S. Sergeev

Some considerations on production and publishing ICP additive results (ICP TAG meeting / VC, Nov 2021)

The EKS results are non-additive and therefore are not very appropriate for the structural analysis. However, the ICP will not change the official aggregation method. Therefore, there are the proposals to produce and publish two sets of the results: official EKS results for volume and price level inter-country comparisons¹ and non-official results by an additive method for structural analyse. Respectively the **MINUTES OF THE ICP TECHNICAL ADVISORY GROUP** (May 17-19, 2021 / Virtual meeting) say on page 5: "*It was noted that, while the ICP has opted to maintain its PPP estimation methods, this should not prevent research being conducted on the use of alternative estimation methods and approaches.*" This refers, first of all, to the use of additive methods to allow straightforward structural analysis.

Some considerations on potential production and publishing ICP additive results are presented in this notice. The following points are considered:

1) Choice of the most appropriate additive method

The following additive methods were used in the ICP in the past:

- Geary-Khamis (GK) ICP 1970-1985
- Ikle-Dikhanov-Balk (IDB) Africa (AfDB) 2005
- Gerardi (G) Eurostat 1975

All these methods are based on the average international prices² obtaining from national prices:, GK – Arithmetic Mean with quantity weights, IDB – Harmonic Mean with expenditure weights, G – unweighted GM³.

The author of this notice calculated the Average absolute % difference: ICP 2017 PPPs by additive methods (without regional fixity) vs "Official EKS-PPPs with fixity" (W143=1) for GDP. Domestic absorption and Household consumption expenditure (domestic)⁴:

¹ The official GEKS method should not be considered as an "ideal" method. Fisher-PPP satisfies the economic approach to index number theory (F-PPP can be presented also as the PPP based on average arithmetic unweighted international prices of both countries => F-PPPs is a bilateral case of the Van Yzeren approach). The GEKS is based on binary superlative F-PPPs but the GEKS per se is a fully mechanical construction from direct and indirect bilateral PPPs and many of them have no any economical sense.

² There are several other methods based on the international average prices (e.g., Van Yzeren, CPD-Rao) but they are not strictly additive.

³ Speaking strictly the Gerardi method is based on the averaging of national price ratios (price structures) but not on the averaging of the national prices. There are other additive methods using structural prices - see the paper published on the ICP World Bank web-site: S. Sergeev "*Aggregation methods on the basis of structural international prices*" Joint World Bank - OECD Seminar on PPPs "Recent Advances in Methods and Applications" (Washington, D.C.; 30.01-02.02 2001)

http://pubdocs.worldbank.org/en/368801510177722619/pdf/ICP-TF-PCC01-Doc-Aggregation-methods-on-the-basis-of-structural-international-prices-Sergeev-2001.pdf

Aggregation methods on the basis of structural international prices described in the paper (MPCP = Maximal Possible Characteristic Prices and SS = Standardized structure) are additive and are based on price structures which are characteristic for all countries. One may not necessarily want similarity with countries exhibiting high variances due to errors but this different topic. Present analysis bases on the official ICP data (validated and approved). Obviously, these data is not ideal (and problematic points are known) but for a more adequate analysis it is necessary, firstly, to eliminate errors and solve problematic points in the official calculations.

⁴ BH data from the Global 2017 ICP for 143 countries participating in the Global linking were included.

Average abs	olute % differe	nce: PPPs by a	additive metho	ds vs official El	KS-PPPs with fill	xity (W143=1)
	Abs % difference					
	Gerardi	SS	lkle	GK	MPCP	EKS / EKS fix
GDP-Av	2.9	3.0	2.9	4.0	2.8	1.2
GDP-Max	21.3	19.8	23.9	24.2	19.5	7.8
DA-Av	2.9	3.0	2.6	3.5	2.5	1.0
DA-Max	17.8	16.9	14.3	23.5	19.7	8.0
HHd-Av	2.7	2.8	2.4	3.5	2.6	1.2
HHd-Max	19.2	23.5	16.4	27.5	14.2	7.9

Table 1:

Table 1 shows that the average absolute differences of PPPs (W143=1 / unweighted GM scaling) by any additive method and official Global EKS-PPPs with Regional fixity are rather moderate but the differences for individual countries can be very high.

What additive methods is preferable from the point of view of structural analysis?

The G-K is a very attractive additive which can be interpreted in clear economic terms. However, the G-K was replaced by the EKS method after "Great debates" (1988-1989) because of potential Gerschenkron effect (the gravitation of international average prices to prices of large or more developed countries and respectively to the overestimation of volumes for less developed countries). This point was discussed in details on the basis of the ICP 2011 / 2017 data during the recent TAG virtual meting:

https://thedocs.worldbank.org/en/doc/8df7ba7d75d1fe02610e0c88449cb8e8-0050022021/original/2-02-RA-Item-05-The-Gerschenkron-effect-in-ICP-2011-and-ICP-2017-Dikhanov-2.pdf

https://thedocs.worldbank.org/en/doc/48818fe7861193e612d314d50456bd56-0050022021/original/2-02-RA-Item-05-The-Gerschenkron-effect-in-ICP-2011-and-ICP-2017-Sergeev-Comment-2.pdf

The paper prepared by Y. Dikhanov examined the Gerschenkron effect on the ICP 2011 and ICP 2017 data by the comparison of the results obtained by the official "unbiased" Gini-Éltető-Köves-Szulc (GEKS) ICP approach with the results using two additive approaches based on average international prices: the Geary-Khamis (GK) and Ikle-Dikhanov-Balk (IDB). It was found that, when contrasted to earlier ICP exercises, the Gerschenkron effect was significantly weaker in 2011 and 2017 in the case of the GK, and in the case of the IDB index it was not easily identifiable. The following main reasons were indicated (p. 5): "... China and India are now influencing the GK international price vector much more so one can reasonably expect that the Gerschenkron effect would diminish. Convergence of price structures around the world through expansion of international trade and globalization processes would be another consideration that could diminish the effect. And finally, an important factor in reduction of the Gerschenkron effect was the adoption of productivity adjustment for government services in the ICP starting in 2005".

