.80   0.000     -7.39264   -5.419376 
             _cons |   20.06416   .3763165    53.32   0.000     19.32208    20.80624 
------------------------------------------------------------------------------------ 
 

In contrast, the “local average treatment effect” (δLATE) seeks to estimate treatment effects only on the 
subgroup of units that actually comply with their treatment assignment. In the case above, in the 
treatment group the compliers are the 59 percent of households that were offered the program and 
indeed took it up. The “local average treatment effect” captures the estimated program impacts on this 
subgroup. It provides consistent estimates of the program impacts on the population whose take-up 
behavior is affected by exposure to the treatment.11 In presence of noncompliance, the “local average 
treatment effect” estimates—that is, the average impact of the program if it was estimated on the 
groups actually participating in the program—are different than the “intent-to-treat estimates.” We now 
provide the intuition on how to obtain the LATE estimates, before formally discussing how to obtain 
them in a regression framework in the next section. 

In general, the estimate for the “local average treatment effect” (δLATE) will be larger in absolute terms 
than the “intent-to-treat” estimate (δITT). This is easily explained by the fact that the magnitude of the 
ITT estimates is driven mostly by complier units that are exposed to the program and participating in it. 
Assuming that program impacts are positive, if fewer units comply and participate in the treatment 
group, the average outcomes over the whole treatment group will be relatively smaller, and so will be 
the ITT estimates. In fact, it can be shown that the “intent-to-treat” ITT estimate is equal to the share of 
compliers multiplied by the “local average treatment effect” LATE estimate. In presence of full 
compliance (100 percent  take-up in the treatment group), the ITT and LATE estimates will be the same.  
The relationship between the “intent-to-treat” ITT estimates and the “local average treatment effect” 
LATE estimates can be written as follows: 

δITT = Take-up * δLATE  (2) 

Stata Example 5 can be used to illustrate the link between the LATE and ITT estimates. As mentioned , 
the local average treatment effect can be estimated by dividing the intent-to-treat estimates by the 
share of the group exposed to the program that effectively takes it up. The ITT estimate from Stata 
Example 5 is -6.4. The take-up rate among the population that was offered the program is 59 percent. 
The LATE estimate is conceptually the program impact if the entire population offered the program had 
taken it up. It can be retrieved from equation (2) by rescaling the ITT estimate by the share of the 
treatment group that took up the program: -6.4/0.59 = 10.7. This is equivalent to calculating what would 
have been the program impact if 100 percent of the treatment group had participated in it, instead of 
only 59 percent. 

This estimate is quite close to the impact estimate obtained in Stata Example 1. This is not surprising, 
because in Stata Example 1 we had assumed that we could identify eligible households that would take 
up the program if offered in both the treatment and comparison groups. This is not information that is 

11 As such, it is typically not generalizable to the entire population of interest.   
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typically available, however. In practice, additional steps are needed to obtain the LATE estimates. 
Instrumental variable techniques provide one approach to obtain the LATE estimate. In the rest of this 
section, we discuss how instrumental variable techniques can help address cases of randomized 
programs with noncompliance, and in particular how they can be used to estimate the average program 
impact on the treated (δLATE) when some units offered the program do not participate. As we will explain 
at the end of the section, instrumental variable techniques also constitute the method to analyze data 
generated by a randomized promotion design. 

 

Instrumental Variables, Local Average Treatment Effects, and Imperfect Compliance 

Consider the original regression model: 

𝑌𝑌𝑖𝑖 = α + 𝛿𝛿𝑃𝑃𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 

Pi is now a binary variable describing actual participation in the program (not just exposure to a program 
being offered), taking the value of 1 for participants, and 0 for nonparticipants. Xi is a set of control 
variables. 

Let us model the decision to participate in the program as follows: 

𝑃𝑃𝑖𝑖 = 𝜋𝜋0 + 𝜋𝜋1𝑋𝑋𝑖𝑖 + 𝜋𝜋2𝑀𝑀𝑖𝑖 + 𝜗𝜗𝑖𝑖 

In this equation, participation in the program is modelled as a function of observed characteristics that 
are also controlled for in the original regression model (Xi), as well as an additional set of characteristics 
not included in the original model (Mi). In the HISP example, we may be able to control for household 
characteristics such as households’ head and gender. However, there may be another variable, which 
cannot necessarily be accounted for in the original regression, but may affect participation program. In 
the example provided earlier in the case of HISP, the household head’s health status could be one 
example of such a variable that is hard to observe.  

If the original model is estimated without controlling for unobserved variables that affect program 
participation, it would lead to a biased estimate of the program impact when there is a correlation 
between Mi and Pi, that is when the unobserved variable also affects the output of interest. Indeed, the 
independence of potential outcomes would be violated in this case. A selection bias (or endogeneity 
bias) is introduced by the correlation between program participation and a third factor that is not 
included in the original regression. As such, the coefficient for program participation in the first equation 
would mix not only the causal effect of the program, but also the indirect effect of the additional factor 
that is not accounted for but correlated with the outcome. In this case, participation to the program is 
endogenous rather than being independent or exogenous to the potential outcomes. 

In order to deal with this case of selection into the program, an instrumental variable (Z) is required. An 
instrumental variable (Z) has the following two essential properties: 
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1. Corr(Z,P)≠0: the instrumental variable affects the chance of an individual being offered the 
program to actually participate in the program. For an instrument to be valid, the correlation 
between the instrumental variable and program participation needs to be large. Instruments 
that are only weakly correlated are not appropriate. 

2. Corr(Z, 𝜀𝜀𝑖𝑖)=0. There is no correlation between the instrumental variable and the outcome of 
interest, apart from its effect on the probability to participate in the program. 

If such an instrumental variable exists, the local average treatment effect (LATE) estimate can be 
obtained through the “two-stage least square” (2SLS) estimator. 

In the first stage, we isolate the effect of the instrumental variable on program participation by 
estimating the following regression: 

Stage 1:   𝑃𝑃𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1𝑋𝑋𝑖𝑖 + 𝛾𝛾2𝑍𝑍𝑖𝑖 + 𝜏𝜏𝑖𝑖  

In the second stage, we regress the outcome of interest on the predicted value of program take-up (𝑃𝑃𝑖𝑖) 
from the first stage: 

Stage 2:   𝑌𝑌𝑖𝑖 = α + 𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝚤𝚤� + 𝛾𝛾𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 

 

Given the properties of the instrumental variable, the first stage is used to “clean up” Pi of its 
endogeneity. In the second stage, the remaining exogenous variation in program participation driven by 
the instrumental variable is used to identify the impact of the program. It can be shown that the 2SLS 
estimator is a consistent estimator of the local average treatment effect.12 

Instrumental variables are hard to come by in real-life settings. The randomization of a program 
provides one example of an instrumental variable. If a program is randomized, but there is imperfect 
compliance, the randomized exposure to the program (Zi) can be used as an instrumental variable for 
actual program participation (Pi). In this case, the application of the 2SLS estimator generates an 
estimate of the local average treatment effect (δLATE). To summarize: 

1. Stage 1 estimates the effect of offering the program on actual participation: 
 
 𝑃𝑃𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1𝑋𝑋𝑖𝑖 + 𝛾𝛾2𝑍𝑍𝑖𝑖 + 𝜏𝜏𝑖𝑖     

 
2. Stage 2 provides the local average treatment effect estimates (δLATE):   

 
  𝑌𝑌𝑖𝑖 = α + 𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝚤𝚤� + 𝛾𝛾𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖   
 

12 Given the estimation procedure, the standard errors of the second-stage OLS need to be corrected. 
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This is different from the estimate that would be obtained through a regression of the outcome on the 
randomized program (Zi) in presence of non-compliance, which would provide an estimate of the intent-
to-treat effects (𝛿𝛿𝐼𝐼𝐿𝐿𝐿𝐿) through the following regression.   

