Spatial Planning for Connectivity

Dr. Annika Keeley, World Bank and Center for Large Landscape Conservation June 28, 2022

Outline

- Overview of spatial planning process for ecological corridors
- Introduction to the Wildlife Corridor Mapping Tool
- Working through the tool
- Priority Actions for Connectivity Tool (if time permits)

Steps to Identify and Prioritize Corridors

Define ecological objectives

Assess the potential utility of the identified corridors

Wildlife Corridor Mapping Tool

Smithsonian Institution

Dr. Grant Connette, Smithsonian Institution Dr. Nirmal Bhagabati, WWF-US, and others

https://grmcco.users.earthengine.app/view/corridor-mapping-tool-v3

Wildlife Corridor Mapping Tool

Dr. Grant Connette, Smithsonian InstitutionSmithsonianDr. Nirmal Bhagabati, WWF-US, and others

Institution

- 1. Convert recent satellite imagery into a land cover map,
- 2. Draw linear features such as roads, railways, pipelines and fences
- 3. Convert land cover and linear feature datasets into a cost surface
- 4. Indicate source patches of wildlife
- **5. Identify potential wildlife movement corridors** based on the relative difficulty of reaching any area on the landscape from the source patches.

https://grmcco.users.earthengine.app/view/corridor-mapping-tool-v3

Steps to Identify and Prioritize Corridors

Focal Species Considerations

CENTER for LARGE LANDSCAPE CONSERVATION

Focal Species Considerations

- Flagship species AND
- Species with limited dispersal capabilities
- Habitat specialists
- Species important for ecological processes such as pollination

ONSERVATION

- Species sensitive to barriers
- Keystone species

Structural Connectivity

A measure of habitat permeability

based on the physical features and arrangements of habitat patches

presumed to be important for organisms to move through their environment

Structural Connectivity A measure of habitat permeability based on the physical features and arrangements of habitat patches presumed to be important for organisms to move through their environment

Functional Connectivity

The degree to which evidence indicates that landscapes facilitate or impede the movement of organisms

Questions?

Steps to Identify and Prioritize Corridors

Assembling GIS layers: global resources

Dataset	Description	Source
Land cover	2020 ESA World Cover at 10 m.	https://esa-worldcover.org/en
Human Impact Map	detailed global land use modification datasets for 1990, 2000, 2010, and 2015; 0.09 km ² resolution	Theobald et al. 2020. Earth System Science Data 12.
Tree height	2021 - value in meters	Lang et al. 2022. arXiv preprint arXiv:2204.08322
Canopy cover	Global Forest Cover Change from "continuous fields" dataset, 30 m resolution, percentage of each cell of forest >5 m in height.	Sexton et al. 2013. International Journal of Digital Earth, 130321031236007.
Global Forest Intactness	Captures both habitat loss, quality, and fragmentation effects	Beyer et al. 2020. Conservation Letters 13, e12692.
World Database on Protected area	The World Database on Protected Areas (WDPA) is the most comprehensive global database on terrestrial and marine protected areas.	https://www.iucn.org/theme/protected-areas/our- work/world-database-protected-areas
Global Forest Change	Global Forest Change 2000–2019	https://data.globalforestwatch.org/datasets/14228e 6347c44f5691572169e9e107ad
IUCN Red List of Threatened species	Global datasets of species threats, ranges, actions	https://www.iucnredlist.org/
Roads	OpenStreetMap	https://www.openstreetmap.org/
WorldPop	High resolution global gridded data, including human density	https://www.nature.com/articles/sdata20171
WorldClim	Global climate data	https://www.worldclim.org/
Worldometer	Global stats	https://www.worldometers.info/,

1. Select study area

Directions

- Choose a small area (~100 km²) with a road running through the middle
- Draw a rectangle

2. Create a land cover map

Tell the tool what is forest, grassland, developed area

3. Add existing roads

Steps to Identify and Prioritize Corridors

Resistance Map

32	38	75	17	13	Term 2	inus		
42	37	44	12	50				
53	51	75	44	68	19	55		
26	10	73	35	23	64	17		
24	33	48	64	17	51	59		
Term 1	inus	35	12	11	59	18		
		25	12	13	84	86		

Resistance = difficulty of crossing the pixel for the species of interest.