The degree of the Gerschenkron effect on aggregated PPPs depends on similarity of country's price structure with international prices and also on similarity of country's expenditure structure (shares). Therefore, it is desirable to measure the deviations of the country's price structures from a reference price structure as well as the differences of national price structures. It is possible to use for this purpose the coefficients of similarity of price structures⁵. These

⁵ S. Sergeev "Measures of the inter-country price similarities and their practical application in international comparisons" - A paper for the UN ECE Consultation on the ECP (Geneva, 12.11 -14.11.2001). This paper contains also the description of the coefficients of similarity of national GDP expenditure structures (expenditure shares).

indicators are between 0 and 1 like the correlation coefficients (with many other similar properties): the values which are closer to 1 show higher similarity. The author of this notice calculated the coefficients of similarity of national price and expenditure structures "Each country with Each country" for the GDP and HH (domestic) for the 143 countries participating in the Global linking of the ICP 2017⁶.

The calculations showed that GK prices gravitate more to the price structures of the EU-OECD and LA countries. However, the ICP 2017 data did not confirm the statement that the G-K prices gravitate to the price structure of the large countries. Not USA or CHN have the highest similarity of price structures with the G-K average prices⁷ but rather small countries or the countries with the middle level of economic development: CYP, ESP, EST, GRC, SVN, HKG, PER - see Table 2 below:

GDP: 10 hig	phest coeffici	ents of similar	rity of price s	tructures (na	tional with G	K internation	nal prices)
	GK	lkle	CPD-Rao	ShGK-Rao	SS Str	MPCP	Gerardi
CYP	0.9095	0.8170	0.8510	0.8686	0.8725	0.8023	0.8514
ESP	0.8987	0.7901	0.8302	0.8487	0.8442	0.7493	0.8208
EST	0.9081	0.8629	0.8920	0.8994	0.9078	0.8116	0.8971
GRC	0.9226	0.8814	0.9028	0.9095	0.9161	0.8551	0.9049
PRT	0.8921	0.8397	0.8816	0.8994	0.8985	0.7752	0.8745
SVK	0.8868	0.8655	0.8883	0.8915	0.8964	0.7901	0.8889
SVN	0.8994	0.8328	0.8692	0.8826	0.8898	0.7822	0.8702
HKG	0.8971	0.7966	0.8188	0.8329	0.8289	0.8234	0.8141
PER	0.8944	0.8928	0.9152	0.9264	0.9278	0.8649	0.9165
HH (d): 10 h	ighest coeffi	cients of simil	larity of price	structures (I	national with	GK internation	onal prices)
	GK	lkle	CPD-Rao	ShGK-Rao	SS Str	MPCP	Gerardi
CHL	0.9232	0.8627	0.8808	0.8789	0.8591	0.7768	0.8538
CRI	0.8950	0.8922	0.9044	0.9018	0.8991	0.8318	0.8982
CYP	0.8965	0.8384	0.8760	0.8873	0.8901	0.7566	0.8742
EST	0.8964	0.8285	0.8641	0.8723	0.8843	0.7605	0.8722
GRC	0.9006	0.8852	0.9051	0.9039	0.9154	0.8070	0.9104
ITA	0.8823	0.7899	0.8191	0.8263	0.8297	0.7317	0.8171
LVA	0.9052	0.8637	0.8923	0.8963	0.9047	0.7843	0.8965
SVK	0.8881	0.8283	0.8590	0.8614	0.8678	0.7393	0.8606
HKG	0.8913	0.8368	0.8538	0.8649	0.8460	0.8017	0.8344

Table 2 Ten highest coefficients of similarity of price structures (national with G-K international)

The potential GK bias due to the gravitation of average prices to prices of large countries then this is rather not drawback of the method but its advantage because these prices can be justified economically (the world prices gravitate generally to the prices of main producers). Of course, to do this statement one should be sure that the BH-PPPs reflect properly actual quality differences in the products. Additionally, not the size of the countries is the main factor, which has the highest impact on the the G-K results but the similarity of price structures. For example, economically USA and Canada have very different size but price structures are very similar and the results "USA - Canada" are very similar by any aggregation method.

⁶ Detailed coefficients are contained in the EXCEL file which is available by the WB ICP unit.

Low coefficients of inter-country similarity of national price structures reflect in some cases actual national peculiarities in prices but in many cases - the weakness of BH-PPPs due to insufficient Quality (consumer products) and Productivity adjustments (non-market services) as well as very different approaches used by the EU-OECD and other ICP Regions for many important areas (Housing rents, Education, Health, Construction).