  𝑌𝑌𝑖𝑖 = 𝜋𝜋0 + 𝛿𝛿𝐼𝐼𝐿𝐿𝐿𝐿𝑍𝑍𝑖𝑖 + 𝜋𝜋2𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖   
 

Stata Example 5 illustrated this approach for the HISP case study, and provided an estimate for 𝛿𝛿𝐼𝐼𝐼𝐼𝐿𝐿 
(which was found to be -6.4).  

By contrast, Stata Example 6 illustrates how to implement the instrumental variables (IV) estimator and 
obtain the LATE estimate in the context of HISP. Here, our instrumental variable (treatment_locality) 
takes the value of 1 if HISP was randomly offered to households in a given locality, and 0 otherwise. In 
the first-stage regression, a variable capturing whether a household was enrolled or not in the program 
is regressed on the randomization dummy (treatment_locality). The coefficient, 0.598 indicates that 
approximately 59.8% of households enrolled in HISP when the program was offered in their locality. The 
second stage regression uses the predicted enrollment from the first stage as a regressor to explain 
variation in the outcomes of interest. The estimated coefficient for 𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 suggests that participation in 
the HISP program lowers health expenditures by $10.7.  This is the same number that we obtained by 
multiplying the ITT estimate by the share of units enrolled in the treatment group using equation (2). 

  

 

Stata Example 6: “Local Average Treatment Effect” (LATE) 2SLS IV Estimates13 

* You can back out 'local average treatment effect' estimates on complier units that 
do take-up the program in treatment communities 
 
ivreg health_expenditures (enrolled = treatment_locality) if round ==1, first 
 
First-stage regressions 
----------------------- 
 
      Source |       SS       df       MS              Number of obs =    9914 
-------------+------------------------------           F(  1,  9912) = 7361.23 
       Model |  885.675858     1  885.675858           Prob > F      =  0.0000 
    Residual |   1192.5756  9912  .120316344           R-squared     =  0.4262 
-------------+------------------------------           Adj R-squared =  0.4261 
       Total |  2078.25146  9913  .209649093           Root MSE      =  .34687 
 
------------------------------------------------------------------------------------ 
       enrolled_ro |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------------+---------------------------------------------------------------- 
treatment_locality |   .5977823   .0069674    85.80   0.000     .5841248    .6114397 
             _cons |   2.12e-14   .0049282     0.00   1.000    -.0096602    .0096602 
------------------------------------------------------------------------------------ 
 

13 The Stata command used here is ivreg. A more recent version of the command is called ivregress 2sls. The do-file 
for the technical companion provides the syntax for both commands. Note that the option “first” added at the end 
of the command ensures that the results of the first-stage of the two-stage estimation process are also displayed. 

17 
 

                                                           



Instrumental variables (2SLS) regression 
 
      Source |       SS       df       MS              Number of obs =    9914 
-------------+------------------------------           F(  1,  9912) =  944.81 
       Model |  334474.116     1  334474.116           Prob > F      =  0.0000 
    Residual |  1067039.56  9912  107.651288           R-squared     =  0.2387 
-------------+------------------------------           Adj R-squared =  0.2386 
       Total |  1401513.68  9913  141.381386           Root MSE      =  10.376 
 
------------------------------------------------------------------------------ 
health_exp~s |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
   Enrolled  |  -10.71629    .348636   -30.74   0.000    -11.39969   -10.03289 
       _cons |   20.06416   .1474116   136.11   0.000      19.7752    20.35312 
------------------------------------------------------------------------------ 
Instrumented:  enrolled 
Instruments:   treatment_locality 
------------------------------------------------------------------------------ 

 

Instrumental Variables and Randomized Promotion 

 

Randomized promotion is another example of an instrumental variable. In this case, it is not the 
program itself that is randomized, but rather an information campaign or other types of encouragement 
that can increase program take-up. When randomized promotion is used, the approach essentially seeks 
to generate a valid instrumental variable that is correlated with program participation, but uncorrelated 
with the outcome of interest, aside from its effect through participation. As such, the same two-step 
estimation methodology applies as the one outlined above. In the first stage, we isolate the effect of 
randomized promotion on program participation. In the second stage, we regress the outcome of 
interest on the predicted value of program take-up from the first stage: that is,  the variation in program 
take-up that is driven by the randomized promotion campaign. 

We now illustrate the use of randomized promotion to evaluate the impact of HISP. To do this, let’s 
assume that we are in a different context than the one we have used for HISP so far. Let’s now assume 
that HISP is offered universally throughout the country. In this case, the program itself is not 
randomized. However, let’s assume that a randomized promotion campaign takes place. An intensive 
promotion effort is undertaken in a random subsample of villages, including communication and social 
marketing campaigns aimed at increasing awareness of HISP. This promotion campaign is an 
instrumental variable, with the two necessary properties mentioned earlier. First, it seeks to increase 
enrollment in HISP. Second it does not directly affect the outcome indicator of interest (health 
expenditures).   

With an instrumental variable created by randomized promotion, the local average treatment effect 
(LATE) estimate can be obtained through the “two-stage least square” estimator. Stata Example 7 
illustrates the two stages involved. The first stage identifies the effects of the promotion activities on 
program take-up. In this case, promotion activities increase program take-up by 40.8 percent. In the 
second stage, we regress the outcome variable on the predicted program participation from the first 

18 
 



stage to obtain the LATE estimates. In this case, the results suggest that participation in the HISP 
program lowers health expenditures by $9.5.     

Stata Example 7. 2SLS IV Estimates for Randomized Promotion14 
 
* In this context, everyone is eligible for the program. You compare what happens in 
promoted and non-promoted villages. 
  
*Select the relevant data 
use "evaluation.dta", clear 
drop eligible 
drop treatment_locality 
drop enrolled 
 
ivreg health_expenditures (enrolled_rp = promotion_locality) if round ==1, first 
 
First-stage regressions 
----------------------- 
 
      Source |       SS       df       MS              Number of obs =    9914 
-------------+------------------------------           F(  1,  9912) = 2484.60 
       Model |  411.879408     1  411.879408           Prob > F      =  0.0000 
    Residual |  1643.13855  9912  .165772654           R-squared     =  0.2004 
-------------+------------------------------           Adj R-squared =  0.2003 
       Total |  2055.01795  9913  .207305352           Root MSE      =  .40715 
 
------------------------------------------------------------------------------------ 
       enrolled_rp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------------+---------------------------------------------------------------- 
promotion_locality |   .4077847   .0081809    49.85   0.000     .3917484     .423821 
             _cons |   .0842476   .0058578    14.38   0.000      .072765    .0957301 
------------------------------------------------------------------------------------ 
 
Instrumental variables (2SLS) regression 
 
      Source |       SS       df       MS              Number of obs =    9914 
-------------+------------------------------           F(  1,  9912) =  337.77 
       Model |  310737.314     1  310737.314           Prob > F      =  0.0000 
    Residual |  1090776.36  9912  110.046042           R-squared     =  0.2217 
-------------+------------------------------           Adj R-squared =  0.2216 
       Total |  1401513.68  9913  141.381386           Root MSE      =   10.49 
 
------------------------------------------------------------------------------ 
health_exp~s |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
 enrolled_rp |  -9.499769   .5168948   -18.38   0.000    -10.51299    -8.48655 
       _cons |   19.64571   .1846287   106.41   0.000      19.2838    20.00762 
------------------------------------------------------------------------------ 
Instrumented:  enrolled_rp 
Instruments:   promotion_locality 

 
  

14 The Stata command used here is ivreg. A more recent version of the command is called ivregress 2sls. The do-file 
for the technical companion provides the syntax for both commands. Note that the option “first” added at the end 
of the command ensures that the results of the first-stage of the two-stage estimation process are also displayed. 