Estimating resistance values (called travel costs in the Wildlife Corridor Mapping Tool)

Focal Species

- Inverse of habitat suitability
- Resource selection functions
 - Based on point data, steps, or paths
- Mechanistic models
- Expert opinion
- Structural
- Degree of human modification/naturalness

Estimating resistance values

Focal Species

- Inverse of habitat suitability Spear et al. 2010. Molecular Ecology
- Resource selection models Zeller et al. 2012. Landscape Ecology
 - Based on point data, steps, or paths
- Mechanistic models Golden et al. 2022. Environmental Modelling & Software
- Expert opinion Rabinowitz et al. 2010. Biological Conservation **Structural**
- Degree of human modification/naturalness Theobald et al. 2012. Conservation Letters

Resistance values for elk

Land cover	Travel Costs
Forest and Woodland	1
Chaparral	40
Mixed Desert and Scrub	90
Riparian Woodland and Shrubland	20
Agriculture	70
Developed, Medium - High Intensity	100
Developed, Low Intensity	70
Roads	90

4. Assign travel costs (aka resistance values)

Questions?

strain -

Steps to Identify and Prioritize Corridors

5. Create Wildlife Source Areas

Resource: Global Protected Area map

Steps to Identify and Prioritize Corridors

From Resistance Map to Cost Map

32	38	75	17	13	Sour	ce 2
42	37	44	12	50		
53	51	75	44	68	19	55
26	10	73	35	23	64	17
24	33	48	64	17	51	59
Source	<u>ъ 1 —</u>	35	12	11	59	18
Jourt	-	25	12	13	84	86

Resistance = difficulty of crossing the pixel for the species of interest.

Cost = lowest sum of resistances from a source to a cell

Cost Source 1 to this cell = 25+12+17+ ¹/₂ (64) = 86.

Cost from Source 1 to this cell = 107.

Credit: Dr. Paul Beier

Least Cost Modeling: Cost Map

138	141	160	131	127		
106	104	107	115	146		
62	60	72	105	117	87	124
37	29	70	66	66	51	108
12	17	24	67	46	74	129
Termi	inus	18	31	43	82	108
1	in us	13	31	44	90	150

Cost distance – cost of travel from Source 1 to *each cell*

Credit: Dr. Paul Beier

Least Cost Modeling: Least-cost corridor

Cost Map1 + Cost Map2 = Least Cost Corridor

Least-cost modeling identifies the area where the animal would have the lowest cost of movement.

It is NOT a predicted path (animals do not have perfect knowledge of the landscape).

Credit: Dr. Paul Beier

Modeling least cost corridors

Cost map

Least-Cost Path

Least-Cost Corridor

Modeling corridors

Rudnick et al. 2012. The Role of Landscape Connectivity in Planning and Implementing Conservation and Restoration Priorities. Issues in Ecology

- Least Cost Paths/Corridors
- Factorial Least Cost Paths
- Circuit Theory
- Graph Theory
- Resistant Kernel
- Individual-based movement model
- Spatially explicit population modeling

Modeling corridors

Rudnick et al. 2012. The Role of Landscape Connectivity in Planning and Implementing Conservation and Restoration Priorities. Issues in Ecology

- Least Cost Paths/Corridors
- Factorial Least Cost Paths
- Circuit Theory
- Graph Theory
- Resistant Kernel
- Individual-based movement model
- Spatially explicit population modeling

Every approach helps model some aspect of connectivity.

No single approach is best for all tasks.

You can use more than one approach per task.

6. Run connectivity analysis!

7. Create alternative scenario and re-run analysis

Other connectivity planning tools

https://conservationcorridor.org/corridor-toolbox/programs-and-tools/

Questions?

strain -

Steps to Identify and Prioritize Corridors

Priority = Value + Threat + Opportunity

Value: the benefits to biodiversity and human well-being provided by a corridor

Threat: factors that increase the likelihood that the connectivity value of a corridor will be reduced in the future.

Opportunity: factors that influence conservationists' ability to successfully implement desired connectivity conservation actions within or around a corridor.

- Variable name
- Variable description
- Reason for inclusion
- Proposed Categories
- Example data sources

				VALUE	VARIAE	LES		THREA	T VAI	RIABLES	5			OPF	PORTUN	ITY VAR	RIABL	ES		
	Bic	diversity EC	Desistern service	estation adaptation	ad habitat	unioralic co	indor dweller	se opnent	onange posure Hat	Jita loss Auroan	population pansion	onomic opport	e comp	alibility	NValues anure security Jurisdictic	nai perity Local col	nmunity emance	il solett	capadity dial capital	
/ariable weight	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
Corridor Name																			Reviewer	Recommended conservation action(s)
Corridor1	25	2	3	1	2	1	1	11	3	3	2	2	3	1	2	1	1	2		
Corridor2	10	3	2	2	1	3	2	2	1	2	3	1	2	3	2	3	2	1		
Corridor3	7	3	2	2	2	2	3	5	1	1	2	1	3	2	1	2	3	2		

Corridor	VALUE	THREAT	OPPORTUNITY	OVERALL
Corridor1	0.500	0.600	0.500	0.517
Corridor2	0.514	0.200	0.583	0.489
Corridor3	0.542	0.467	0.417	0.477

Steps to Identify and Prioritize Corridors

Define ecological objectives

Assess the potential utility of the identified corridors

Questions?

annika@largelandscapes.org