⁷ Of course, USA and China have significant impact on the GK prices. However international GK prices gravitate more to the price structures of relatively small countries with middle level of economic development. Similarity of structure international GK prices with price structures of US (0.787) and China (0.853) is high but not the highest.

The analysis of the BH-PPPs input data shows that the main actual reason for the Gerschenkron effect is not a theoretical drawback of the GK method *per se* but the weakness of BH-PPPs due to insufficient Quality (Consumer products, Construction) and Productivity adjustments (Non-market services) as well as very different approaches used by the EU-OECD and other ICP Regions for many important areas (Housing rents, Education, Health, Construction). If Quality and Productivity adjustments are done properly and the regional methods for Housing rents, Education, Health, Construction are more unified then one should expect that all aggregation methods will produce similar results. For example, the PPPs of the most of the EU-OECD countries calculated by the official EKS and other methods based on the use of average international prices vary in a very moderate degree.

Main disadvantage of the GK as well as of all additive methods based on the simultaneous calculation of PPPs and international average prices is not the potential Gerschenkron effect but the fact that these methods are not sectoral independent: the additivity is achieved if all aggregates compared within the GDP framework. In effect, it is impossible to have independent results for separate aggregates HH, GFCF, etc. because the PPPs for the aggregates are depended on the whole set of data for GDP. For example, international G-K prices for "Food" depend on the GDP-PPPs and therefore on prices for "Construction", etc.

The sectoral dependency is especially problematic for the use of GK in the structural analysis. We want to analyse the price and volume structure at the detailed disaggregated levels but all national prices are recalculated to a common level by the same (high aggregated) PPPs for GDP? Probably, R.Geary proposed his method with the aim to obtain the PPPs for the whole aggregate - What would be the GDP-PPPs if they are obtained from national prices recalculated to a common price level with these GDP-PPPs? In this case, international prices for products (recalculated by GDP-PPPs) are *per se* not exact but they produce correct average GDP-PPPs.

IDB method

IDB method is based on the average international prices obtaining from national prices as Harmonic Mean with country's expenditure weights. The IDB method is equivalent to the GK method when all the countries have the same size in terms of real GDP. i.e. the IDB prices are not affected by the sizes of individual countries. Therefore IDB results do not have a systematic Gerschenkron effect.

However the results by IDB method are also sectoral dependent and even more than the GK results. D.Ikle used the same assumption as R.Geary for the PPPs but introduced a similar assumption also for the Volume indices - What would be the GDP-PPPs if they are obtained from national prices recalculated to a common price level with these GDP-PPPs and the national quantities recalculated to a common level with the GDP Volume indices⁸? So, the double sectoral dependency of the IDB results is problematic for the use of IDB results for the structural analysis.

⁸ These double recalculation of prices and quantities to common levels leads to the use of Harmonic mean with country's expenditure weighs during the calculation of average international prices.

Gerardi method⁹

The Gerardi UCW (Unit Country weight) method was used in the Eurostat PPP comparison of Year 1975. The Gerardi method is based on the average international prices obtaining from national prices as unweighted GM without the use of PPPs. The PPPs are not necessary because the Gerardi method is based actually on the averaging of national price ratios (the ratios of prices between the products - price structures) but not on the averaging of the national prices. The price ratios are dimensionless and therefore directly comparable. So, if one wants to have additive results which are sectoral independent (like the GEKS results) then the Gerardi UCW method has an obvious preference.

In the actual PPP exercises with the use of BH data where BH-PPPs are used as quasi-prices the Gerardi results are obtained in the following way:

- a) Initial BH-PPPs (Base country =1) are scaled to the base (Region or World = 1) as the ratios to their GM (unweighted). These rescaled BH-PPP can be presented in more understandable form with additional scaling: Product of PPPs = Product of reference XRs (e.g. Euro or USD). For example, Eurostat uses such scaling to Euro this artificial unit was named as PPS = Purchasing Power Standard
- b) Real Values for BHs are obtained as "Nominal BH value in National currency / Scaled BH-PPP".
- c) The RV from b) are additive. Therefore, the RV for any aggregated heading (AH) can be obtained as a simple sum of RV of respective BHs. PPPs for any aggregated heading are obtained as the ratios "Nominal AH value in National currency / Real Value of AH"

The Gerardi results are PPP are additive, invariant, transitive and sectoral independent. So, the Gerardi method seems to be preferable for the structural analysis. The simplicity of Gerardi method is not an obvious drawback (and, maybe, even advantage). The fact that Gerardi international prices are unweighted GM of individual country prices is not a clear drawback. Binary F-PPP is based on unweighted arithmetic mean of prices of two countries and, nevertheless, F-PPP is a superlative index, IDB prices are calculated by the assumption that all the countries have the same size in terms of real GDP.

2) Additivity and Fixity of regional results

There is even more important point concerning the additive results:

- if one wants to use the regional fixity also in the Global GK, IDB, G aggregations then this will distort the additivity in any case,
- if one produces the free Global results by GK, IDB, G then these results will be additive and formally inter-regionally comparable but inconsistent with the regional results. The differences can be very high for many important areas (Housing rents, Education, Health, Construction) due to different approaches used by the EU-OECD and other ICP Regions. This can lead to numerous question and irritations – What results are more reliable?

Let is look on the OECD experience with the producing and publishing of additive results as the supplement to the official GEKS results.