19 
 

                                                           



Difference-in-Differences in a Regression Framework 

So far, we have focused on contexts where a program can be randomized (either with or without perfect 
compliance), or when randomized promotion can be used to affect program participation. In some 
cases, such randomized approaches are not possible. When pre-program and post-program data are 
available for a treatment group of program beneficiaries and a comparison group of nonbeneficiaries, 
difference-in-differences provides an alternative strategy to estimate program impacts. 

Table 1 illustrates the set-up. There are two time periods (before and after the program), as well as two 
groups of households (those exposed to the program and those not exposed to the program). We 
denote the time period by a binary variable taking the value t=0 at baseline, and t=1 at follow-up. We 
continue to denote exposure to the program by a binary variable taking the value P=1 for beneficiaries, 
and P=0 for nonbeneficiaries. Table 1 illustrates how the outcomes for each individual may be written 
depending on the time period and the group s/he belongs to.  

 

Table 1.  Summary of the Difference-in-Differences Approach in a Table 

 After the program starts 
(t=1) 

 

Before the program 
starts 
(t=0) 

 

Before-after 
comparison 

Group exposed to the 
program (P=1) 
 
 

Yi,t=1 |Pi=1 
 

Y i,t=0 |Pi=1 
 
 

(Y�t=1|P=1)-(Y�t=0|P=1) 
 

Group not exposed to 
the program (P=0) 
 

Yi,t=1|Pi=0 Yi,t=0|Pi=0 (Y�t=1|P=0)-(Y�t=0|P=0) 
 

 

In this context, the before-after difference in outcomes among the group participating in the program is:  
(Y�t=1|P=1)-(Y�t=0|P=1). The before-after difference in outcomes among the group not participating in the 
program is (Y�t=1|P=0)-(Y�t=0|P=0).  The difference-in-differences approach uses the before-after difference 
among the comparison group as a counterfactual for the before-after difference in the treatment group. 
This means that, in the difference-in-differences framework, program impacts are estimated by: 
 

DD=[(Y�1|P=1)-(Y�0|P=1)] - [(Y�1|P=0)-(Y�0|P=0)]  

The difference-in-differences estimator can also be presented in a regression framework. In general 
terms, consider the outcome Yigt for an individual i at time t in group g (treatment or comparison). The 
regression model in this case can be written as: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑡𝑡 =  𝛽𝛽1𝑃𝑃𝑖𝑖 +  𝛽𝛽2𝑡𝑡 +  𝛿𝛿𝑃𝑃𝑖𝑖𝑡𝑡 + 𝛼𝛼𝑖𝑖 + 𝜃𝜃𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡  (3) 
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As discussed, Pi constitutes a binary variable denoting exposure to the program and taking the value P=1 
for beneficiaries, and P=0 for nonbeneficiaries. t constitutes a binary variable taking the value of 0 for 
pre-program measures, and 1 for post-program measures. β1, β2, and δ are the regression coefficients to 
be estimated. αg is a time-invariant group-level fixed effect capturing differences between the 
treatment and comparison group that are time-invariant. θt is the time-invariant fixed effect capturing 
constant effects related to the each period. εigt is the error term.  

In the case with two time periods, the outcomes for each of the four cases can be rewritten based on 
the regression above. Table 2 denotes these individual outcomes in each of the four cases. 

Table 2. Summary of the Difference-in-Differences Approach in a Regression Framework 

 After the program starts 
(t=1) 

 

Before the program starts 
(t=0) 

 

Before-after 
comparison 

Group exposed to 
the program 
(P=1) 
 

𝑌𝑌𝑖𝑖11 =  𝛽𝛽1. 1 +  𝛽𝛽2. 1
+  𝛿𝛿. 1.1
+ 𝛼𝛼1 + 𝜃𝜃1
+ 𝜀𝜀𝑖𝑖11 

𝑌𝑌𝑖𝑖10 =  𝛽𝛽1. 1 +  𝛽𝛽2. 0
+  𝛿𝛿. 1.0
+ 𝛼𝛼1 + 𝜃𝜃0
+ 𝜀𝜀𝑖𝑖10 

 

𝛽𝛽2 + 𝛿𝛿 + (𝜃𝜃1 − 𝜃𝜃0)
+ (𝜀𝜀𝑖𝑖11
− 𝜀𝜀𝑖𝑖10) 

Group not exposed 
to the program 
(P=0) 
 

𝑌𝑌𝑖𝑖01 =  𝛽𝛽1. 0 +  𝛽𝛽2. 1
+  𝛿𝛿. 0.1
+ 𝛼𝛼0 + 𝜃𝜃1
+ 𝜀𝜀𝑖𝑖01 

 

𝑌𝑌𝑖𝑖00 =  𝛽𝛽1. 0 +  𝛽𝛽2. 0
+  𝛿𝛿. 0.0
+ 𝛼𝛼0 + 𝜃𝜃0
+ 𝜀𝜀𝑖𝑖00 

𝛽𝛽2 + (𝜃𝜃1 − 𝜃𝜃0) + (𝜀𝜀𝑖𝑖01
− 𝜀𝜀𝑖𝑖00) 

 

 

The difference-in-differences approach relies on differences in the before-after comparisons between 
the group participating in the program and the group not participating in the program. 

For the group participating in the program, the before-after comparison (𝑌𝑌𝑖𝑖11 − 𝑌𝑌𝑖𝑖10) is: 
𝑌𝑌𝑖𝑖11 − 𝑌𝑌𝑖𝑖10 = 𝛽𝛽2 + 𝛿𝛿 + (𝜃𝜃1 − 𝜃𝜃0) + (𝜀𝜀𝑖𝑖11 − 𝜀𝜀𝑖𝑖10) 

By taking the before-after comparison, the time-invariant group fixed effect 𝛼𝛼1 cancels out. The same 
happens when taking before-after comparison for the group not participating in the program: 

𝑌𝑌𝑖𝑖11 − 𝑌𝑌𝑖𝑖10 = 𝛽𝛽2 + (𝜃𝜃1 − 𝜃𝜃0) + (𝜀𝜀𝑖𝑖01 − 𝜀𝜀𝑖𝑖00) 

As discussed in chapter 3 of the book, by themselves, each of these before-after comparisons do not 
allow the causal effects of the program to be identified. Indeed, as the two equations above illustrate, 
the before-after comparison captures not only differences between the two groups, but also time fixed 
effects related to each period (𝜃𝜃1 − 𝜃𝜃0).  