⁹D.Gerardi "Selected problems of inter-country comparisons on the basis of the experience of the EEC", Review of Income and Wealth. Volume 28, Issue 4:

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-4991.1982.tb00624.x

3) Experience from the OECD with the publishing of two sets of the results (EKS and GK)

Following decision done during the "Great debates " (1988-1989), the OECD started to produce and publish from the 1990 exercise two sets of the PPP results: official EKS results for volume and price level inter-country comparisons and non-official results by the GK method for structural analyse – see, for example, the link to the 1990 GK results below:

PPP1990.pdf (worldbank.org)

The comprehensive sets of the GK results (without fixity for EU countries) were published for 1990 and 1993 exercises¹⁰. However, the GK results were practically not used and additionally there were numerous irritations with the explanation of double results. Therefore, the OECD publishes in the 1996, 1999 and 2002 exercises only two Tables with the GK results: relative PLI and Volume indices (with double base: OECD = 100 and GDP=100), to avoid the irritation with the official Comparative PLI and Volume indices by the EKS approach. However, this did not help. The GK results were practically not used (only the irritations) and the OECD stopped the production and the publication of the GK results.

So, the OECD long-term experience with the production of two sets of the results (GEKS and GK) shows that the production and the publication of two sets of the ICP results (GEKS and by an additive method) is rather problematic. **MINUTES OF THE ICP TECHNICAL ADVISORY GROUP** (May 17-19, 2021 (Virtual meeting) say on page 5: "*Regarding the option to release multiple sets of PPPs, based on different methods, the TAG reaffirmed concerns on user reception, given that understanding the differences require a good understanding of PPP estimation methodology."*

More general point concerning the presence of two different sets of the ICP results: one official for volume and price level inter-country comparisons and another non-official - by an additive method for structural analyse. It seems that it is very problematic to carry out the comprehensive consistent analysis if different (but connected) indicators are calculated by different methods: PPPs and Real values as well as Volume indices are obtained by the EKS method but Relative Volume and Relative Price indices should be based on the PPPs and Real values obtained by the GK or an other additive method. In this aspect - **Is it possible to use the official EKS results also for the structural analyses?** The author of this notice believes that "Yes" (of course, with the reservations) if the official EKS results are presented in an adequate form.

4) Flexible non-additivity of the EKS results and potential use of the official EKS results for structural analysis

The degree of non-additivity of the EKS Real values (percentage differences between Real Values for an Aggregate-Total and the sum of its elements) depends on the currency numeraire used. If a base country currency is used then the degree of non-additivity of the EKS Real values depend of the variation of PPPs for underlying headings and the variation of respective expenditure shares. Generally, one can say that Real values reflect in this case price structure of the base country. On other, side the use of a neutral invariant base can reduce non-additivity drastically.

Let us to illustrate this on one extreme non-additive case occurred in the ADB ICP 2017 exercise for the GFCF. ADB used traditionally HKD as numeraire and the percentage differences between Real Values for GFCF-Total and the sum of its elements in HKD are

¹⁰ The PPPs and Volumes were presented with the neutral basis "OECD=100" and the scaling "Sum of RV by PPPs to USD = Sum of RV by XRs to USD" was done. So, the results were presented with an artificial unit "OECD-\$".

varied from -14% till +38%. HKG has very high price level for "Construction" and "normal" for "Machinery and equipment" (MEQ) relatively other ADB countries. In effect, the PPPs "Country / HKG" for MEQ are 2-3-4 times higher than for Construction. Respectively, the degree of non-additivity of the EKS Real values is very high.

If one selects CHN currency as numeraire then the degree of non-additivity of the EKS Real values is not so high and if one selects IND currency as numeraire then the degree of non-additivity of the EKS Real values is rather moderate because PPPs "Country / CNH" and "Country / IND" have no such drastic differences as PPPs "Country / HKG".

Generally, an "average" neutral regional currency would be desirable for the presentation of the EKS Real values (RV) to have rather moderate degree of non-additivity. What "average" neutral regional currency is recommendable?

The ADB official PPPs to HKD can be scaled to a neutral "average" Asian HKD in two ways:

- a) **Scaling with expenditure weights** like it is used by the EU-OECD for the presentation of official aggregated PPP/PLIs or by the WB by the presentation of the PLI with the base "Word = 100" (Sum of RV by PPPs = Sum of RV by XRs).
- b) **Scaling without expenditure weights** like it is used by the EU-OECD for the presentation of PPP/PLIs in the QTs (Product of PPPs = Product of reference XRs).

Both approaches decrease the degree of non-additivity but the effect of big countries is not eliminated fully by the approach a). Therefore, it is recommendable to use the approach b). The approach b) can be used for any Regional or Global set of EKS-PPPs to obtain the RV in a neutral "average" Regional or Global currency with moderate degree of non-additivity. The Summary of the experiments with the ADB 2017 GFCF data are presented in **Table 3**:

Table 3:

Summary of the experiments for the evaluation of non-additivity of the ADB 2017 results for GFCF by different presentation of the PPPs

ADB ICP 2017																									
Gross Fixed Capital Formation (GF	CF) - an	alysis o	of thr choic	ce of	base	curre	ency (on the	non	addit	ivity	EKS	Rea	l Va	ues										
ADB22 2017: Real expenditure dat	ta (mio.	HKD)																							
	Max	Min	Max-Min	BGD	BRN	BTN	CHN	FJI	HKG	IDN	IND	KHM	LA0	LKA	MDV	MMR	MNG	MYS	NPL	PAK	PHL	SGP	THA	TWN	VNM
Nod-add (%) = (Sum-T/GFCF-1)*100	37.6	-13.9	51.6	33.7	14.1	32.2	13.6	-13.9	0.0	37.6	7.0	13.4	4.9	0.7	14.7	8.9	0.2	12.7	12.3	-0.2	3.4	-9.1	-8.7	-11.2	26.8
ADB22 2017: Real expenditure dat	ta (mio.	CHN)																							
	Max	Min	Max-Min	BGD	BRN	BTN	CHN	FJI	HKG	IDN	IND	KHM	LA0	LKA	MDV	MMR	MNG	MYS	NPL	PAK	PHL	SGP	THA	TWN	VNM
Nod-add (%) = (Sum-T/GFCF-1)*100	12.6	-9.0	21.5	10.9	1.2	10.4	0.0	-9.0	-1.6	12.6	-1.6	1.1	-2.9	-4.3	1.6	-0.8	-4.5	0.6	0.2	-4.6	-3.0	-5.0	-8.3	-6.4	6.6
ADB22 2017: Real expenditure dat	ta (mio.	IND)																							
	Max	Min	Max-Min	BGD	BRN	BTN	CHN	FJI	HKG	IDN	IND	KHM	LA0	LKA	MDV	MMR	MNG	MYS	NPL	PAK	PHL	SGP	THA	TWN	VNM
Nod-add (%) = (Sum-T/GFCF-1)*100	5.4	-1.9	7.3	3.4	0.1	3.5	-1.9	2.5	5.3	3.4	0.0	0.7	-0.9	0.1	0.4	0.2	-0.2	-0.1	-0.7	-0.2	0.1	5.4	-0.3	4.6	0.5
ADB22 2017: Real expenditure da	ta (mio.	Asian H	IKD-W)																						
	Max	Min	Max-Min	BGD	BRN	BTN	CHN	FJI	HKG	IDN	IND	KHM	LA0	LKA	MDV	MMR	MNG	MYS	NPL	PAK	PHL	SGP	THA	TWN	VNM
Nod-add (%) = (Sum-T/GFCF-1)*100	10.3	-6.7	16.9	8.9	0.7	8.6	-0.6	-6.6	-0.2	10.3	-1.4	0.8	-2.5	-3.5	1.0	-0.8	-3.6	0.3	-0.1	-3.7	-2.5	-2.6	-6.7	-3.9	5.0
ADB22 2017: Real expenditure dat	ta (mio.	Asian H	IKD-Unw)																						
	Max	Min	Max-Min	BGD	BRN	BTN	CHN	FJI	HKG	IDN	IND	KHM	LA0	LKA	MDV	MMR	MNG	MYS	NPL	PAK	PHL	SGP	THA	TWN	VNM
Nod-add (%) = (Sum-T/GFCF-1)*100	5.3	-1.3	6.6	4.2	0.4	4.4	-1.3	1.6	5.0	4.6	0.4	0.9	-0.4	-0.2	0.7	0.4	-0.1	0.4	-0.1	-0.1	0.2	5.3	-0.8	4.3	1.3

More drastic situation for the GFCF was in the Global ICP 2017. The Real Values in the Global ICP 2017 were presented in USD. Many countries have for "Machinery and Equipment" and "Construction" very different PPPs to USD as well as expenditure structure. In effect, the non-additivity of the RV for the GFCF is aggregate was extreme. For example, IDN RV for GFCF was **846** mio. USD but alone Construction had RV of **1617** mio. USD. It is very difficult to explain to users such results. Non-experienced users can considered these as mistakes or misprints.

The author of this notice rescaled the official Global EKS PPPs for the 143 countries participating in the Global Linking ICP 2017 to neutral basis "World143 = 1" with the scaling "Product of PPPs to USD = Product of XRs to USD" – this unit can be named as "World \$".¹¹ The degree of non-additivity were calculated as "Percentage absolute deviation: GFCF-Total vs Sum of 3 categories". The same indicators were calculated for the RV in USD as well as for the RVs obtained by the Gerardi method. Detailed Tables for Global ICP 2017 for GFCF are presented in Annex 1. Average as well as maximal values of the degree of non-additivity for the Regions are presented in Table 4:

Table 4: ICP 2017	
Average percentage absolute deviations: GFCF-Total vs Sum of 3 categories	

	EUO	AFR	ASI	LA	WA	W143
by PPPs scaled by GM-XRs to World = 1	6.9	3.9	4.8	2.3	2.5	4.8
by PPPs to USD	14.0	34.8	44.0	44.1	47.0	30.7
by scaled BH-PPPs (Gerardi)	7.6	4.4	5.5	2.9	4.4	5.5

	EUO	AFR	ASI	LA	WA	W143
by PPPs scaled by GM-XRs to World = 1	26.8	15.8	15.8	9.2	7.0	26.8
	(USA)	(AGO)	(IDN)	(HTI)	(OMN)	(USA)
by PPPs to USD	54.4	98.9	100.4	108.1	75.7	108.1
	(ALB)	(ETH)	(IDN)	(HTI)	(OMN)	(HTI)
by scaled BH-PPPs (Gerardi)	26.8	17.7	16.0	9.6	10.1	26.8
	(CHE)	(AGO)	(IDN)	(HTI)	(OMN)	(CHE)

Maximal percentage devitaions: GFCF-Total vs Sum of 3 categories

Table 4 shows that the presentation in USD brings systematic extreme non-additivity if underlying PPPs and expenditure shares are very different. Average percentage absolute deviations for the GFCF are very high for all Regions because the PPPs for "Construction" (USA=1) are very high relatively PPPs for "Machinery and Equipment". On other side, the scaling of official Global EKS-PPPs to the base "World143 =1" brings systematically very moderate degree of non-additivity: 3-5%. Such degrees of non-additivity (3-5%) are sufficient for the reliable structural analysis in the practice. The use of the Gerardi approach with scaling of original BH-PPPs brings very similar degrees of non-additivity.