However, by taking the difference between the before-after comparisons in the treatment and 
comparison groups, the time fixed effects capturing constant effects related to the each period also 
cancel out: 

(𝑌𝑌𝑖𝑖11 − 𝑌𝑌𝑖𝑖00) − (𝑌𝑌𝑖𝑖01 − 𝑌𝑌𝑖𝑖00) = 𝛿𝛿 + (𝜀𝜀𝑖𝑖11 − 𝜀𝜀𝑖𝑖10 −  𝜀𝜀𝑖𝑖01 + 𝜀𝜀𝑖𝑖00) 
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The treatment effect estimated through the difference-in-differences estimator is the difference 
between the before-after comparison of average outcomes for the group participating in the program, 
and the before-after comparison of average outcomes for the group not participating in the program. 
Overall, the difference-in-differences estimator controls for time-invariant group fixed effects, as well as 
time fixed effects for each of the periods.  

As for the basic regression discussed earlier, whether this estimator provides a consistent estimate of 
the causal effect of the program for the population depends on the properties of the error tem. 
Specifically, if the mean of the error term is 0, and if there is no time-varying factors affecting outcomes 
differently in the treatment and comparison groups, then δ provides a consistent estimate of program 
impacts.  

Stata Example 8 illustrates how to estimate equation (3) using Stata for the HISP case. Let’s assume that 
we have data only from localities where the program has been offered. In these localities, we have data 
both for households that participate in the program, as well as households that do not to participate. 
Data are available for a baseline survey collected before the program, and a follow-up survey collected 
after the program. To obtain the difference-in-differences estimates, we first create a new variable 
(enrolled_round), which is the interaction between participation in the program and the time at which 
the data are measured. The outcome variable is then regressed on this new variable, along with dummy 
variables capturing whether or not the household participated in the program, and the time at which 
each data point is observed. The coefficient of the new interaction variable is our difference-in-
differences impact estimate. The results below indicate that health expenditures for households that 
enrolled in the program were $8.16 lower than among households that did not enroll.  

Stata Example 8. Difference-in-Differences in a Regression Framework 

* In this method, you compare the change in health expenditures over time  
* between enrolled and nonenrolled households in the treatment localities. 
 
*Select the relevant data 
use "evaluation.dta", clear 
keep if treatment_locality==1 
 
gen eligible_round=eligible*round 
 
reg health_expenditures eligible_round round eligible, cl(locality_identifier) 
 
Linear regression                                      Number of obs =    9919 
                                                       F(  3,    99) =  813.98 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.3436 
                                                       Root MSE      =  7.9128 
                    (Std. Err. adjusted for 100 clusters in locality_identifier) 
-------------------------------------------------------------------------------- 
               |               Robust 
health_expen~s |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
eligible_round |  -8.162931   .3191368   -25.58   0.000    -8.796168   -7.529695 
         round |   1.513416   .3564533     4.25   0.000     .8061355    2.220697 
      eligible |    -6.3018    .193082   -32.64   0.000    -6.684917   -5.918684 
         _cons |   20.79149   .1722887   120.68   0.000     20.44964    21.13335 
-------------------------------------------------------------------------------- 
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In practice, in addition to the outcome of interest, we may also observe other characteristics for the 
treatment and comparison groups in both time periods. In this case, these characteristics are observed 
for each unit in each group and time period (Xigt), and can be included in the regression model to be 
estimated: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑡𝑡 =  𝛽𝛽1𝑃𝑃𝑖𝑖 +  𝛽𝛽2𝑡𝑡 +  𝛿𝛿𝑃𝑃𝑖𝑖. 𝑡𝑡 + 𝛽𝛽3𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡 + 𝛼𝛼𝑖𝑖 + 𝜃𝜃𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡  (4) 

 
Replicating the same procedure as above, the difference between the before-after comparisons in the 
treatment and comparison group becomes: 

(𝑌𝑌𝑖𝑖11 − 𝑌𝑌𝑖𝑖00) − (𝑌𝑌𝑖𝑖01 − 𝑌𝑌𝑖𝑖00) = 𝛿𝛿 + (𝑋𝑋𝑖𝑖11 − 𝑋𝑋𝑖𝑖10 −  𝑋𝑋𝑖𝑖01 + 𝑋𝑋𝑖𝑖00) + (𝜀𝜀𝑖𝑖11 − 𝜀𝜀𝑖𝑖10 −  𝜀𝜀𝑖𝑖01 + 𝜀𝜀𝑖𝑖00) 

 
Stata Example 9 illustrates how to implement this regression in Stata. The estimate obtained after 
adding control variables in Stata Example 9 (-8.16) is very close to the difference-in-differences estimate 
without the control variables in Stata Example 8. 
 
Stata Example 9. Difference-in-Differences in a Multivariate Regression Framework 
 
reg health_expenditures eligible_round round eligible age_hh age_sp educ_hh educ_sp 
female_hh indigenous hhsize dirtfloor bathroom land hospital_distance, 
cl(locality_identifier) 
 
Linear regression                                      Number of obs =    9919 
                                                       F( 14,    99) = 2410.28 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.5516 
                                                       Root MSE      =  6.5437 
 
                       (Std. Err. adjusted for 100 clusters in locality_identifier) 
----------------------------------------------------------------------------------- 
                  |               Robust 
health_expendit~s |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
------------------+---------------------------------------------------------------- 
   eligible_round |  -8.161499   .3197482   -25.52   0.000    -8.795949   -7.527049 
            round |   1.450526   .3558662     4.08   0.000       .74441    2.156641 
         eligible |   -1.51276    .129937   -11.64   0.000    -1.770583   -1.254937 
           age_hh |   .0804852   .0113711     7.08   0.000     .0579224     .103048 
           age_sp |  -.0197229   .0129787    -1.52   0.132    -.0454754    .0060297 
          educ_hh |   .0599944   .0290694     2.06   0.042     .0023144    .1176743 
          educ_sp |  -.0765127   .0339694    -2.25   0.027    -.1439153   -.0091101 
        female_hh |   1.103935   .3157136     3.50   0.001     .4774905    1.730379 
       indigenous |  -2.311985   .2361846    -9.79   0.000    -2.780627   -1.843344 
           hhsize |  -1.994729   .0391445   -50.96   0.000      -2.0724   -1.917058 
        dirtfloor |  -2.299839   .1632436   -14.09   0.000     -2.62375   -1.975929 
         bathroom |   .5000436    .157629     3.17   0.002     .1872735    .8128137 
             land |   .0909001    .028528     3.19   0.002     .0342943    .1475058 
hospital_distance |  -.0031917   .0030591    -1.04   0.299    -.0092617    .0028783 
            _cons |   27.39458   .5526554    49.57   0.000     26.29799    28.49117 
----------------------------------------------------------------------------------- 

 
 
So far, we have assumed that we observed both the treatment and comparison groups in two time 
periods, which allows correcting for group fixed effects. Sometimes, we are able to observe all individual 
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units in both groups in both time periods. In these cases when panel data are available, we can not only 
control for group fixed effects, but also for unit fixed effects.  Let’s assume we observe a unit i in two 
time periods: 