The considerations above did not say that the use of neutral Regional or World numeraire eliminates non-additivity but they demonstrate on an extreme example that this approach reduce non-additivity drastically with the degree which is sufficient for reliable structural analysis. Of course, if data for some countries contains extreme differences like by IDN for GFCF then the degree of non-additivity can be still remarkable – see the 2nd part of Table 4 with maximal values for the countries within the Regions - but nevertheless not extreme: e.g.,

¹¹ World or Regional "average" numeraires are not easily understood but the same refers to the GK or IDB dollars used in the ICP or PPS used by Eurostat.

IDN - 100% by the use of RV in USD and only 16% by the use of scaled EKS-PPPs for the calculation of RV in the World numeraire.

USA 2017 PPPs for "Construction" obtained by the Eurostat-OECD approach (BoQ) and the ICP approach (ICA) were also very different and this is the main factor for high non-additivity of RV in USD. So, maybe, it is more desirable to focus the efforts on the improvement and unification of the methods used by the Regions for several important areas (Housing rents, Education, Health, Construction) which can bring quasi-additive results than on the production and the publishing of an alternative set of the results.

Obviously, as the Minutes of the recent TAG meeting / VC say, the researchers should have a possibility to produce the ICP results by use of alternative estimation methods and approaches for own analyses and be responsible for these results. However, it is not desirable to produce and publish officially an alternative set of the ICP results. It is better to inform users that non-additivity of the EKS results is relative and the degree of non-additivity depends on the presentation of PPPs and Volumes. Different scaling of official published EKS-PPPs and Volumes can be helpful for the purposes of the different analyses. For example, Eurostat PPP Database contains unweighted and weighted (by exp.) PPPs with the following bases: EU37, EU27_2019, EU27, EU25, EU15:

http://ec.europa.eu/eurostat/web/purchasing-power-parities/data/database

eurostat				Decision to the later	netastas Datam	V1.7.1-30210419-5867-65187_LING DATA207CREE_PROvise1
Purchasing power par Lest update: 27-07-2021 Table Customization show	ities (PPPs), p	rice level indi	ces and real ex	penditures fo	r ESA 2010 ag	gregates [prc_ppp_
TIME			60		1.41	National accounts indicator (ESA 2010) Real expenditure (n PPS_EUI5) Y
Analytical categories for purchasis Actual individual consumption	ng power parities (PPPs) calculation				Purchasing power parties (EU07_2007+1)
2 ÷ 7188 •	2011	2012	2013	2014	2015	Purchasing power panties (EU15=1)
🕈 0E0 👻	0	0	0	6	0	Price level indices (IT/97, 2020+100)
aropean Union - 27 countrie	8.440.087	8,664,530	8,706.067	8,955,203	9,179,688	
ropean Union - 28 countrie	9,860,999	10,145,460	10,198,195	10,504,517	11.004.075	Price level indices (EU28=100)
ropean Union - 27 countrie	9,810,747	10.093,487	10,145,586	10,451,564	10,949,291	Date hard active all AP 2003-1000
ropean Union - 25 countrie	9,534,872	9,800,515	9,654,983	10,144,209	10,618,564	PTUE WWW PUBLIC (2002)_2001 - 100)
ropean Union - 15 countrie	8,507,977	8,725,348	8,772,017	9,026,534	9,439,123	Price level indices (EU15=100)
ro area - 19 countries (from	6,959,232	7,115,190	7,153,431	7,344,565	7,672,199	
ro area - 18 countries (201	6,917,349	7,070,680	7,106,754	7,295,363	7,620,183	Nominal expenditure in national currency
iro area - 17 countries (201	6,894,421	7,045,881	7,080,731	7,268,833	7,592,146	
iro area - 16 countries (200	6,878,242	7,028,429	7,062,704	7,249,928	7,571,936	(accurate expenditma as a beccereable or cross, (or texture)
ro area - 15 countries (200	6,601,328	6,948,125	6,981,737	7,167,269	7,485,230	Nominal expenditure (in earts)
iro area - 13 countries (200	6,778,150	6,924,698	6,959,132	7,344,109	7,460,905	
iro area - 12 countries (200	6,745,628	6,891,616	6,926,859	7,111,265	7,426,727	Nominal expenditure per inhabitant (in euro)
ro area - 11 countries (199	6,560,840	6,713,908	6,752,498	6,933,808	7,245,839	Bud appendix on in DDS ELCCY 2000
show	238,733	250,103	257,984	267,462	280,649	How expension on Projectory 2000
11111111						Real expenditure (in PPS_EU2t)
				Special value:		Boal exceedings (n PPS_EL07_2007)
				a part mobiliphia		Long adversion (m. c.s. Trocs Tracs)

Unit of measure http://ec.europa.eu/eurostat/cache/metadata/en/prc ppp esms.htm

PPPs can be interpreted as the exchange rates of countries' national currencies against the PPS. They express the number of currency units per PPS.