• At time t=0:   𝑌𝑌𝑖𝑖𝑖𝑖0 =  𝛽𝛽1𝑃𝑃𝑖𝑖 +  𝛽𝛽20 +  𝛿𝛿𝑃𝑃𝑖𝑖 . 0 + 𝛼𝛼𝑖𝑖 + 𝜃𝜃0 + 𝜀𝜀𝑖𝑖𝑖𝑖0 
• At time t=1:   𝑌𝑌𝑖𝑖𝑖𝑖1 =  𝛽𝛽1𝑃𝑃𝑖𝑖 +  𝛽𝛽21 +  𝛿𝛿𝑃𝑃𝑖𝑖 . 1 + 𝛼𝛼𝑖𝑖 + 𝜃𝜃1 + 𝜀𝜀𝑖𝑖𝑖𝑖1 

Taking the difference over time: 𝑌𝑌𝑖𝑖𝑖𝑖1 − 𝑌𝑌𝑖𝑖𝑖𝑖0 =   𝛽𝛽2 +  𝛿𝛿𝑃𝑃𝑖𝑖 + (𝜃𝜃1 − 𝜃𝜃0) + (𝜀𝜀𝑖𝑖𝑖𝑖1 − 𝜀𝜀𝑖𝑖𝑖𝑖0) 

There are two ways to estimate this single-difference equation in Stata. First, the single-difference 
equation can be estimated using the xtreg fixed-effect panel data command in Stata (see Stata Example 
10). Before using the xtreg command in Stata, we need to adjust the settings to a panel data format. We 
can set the panel and time variables using the xtset command. In order to estimate a fixed-effect model, 
we create a variable that is equal to 1 only for enrolled households in the follow-up period. The 
coefficient of this variable is our impact estimate: in this case, -8.16.    

 

Stata Example 10. Calculating Difference-in-Difference Estimates by Taking the 
Difference between Before-After Differences in the Treatment and Comparison Groups 

xtset household_identifier round 
       panel variable:  household_identifier (unbalanced) 
        time variable:  round, 0 to 1 
                delta:  1 unit 
 
gen xtenrolled=0 
 
replace xtenrolled=1 if enrolled==1 & round==1 
 
xtreg health_expenditures xtenrolled round if treatment_locality==1, fe vce(cluster 
locality_identifier) 
 
Fixed-effects (within) regression               Number of obs      =      9919 
Group variable: household_~r                    Number of groups   =      4960 
 
R-sq:  within  = 0.2437                         Obs per group: min =         1 
       between = 0.3852                                        avg =       2.0 
       overall = 0.2805                                        max =         2 
 
                                                F(2,99)            =    633.70 
corr(u_i, Xb)  = 0.2632                         Prob > F           =    0.0000 
 
                  (Std. Err. adjusted for 100 clusters in locality_identifier) 
------------------------------------------------------------------------------ 
             |               Robust 
health_exp~s |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
  xtenrolled |  -8.163337   .3190874   -25.58   0.000    -8.796476   -7.530198 
       round |   1.513416   .3564353     4.25   0.000     .8061711    2.220661 
       _cons |   17.02477   .1203165   141.50   0.000     16.78603     17.2635 
-------------+---------------------------------------------------------------- 
     sigma_u |  7.1354916 
     sigma_e |  6.5169842 
         rho |  .54521089   (fraction of variance due to u_i) 
------------------------------------------------------------------------------ 
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The same single-difference can be estimated manually by computing the differences in the variables 
over time (see Stata Example 11). One way to do this is to first reshape the dataset from long to wide, so 
that each row of data  includes only one unit. In the example below, you can keep only the variables you 
need for the estimation. We set the program participation variable equal to 0 at baseline, and manually 
calculate the difference between health expenditures and program participation in the baseline and 
follow-up rounds. We then run a regression of the difference in the outcome variable over time on the 
treatment dummy. The impact estimate is exactly the same as with the fixed-effect panel estimate (-
8.16). 

 

Stata Example 11. Single-Differences Estimates for Difference-in-Differences 

keep health_expenditures treatment_locality locality_identifier enrolled 
household_identifier round 
 
reshape wide health_expenditures enrolled, i(household_identifier) j(round) 
(note: j = 0 1) 
 
Data                               long   ->   wide 
----------------------------------------------------------------------------- 
Number of obs.                     9919   ->    4960 
Number of variables                   6   ->       7 
j variable (2 values)             round   ->   (dropped) 
xij variables: 
                    health_expenditures   ->   health_expenditures0 
health_expenditures1 
                               enrolled   ->   enrolled0 enrolled1 
----------------------------------------------------------------------------- 
gen dy = health_expenditures1 - health_expenditures0  
 
replace enrolled0=0 
 
gen dp = enrolled1-enrolled0  
 
reg dy dp if treatment_locality==1, cl(locality_identifier) 
 
Linear regression                                      Number of obs =    4959 
                                                       F(  1,    99) =  654.51 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.1588 
                                                       Root MSE      =  9.2164 
 
                  (Std. Err. adjusted for 100 clusters in locality_identifier) 
------------------------------------------------------------------------------ 
             |               Robust 
          dy |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          dp |  -8.163337   .3190874   -25.58   0.000    -8.796476   -7.530198 
       _cons |   1.513416   .3564353     4.25   0.000     .8061711    2.220661 
------------------------------------------------------------------------------ 
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Regression Discontinuity Design 

In many programs, eligibility is defined based on a continuous score and whether a given unit’s score is 
below or above a certain cut-off. Regression discontinuity can be used in contexts where a continuous 
running variable and a fixed threshold are used to determine eligibility for a program.  

Let’s assume that the running variable is Xi, and that the threshold is set to determine eligibility at a 
specific value X0. This means that the value of Pi (whether a unit participates in the program or not) is 
entirely determined by the value of the running variable Xi. If the running variable is smaller than or 
equal to the threshold, then the unit is exposed to the program (Pi=1 if Xi ≤ X0). If the running variable is 
greater than the threshold, then the unit is not exposed to the program (Pi=0 if Xi > X0). A regression 
discontinuity design is called “sharp” when the threshold is set so that all units below or above have the 
same treatment status, without any exception. (For a discussion of “fuzzy” discontinuity, see box 2.)  

In this context, identification for sharp discontinuity relies on the following linear regression: 

 Yi = β + δ Pi + f(Xi) + εi 

where Pi=1 if 1 if unit i participates in the program, and Pi=0 if unit i does not participate in the 
program. f(Xi) is a continuous function around the threshold, so that the value of this function tends to 
asymptotically equal on both sides of the threshold. A continuous function of the running variable is 
used in order to account for nonlinearities in the relationship between the running variable and the 
outcome of interest. εi  represents a random error term. 

• For a unit just at the cut-off:     Yi0 = β + δ 0+ f(X0) + εi0 
• For a unit just 𝜏𝜏𝑖𝑖 below the cut-off:    Yi1 = β + δ 1+ f(X0- 𝜏𝜏𝑖𝑖) + εi1 

 

Therefore, the difference between the two is:   Yi1 -  Yi0  = δ + f(X0- 𝜏𝜏𝑖𝑖) − f(X0) + (εi1 - εi0) 

 

Since the function f is continuous, as we get closer and closer to the cut-off X0, f(X0- τ𝑖𝑖)  will tend to f(X0), 
and their difference will tend to 0. Therefore, the local average treatment effect at the threshold is 
estimated by δ. 

Let’s return to the HISP case and assume that eligibility for the program depends on a proxy poverty 
index. Data for the poverty index are  available only in localities where the program will be offered. 
Households with a score below a certain cut-off (in this case, a value of 58) are chosen to participate in 
the program. Households with a score above that cut-off do not participate. We assume that this 
program eligibility rule is strictly enforced, without any exceptions of either side of the cut-off. In 
addition to the value of the index measured at baseline and prior to the program roll-out, we also 
measure the outcome of interest (health expenditures) after the end of the program. 
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Stata Example 12 illustrates how to obtain regression discontinuity estimates in a regression framework. 
We start by normalizing the poverty index threshold to 0 and create dummy variables for households 
with a poverty-targeting index to the left or right  of the threshold. By doing so, we allow the 
relationship between the outcome variables and the running variable (the poverty index) to have 
different slopes on either side of the threshold. We then run a regression of health expenditures on a 
dummy variable capturing exposure to the program, as well as the two dummies for whether 
households have a poverty index to the left or to the right of the threshold. Applying this approach, 
Stata Example 12 shows that the estimate of the treatment effect (δ) is -11.19. 

 

Stata Example 12. Regression Discontinuity Design Estimates 

* REGRESSION DISCONTINUITY DESIGN  
* In this context, you compare health expenditures at follow-up between households 
just above  
* and just below the poverty index threshold, in the treatment localities. 
 
*Select the relevant data 
use "evaluation.dta", clear 
keep if treatment_locality==1 
 
*Normalize the poverty index 
gen poverty_index_left=poverty_index-58 if poverty_index<=58  
(8570 missing values generated) 
 
replace poverty_index_left=0 if poverty_index>58 
(8570 real changes made) 
 
gen poverty_index_right=poverty_index-58 if poverty_index>58  
(11257 missing values generated) 
 
replace poverty_index_right=0 if poverty_index<=58 
(11257 real changes made) 
 
reg health_expenditures poverty_index_left poverty_index_right eligible if round ==1  
 
      Source |       SS       df       MS              Number of obs =    4960 
-------------+------------------------------           F(  3,  4956) =  843.52 
       Model |  257911.257     3  85970.4191           Prob > F      =  0.0000 
    Residual |  505111.412  4956  101.919171           R-squared     =  0.3380 
-------------+------------------------------           Adj R-squared =  0.3376 
       Total |   763022.67  4959  153.866237           Root MSE      =  10.096 
 
------------------------------------------------------------------------------------- 
health_expenditures |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
--------------------+---------------------------------------------------------------- 
 poverty_index_left |   .1755687   .0302796     5.80   0.000     .1162073      .23493 
poverty_index_right |   .2202764   .0315631     6.98   0.000     .1583987    .2821541 
           eligible |  -11.19171   .4661828   -24.01   0.000    -12.10564   -10.27779 
              _cons |   20.55449   .3376327    60.88   0.000     19.89258     21.2164 
------------------------------------------------------------------------------------- 
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Propensity Score Matching 

Let’s turn to a context where we have a group of beneficiaries and nonbeneficiaries, for which we 
measure a set of characteristics at baseline before a program is rolled out. Suppose that we observe 
imbalances in characteristics Xi between the two groups at baseline. One option to address this would 
be to control for the imbalanced variables in a multivariate regression approach: 

 

𝑌𝑌𝑖𝑖 = α + 𝛿𝛿𝑃𝑃𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 

 

As discussed, this approach is often fraught with selection bias and can be unreliable. Indeed, the 
regression analysis does not necessarily represent a causal relationship between participation in the 

Box 2.  Fuzzy Regression Discontinuity 

Under fuzzy regression discontinuity, the eligibility threshold does not fully determine participation in 
the program. Let’s assume that the running variable is Xi, and that a threshold X0  contributes to 
determine eligibility. Under fuzzy discontinuity, the threshold only partially determines program 
participation. For example, units above the threshold are more likely to participate in the program 
than units with as score Xi  lower than the threshold. However, there are units on both sides of the 
threshold that  participate in the program. 

The case of fuzzy discontinuity can be analyzed in an instrumental variable framework. Intuitively, 
this is similar to the case of randomized offering with imperfect compliance described earlier in this 
technical companion. 

In the first stage, a dummy variable I(Xi≥ X0) is created, taking the value of 1 for a value of the running 
variable equal or above the threshold, and the value of 0 for a value of the running variable below 
the threshold. In this case, the dummy variable does not fully determine whether the unit will 
participate in the program or not. However, it strongly influences program participation. This dummy 
variable is used as an instrumental variable to predict program participation: 

Stage 1:   Pi = γ0 + γ1 I(Xi > X0) + ηi 

In a second stage, the predicted participation from the first stage is used to estimate the program 
impact at the threshold: 

  Stage 2:  Y = β0 +  δ 𝑃𝑃𝚤𝚤�+ f(scorei) + εi 

In this case, the instrumental variable approach allows us to deal with the fuzziness of program 
participation, and estimate local average treatment effects around the threshold.  
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program and the outcome variable. It would be appropriate if the observed covariate Xi were the only 
characteristics correlated with both program participation and outcomes. This is a very strong 
requirement, and we can never be sure that the observed covariates are comprehensive and there are 
no omitted variables leading to potential bias. 

The matching approach is not very different from attempting to control for observed covariates in a 
regression framework. Rather than including the imbalanced characteristics in regression, units with 
similar characteristics are matched based on these characteristics. In the propensity score matching 
approach, a propensity score is obtained by a regression of program participation on a set of observed 
(pre-program) covariates. Then units in the treatment and comparison group with the closest propensity 
scores are matched, and differences in outcomes are calculated within each matched pair. The matching 
procedure is then repeated for all individuals in the treatment group, and averages in differences in 
outcomes within pairs are computed.  A range of matching estimators can be used to calculate the 
“closest match,” before calculating averages in the differences between treatment units and their 
matched comparison.  

Stata Example 13 illustrates how to implement propensity score matching in the HISP example. First, a 
probit model is estimated by running a regression of program participation on a range of pre-program 
characteristics. The output of the probit regression shows which variables are the strongest predictors 
of program participation. For example, in the example below, among other variables, household size and 
dwellings with dirt floors are strongly associated with participation in HISP. The propensity score is 
obtained by computing the predicted values from this first stage. Figure 2 plots the propensity scores for 
the treatment and comparison group. Once the propensity scores are calculated, the next step is to find 
for each unit in the treatment group, a comparable “match” with a similar propensity score in the 
comparison group: that is, a unit with characteristics such that its likelihood of participating in the 
program are the same as the treatment unit for which a match is sought. As figure 2 shows, some units 
in the treatment group have high propensity scores; in these cases, there may not be comparison units 
with similar scores. In practice, matching generally occurs in the area of common support where the 
propensity scores for the treatment and comparison groups overlap. Once matching is performed, 
differences in outcomes within pairs are computed and the averages of these differences are obtained 
to provide estimates of treatment effects. The Stata propensity-score command (psmatch2) performs 
these different steps. As we can see below, the treatment effect estimated from propensity score 
matching is -9.97 : that is, a $9.97 reduction in household health expenditures. 

 

 

Stata Example 13. Propensity Score Matching Estimates 

* MATCHING  
* In this context, you compare health expenditures at follow-up between enrolled  
* households and a set of matched nonenrolled households from both treament and 
comparison villages. 
 