Real expenditures are expenditures in national currency converted to PPS using PPPs. They are thus denominated in PPS.

PLIs and volume indices per capita are indices that, in Eurostat's database, use EU27_2019, EU28, EU27 and EU15 as "base country" (EU27_2019=100, EU28=100, EU27=100 and EU15=100 and depending on the user's choice).

5) Treatment of Negative expenditure

One additional specific point which should be considered for the PPP methods as well as for the structural analysis. All PPP methods are based on the assumption that price data contains only positive values and expenditure / quantity data – only non-negative values. This is not so in the practice. GDP contains several BHs where negative expenditure can occur. So, the category "Net exports" has very significant negative value in many countries (in some extreme cases, the share of "Net exports" in GDP is minus 30-50%). Additive aggregation methods based on the simultaneous calculation of PPPs and international average prices¹² like the GK or the IDB can be very sensitive to use of negative expenditure values. Distorting effect can be significant. For example, recent version of the PWT10.1 contains several cases where GK GDP-PPPs are negative. Of course, such cases with negative PPPs are rather very rare exceptions but, in any case, negative expenditure bring distorting effect. The size of distortions depends on the aggregation method per se and the size (shares) of negative expenditure as well as the variation of underlying BH-PPP/PLIs.

The EKS method is less sensitive to the presence of negative expenditure. Nevertheless, if the shares of negative expenditure are very high and BH-PPP/PLIs are very different then the bilateral F-PPPs can be not very reliable because of very high difference between L- and P-PPPs. The Table 5 below contains several simplified examples from the Global ICP 2017 of the calculations of the F-PPPs where the countries have very high negative share of "Net exports" or / and very different PLIs for Domestic Absorption (DA), to demonstrate possible distorting effect of the inclusion of the categories with negative expenditure in the PPP calculations.

One example: F-PPP between STP and LUX

STP has very high negative "Net export" (\sim - 50%) and very low PLI for DA = \sim 46% (LUX=100). In effect, Paasche-PLI for STP (LUX =100) was outside the PLI for underlying categories. Similar situation is with the calculation of F-PPPs between NPL and CHE.

Second example: F-PPP between SDN and CHE

SDN has moderate share of negative "Net export" (\sim - 6%) but SDN has very low PLI for DA = \sim 20% (SHE=100). In effect, Paasche-PLI for SDN (CHE =100) was outside the PLI for underlying categories even the share of negative expenditure is relatively small.

Third example: F-PPP between STP and LSO

Both countries have high share of negative "Net export" (\sim - 50% and \sim - 40%), PLI between these counties is close to 100%. In effect, Laspeyres, Paasche and Fisher PLIs for STP (LSO =100) were higher than the PLI for underlying categories.

¹² Distorting effect by the use of additive aggregation methods based on the simultaneous calculation of PPPs and international average prices (like GK or IDB) refers to all analytical categories (but in different degree). Gerardi method is generally more robust to the presence of negative expenditure because this method is sectoral independent. Distorting effect here refers only to the analytical categories containing BHs with negative expenditure.

Table 5:	Several F-PI	_l example	s from IC	P 2017		
Calculat	tion of bilate	ral F-PLI fr	om DA an	d Net expo	orts	
ICP143 G	lobal multilate	eral results				
		Α	В	Α	В	
		STP	LUX	STP	LUX	(A+B)/2
	PLI A/B (B=100)	Sh Exp A (%)	Sh Exp B (%)	PLI A (W=100)	PLI B (W=100)	T-Sh
DA	45.8	150.7	64.8	68.7	150.1	1.078
Net exports	100.0	-50.7	35.2	100.0	100.0	-0.078
GDP	50.0	100.0	100.0	67.1	134.2	1.000
Bilateral	F-PLI from DA	and Net ex	ports			
L-PLI STP/I	UX (LUX=100)	64.9				
P-PLI STP/	LUX (LUX=100)	35.9				
F-PLI STP/I	LUX (LUX=100)	48.3				
T-PLI STP/	LUX (LUX=100)	43.1				
ICB142 C	lebel multilet	rol requite				
ICP 143 G			B	^	В	
					CHE	$(A \pm B)/2$
	PLIA/B (B=100)	Sh Eyn A (%)	Sh Eyn B (%)		PLIB (W=100)	T-Sh
DA	19.7	106 0	89.4	34.8	176.5	0 977
Net exports	100.0	-6.0	10.6	100.0	100.0	0.023
GDP	20.0	100.0	100.0	33.8	169.0	1 000
UDI	20.0	100.0	100.0	55.0	105.0	1.000
Bilateral	E-PLI from DA	and Net ex	norts			
		28.2	50115			
P-PLISDN/	CHE (CHE=100)	18.8				
F-PLI SDN/	CHE (CHE=100)	23.0				
T-PLI SDN/	CHE (CHE=100)	20.5				
		2010				
ICP143 G	lobal multilate	eral results				
		Α	в	Α	в	
		NPL	CHE	NPL	CHE	(A+B)/2
	PLI A/B (B=100)	Sh Exp A (%)	Sh Exp B (%)	PLI A (W=100)	PLI B (W=100)	T-Sh
DA	26.2	133.8	89.4	46.2	176.5	1.116
Net exports	100.0	-33.8	10.6	100.0	100.0	-0.116
GDP	25.3	100.0	100.0	42.8	169.0	1.000
Bilateral	F-PLI from DA	and Net ex	ports			
L-PLI NPL/C	CHE (CHE=100)	34.0				
P-PLI NPL/	CHE (CHE=100)	20.9				
F-PLI NPL/C	CHE (CHE=100)	26.7				
T-PLI NPL/0	CHE (CHE=100)	22.4				
ICP143 G	lobal multilate	eral results		-		
		A	В	A	В	
				SIP		(A+B)/2
	PLI A/B (B=100)	Sh Exp A (%)	Sh Exp B (%)	PLI A (W=100)	PLI B (W=100)	T-Sh
DA	110.3	150.7	141.6	68.7	62.3	1.462
Net exports	100.0	-50.7	-41.6	100.0	100.0	-0.462
GDP	112.6	100.0	100.0	67.1	59.6	1.000
Bilateral	F-PLI from DA	and Net ex	ports			
L-PLI STP/I	LSO (LSO=100)	114.5				
P-PLI STP/	LSO (LSO=100)	116.3				
F-PLI STP/I	LSO (LSO=100)	115.4				
T-PLI STP/	LSO (LSO=100)	115.4				