*Select the relevant data 
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use "evaluation.dta", clear 
 
* reshape the database 
reshape wide health_expenditures age_hh age_sp educ_hh educ_sp hospital, 
i(household_identifier) j(round) 
 
probit enrolled age_hh age_sp educ_hh educ_sp female_hh indigenous hhsize dirtfloor 
bathroom land hospital_distance 
 
Iteration 0:   log likelihood =  -6047.086   
Iteration 1:   log likelihood = -5510.3753   
Iteration 2:   log likelihood = -5506.5201   
Iteration 3:   log likelihood = -5506.5196   
 
Probit regression                               Number of obs     =      9,913 
                                                LR chi2(11)       =    1081.13 
                                                Prob > chi2       =     0.0000 
Log likelihood = -5506.5196                     Pseudo R2         =     0.0894 
 
----------------------------------------------------------------------------------- 
         enrolled |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
------------------+---------------------------------------------------------------- 
           age_hh |  -.0131411   .0017648    -7.45   0.000    -.0166001   -.0096822 
           age_sp |  -.0078841   .0020507    -3.84   0.000    -.0119035   -.0038648 
          educ_hh |  -.0215019   .0062476    -3.44   0.001     -.033747   -.0092568 
          educ_sp |  -.0155054   .0067557    -2.30   0.022    -.0287462   -.0022645 
        female_hh |  -.0204807   .0518766    -0.39   0.693    -.1221569    .0811955 
       indigenous |   .1613552    .031199     5.17   0.000     .1002062    .2225041 
           hhsize |   .1188953   .0067088    17.72   0.000     .1057462    .1320443 
        dirtfloor |   .3758706   .0308276    12.19   0.000     .3154496    .4362916 
         bathroom |  -.1245256   .0289856    -4.30   0.000    -.1813364   -.0677149 
             land |  -.0277659   .0049886    -5.57   0.000    -.0375435   -.0179884 
hospital_distance |   .0015885   .0003514     4.52   0.000     .0008998    .0022772 
            _cons |  -.4974732   .0904964    -5.50   0.000    -.6748429   -.3201035 
----------------------------------------------------------------------------------- 
 
 
predict pscore 
 
kdensity pscore if enrolled ==1, gen(take1 den1) 
 
kdensity pscore if enrolled ==0, gen(take0 den0) 
 
graph twoway (line den0 take0, lpattern(solid)) (line den1 take1, lpattern(dash)) 

  
Figure 2. Common Support when Applying Matching to HISP case 
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set seed 100 
generate u=runiform() 
sort u 
 
psmatch2 enrolled age_hh age_sp educ_hh educ_sp female_hh indigenous hhsize dirtfloor 
bathroom land hospital_distance, out(health_expenditures1)  
 
Probit regression                               Number of obs     =      9,913 
                                                LR chi2(11)       =    1081.13 
                                                Prob > chi2       =     0.0000 
Log likelihood = -5506.5196                     Pseudo R2         =     0.0894 
 
----------------------------------------------------------------------------------- 
         enrolled |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
------------------+---------------------------------------------------------------- 
           age_hh |  -.0131411   .0017648    -7.45   0.000    -.0166001   -.0096822 
           age_sp |  -.0078841   .0020507    -3.84   0.000    -.0119035   -.0038648 
          educ_hh |  -.0215019   .0062476    -3.44   0.001     -.033747   -.0092568 
          educ_sp |  -.0155054   .0067557    -2.30   0.022    -.0287462   -.0022645 
        female_hh |  -.0204807   .0518766    -0.39   0.693    -.1221569    .0811955 
       indigenous |   .1613552    .031199     5.17   0.000     .1002062    .2225041 
           hhsize |   .1188953   .0067088    17.72   0.000     .1057462    .1320443 
        dirtfloor |   .3758706   .0308276    12.19   0.000     .3154496    .4362916 
         bathroom |  -.1245256   .0289856    -4.30   0.000    -.1813364   -.0677149 
             land |  -.0277659   .0049886    -5.57   0.000    -.0375435   -.0179884 
hospital_distance |   .0015885   .0003514     4.52   0.000     .0008998    .0022772 
            _cons |  -.4974732   .0904964    -5.50   0.000    -.6748429   -.3201035 
----------------------------------------------------------------------------------- 
There are observations with identical propensity score values. 
The sort order of the data could affect your results. 
Make sure that the sort order is random before calling psmatch2. 
-------------------------------------------------------------------------------------- 
        Variable     Sample |    Treated     Controls   Difference         S.E.   T-stat 
----------------------------+----------------------------------------------------------- 
health_expendi~1  Unmatched | 7.83977335     20.70746  -12.8676866   .226604141   -56.78 
                        ATT | 7.83977335   17.8088716  -9.96909828   .263484213   -37.84 
----------------------------+----------------------------------------------------------- 
Note: S.E. does not take into account that the propensity score is estimated. 
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assignment | On suppor |     Total 
-----------+-----------+---------- 
 Untreated |     6,949 |     6,949  
   Treated |     2,964 |     2,964  
-----------+-----------+---------- 
     Total |     9,913 |     9,913   

  
 

Independently of the matching estimator chosen, the fundamental issue with the matching approach is 
that it is valid only under an assumption of “uncounfoundedness”, meaning if participation in the 
program is unconfounded conditional on the observed variables Xi on which the matching is performed. 
This is akin to ruling out selection bias due to unobserved or unobservable variables, and prespecifying 
that the condition of independence of the distribution of potential outcomes mentioned above holds. As 
such, the matching approach does not provide a solution to the endogeneity or selection bias issue. 
Rather, it assumes it away. 

Generally, we advise against the use of matching estimators based on post-treatment data only. The 
matching approach is best used in combination with a difference-in-differences approach, when 
matching is performed based on pre-treatment variables, when a large set of observed characteristics is 
available, or when many rounds of pre-treatment data and pre-treatment trends can be matched. As 
such, the data requirements for matching are substantial.     
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Power Calculations 

Power Calculations in Stata 

We now provide some examples of how to undertake power calculations in Stata. We do so for 
the examples presented in chapter 15 of the book. The question is to determine what would be 
the sample size required to measure the impact of a modified version of the HISP program (called 
HISP+, which also covers hospitalization beyond primary care expenditures covered under HISP) on 
out-of-pocket health expenditures.  As discussed in chapter 15, power calculations require 
assessing if the design creates clusters, defining the outcome indicator, as well as its mean and 
variance, and finally determining the minimum detectable effect. We focus on a benchmark case 
of an impact evaluation relying on a randomized assignment design at the unit level (that is, 
without clusters). 

Power calculations can be implemented in Stata using the sampsi command. First, we must find 
the benchmark mean and standard deviation for the outcome indicator. We can do that with the 
sum command. We save the results in a scalar and use them to calculate a follow-up mean. We 
then calculate potential follow-up means with alternative minimum detectable effects of $1, $2, 
and $3. These can be used, along with the standard deviation saved previously, in the sampsi 
command to calculate the required sample size. The Stata output that follows provides example 
on how to compute for the first minimum detectable effect. (Supplementary do-file and data files 
can be found on the book website and provide the full code to construct the entire table 15.3 in 
book chapter 15). 

 

Stata Example 14. Power Calculations without Clusters (out-of-pocket 
expenditures) 
 
sum health_expenditures if round==1 & treatment_locality==1  
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
health_exp~s |      2965    7.840179    7.994495          0   87.38017 
 
local m1 = `r(mean)'  /*This saves the mean which will be used as m1 in power 
calculations below */ 
 
local sd = `r(sd)' /*This saves the standard deviation which will be used as sd1 
and sd2 in power calclulations below */ 
 
local mde_1 = `m1'-1 
 
local mde_2 = `m1'-2 
 
local mde_3 = `m1'-3 
 
sampsi `m1' `mde_1', p(0.8) r(1) sd1(`sd') sd2(`sd') 
 
Estimated sample size for two-sample comparison of means 
 
Test Ho: m1 = m2, where m1 is the mean in population 1 
                    and m2 is the mean in population 2 
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Assumptions: 
 
         alpha =   0.0500  (two-sided) 
         power =   0.8000 
            m1 =  7.84018 
            m2 =  6.84018 
           sd1 =  7.99449 
           sd2 =  7.99449 
         n2/n1 =     1.00 
 
Estimated required sample sizes: 
 
            n1 =     1004 
            n2 =     1004 
 

This shows that the required sample size is 1,004 for each treatment and comparison group, so 
2,008 observations in total. 

To obtain sample sizes for a context when the program operates through clusters (table 15.5 in 
handbook), we use the sampclus command in Stata. First, we need to find the intra-cluster 
correlation, using the iclassr command. We save the intra-cluster correlation, or rho, in the same 
way as we did the mean and standard deviation previously. Then we run the sampsi command, 
followed with sampclus to correct for a cluster design. An example for the first minimum 
detectable effect follows.  

 

Stata Example 15. Power Calculations with Clusters (out-of-pocket expenditures) 
 
iclassr health_expenditures  locality_identifier if round==1 & treatment_locality==1, 
noisily 
 
                        Analysis of Variance 
    Source              SS         df      MS            F     Prob > F 
------------------------------------------------------------------------ 
Between groups      13520.0642     97   139.382105      2.27     0.0000 
 Within groups      175914.979   2867   61.3585556 
------------------------------------------------------------------------ 
    Total           189435.043   2964   63.9119579 
 
Bartlett's test for equal variances:  chi2(96) = 487.8703  Prob>chi2 = 0.000 
 
note: Bartlett's test performed on cells with positive variance: 
      1 single-observation cells not used 
 
Intra-locality_identifier r = 0.0403 
Estimated reliability of a locality_identifier mean (n=30.26) = 0.5598 
 
local rho = $S_1  /*This saves the intra-cluster correlation, or rho, which will be 
used in clustered power calculations below*/ 
 
display `rho' 
.04033407 
 
sampsi `m1' `mde_1', p(0.8) r(1) sd1(`sd') sd2(`sd') 
 
Estimated sample size for two-sample comparison of means 
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Test Ho: m1 = m2, where m1 is the mean in population 1 
                    and m2 is the mean in population 2 
Assumptions: 
 
         alpha =   0.0500  (two-sided) 
         power =   0.8000 
            m1 =  7.84018 
            m2 =  6.84018 
           sd1 =  7.99449 
           sd2 =  7.99449 
         n2/n1 =     1.00 
 
Estimated required sample sizes: 
 
            n1 =     1004 
            n2 =     1004 
 
sampclus, numclus(100) rho(`rho')  
 
Sample Size Adjusted for Cluster Design 
 
   n1 (uncorrected) = 1004 
   n2 (uncorrected) = 1004 
 
   Intraclass correlation     = .0403341 
 
   Average obs. per cluster   = 102 
   Minimum number of clusters = 100 
 
 
   Estimated sample size per group: 
 
      n1 (corrected) = 5095 
      n2 (corrected) = 5095 
 

This shows that we need a sample of 100 clusters, with an average 102 observations by cluster. In 
total, this gives 10,200 observations. Stata gives a more precise number: in this case, 5,095 
observations for each treatment and comparison group, so 10,190 observations. This is a little 
under 10,200, so a few clusters could have 101 observations instead of 102.15  

When an impact evaluation design includes clusters, there is a trade-off between the number of 
clusters and number of observations per cluster. We now illustrate that trade-off (see table 15.6 in 
handbook). For instance, to look into the necessary sample size with 30 clusters, we change the 
parameters in the numclus  command from 100 to 30. Note, for table 15.6 in chapter 15, we used 
the minimum detectable effect of $2.  

 

Stata Example 16.Power Calculations with Clusters (trade-off between number of 
clusters and number of observations per cluster) 
 
sampsi  `m1' `mde_2', p(0.8) r(1) sd1(`sd') sd2(`sd') 
 

15 In table 15.5 in the book, we provided the rounded number to avoid confusion.   
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Estimated sample size for two-sample comparison of means 
 
Test Ho: m1 = m2, where m1 is the mean in population 1 
                    and m2 is the mean in population 2 
Assumptions: 
 
         alpha =   0.0500  (two-sided) 
         power =   0.8000 
            m1 =  7.84018 
            m2 =  5.84018 
           sd1 =  7.99449 
           sd2 =  7.99449 
         n2/n1 =     1.00 
 
Estimated required sample sizes: 
 
            n1 =      251 
            n2 =      251 

 
sampclus, numclus(30) rho(`rho') 
 
Sample Size Adjusted for Cluster Design 
 
   n1 (uncorrected) = 251 
   n2 (uncorrected) = 251 
 
   Intraclass correlation     = .0403341 
 
   Average obs. per cluster   = 50 
   Minimum number of clusters = 30 
 
 
   Estimated sample size per group: 
 
      n1 (corrected) = 748 
      n2 (corrected) = 748 
 

 

This shows that the required sample size is 30 clusters with 50 observations by cluster, so 
approximately 1,500 observations in total.  
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Power Calculations in Optimal Design 

Optimal Design is a program that assists researchers with power calculations by graphing the 
relationships between power, sample, and effect size (Spybrook et al., 2009).  To produce the 
same results as in Stata Example 14 (or table 15.3 in the book), you can create a figure in Optimal 
Design looking at a single level trial with power versus total sample size. We plot three given effect 
sizes, which must be in standardized effect form.16 A minimum detectable effect of $1 is 
equivalent to a standardized effect of 0.13 standard deviation of the outcome of interest. A 
minimum detectable effect of $2 is equivalent to a standardized effect of 0.25 standard deviation 
of the outcome of interest. A minimum detectable effect of $3 is equivalent to a standardized 
effect of 0.38 standard deviation of the outcome of interest.  

Note that  N on the x-axis is the total sample with two treatment arms, so you must divide by two 
to get the size by arm. The plot shows that, for instance, for a standardized effect of 0.13 and a 
power of 0.9, the total number of subjects required is approximately 2,688 (same as table 15.2 in 
the handbook).  For a power of 0.8, approximately 2,008 observations would be needed (same as 
table 15.3 in the book, or Stata Example 14 above). You can see the number of observations 
needed by clicking on the line in optimal design. 

 

Optimal Design Example 1. Power Calculations without Clusters (out-of-pocket 
expenditures) 
 

 

 

We can also plot cluster randomized trials in Optimal Design. Here, we plot  power versus total 
number of clusters for a given number of units per cluster. We can see that for n=102, the ideal 
number of clusters for 0.8 power is 100 (this is the result for the first row in table 15.5 of the 
book).   

16 The standardized effect size, commonly denoted as δ, is calculated by dividing the effect size by the standard deviation. 
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Optimal Design Example 3. Power Calculations with Clusters (out-of-pocket 
expenditures) 

 

Alternatively, we can plot the ideal number of units per cluster, or we can plot the power versus cluster 
size for a given number of clusters. We can see from the figure below that for 100 clusters, a cluster size 
of 102 is needed for a power level of 0.8. (Stata Example 16 above; table 15.5 in the book). 
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