The presence of negative expenditure brings also the problems for the structural analysis. For example, when A.Heston and P.Rao examined in their paper¹³ evolution of economic structures of countries in terms of price and quantity similarity and the global price structures then they excluded all BHs with negative expenditure during the calculation of coefficients of price similarity and all BHs where some countries have zero or negative expenditure during the calculation of some data is not the actual solution of the problem. Further investigations on this topic are desirable.

Conclusions

 The results by an additive method would be the most appropriate for structural analysis. The Gerardi method can be considered as the most appropriate as sectoral independent. The GK and the IDB methods are less appropriate due to sectoral dependency of the results.

¹³ https://thedocs.worldbank.org/en/doc/f60d81b4360769d233c638017e5a5c6b-0050022021/original/1-02-Understanding-the-World-Economy-Insights-from-ICP-2017-Heston-and-Rao.pdf

- 2) However if one wants to use the regional fixity also in the Global GK, IDB or G aggregations then the attempt to keep fixity will distort the additivity in any case. If one produces the free Global results by GK, IDB or G methods then these results will be additive and formally inter-regionally comparable but inconsistent with the regional results. The differences can be very high for many important areas (Housing rents, Education, Health, Construction) due to different approaches used by the EU-OECD and other ICP Regions. This can lead to numerous question and irritations What results are more reliable?
- 3) Additive results produced and published as a supplement to the official GEKS results would be non-official and therefore it is very likely that they will not be broadly used and if they are used then can be numerous irritations. The OECD long-term experience with the production and publishing of two sets of the results (GEKS and GK) shows that the understanding of two sets of the ICP results (GEKS and by an additive method) is rather problematic for users. In effect, the OECD stopped to produce and publish GK results.
- 4) Generally, it is very problematic to carry out the comprehensive consistent analysis if different (but connected) indicators are calculated by different methods: PPPs and Real values as well as Volume indices are obtained by the EKS method but Relative Volume and Relative Price indices should be based on the PPPs and Real values obtained by the GK or an other additive method.
- 5) The non-additivity of the official EKS results (with Regional fixity) can be significantly reduced if the official EKS PPPs using for the calculation of Real Values are presented in a "neutral" form with the base "Region or World = 1" (unweighted GM scaling is preferable). So, the scaling of official Global ICP 2017 EKS-PPPs to the base "World143 =1" brings systematically very moderate degree of non-additivity: 2-5%. Such degrees of non-additivity (2-5%) are sufficient for the reliable structural analysis in the practice.
- 6) The analysis shows that the main actual reason high non-additivity is not the EKS method *per se* but the weakness of BH-PPPs due to insufficient Quality (Consumer products, Construction) and Productivity adjustments (Non-market services) as well as very different approaches used by the EU-OECD and other ICP Regions for many important areas (Housing rents, Education, Health, Construction). It is more desirable to focus the efforts on the improvement and unification of the methods used by the Regions for several important areas (Housing rents, Education, Health, Construction) which can bring quasi-additive results than on the production and the publishing of an alternative set of the results.
- 7) The researchers should have a possibility to produce the ICP results by use of alternative estimation methods and approaches for own analyses and be responsible for these results. However, it is not desirable to produce and publish officially an alternative set of the ICP results. It is better to inform users that non-additivity of the EKS results is relative and the degree of non-additivity depends on the presentation of PPPs and Volumes. Different scaling of official published EKS-PPPs and Volumes can be helpful for the purposes of the different analyses.
- 8) Presence of BHs with negative expenditure introduces distorting effect in the PPP calculations as well as in the structural analysis. The investigations on special treatment of negative expenditure in the aggregation procedures and the structural analysis are desirable.

	ICP 2017 (Global)	Real values (mio.USD-W)	USA	ALB	AUS	AUT BE	L BGR	R BIH	CAN CI	IE CHI	. COL	CRI	CYP	CZE	DEU	DNK	ESP	EST FI	FRA	GBR	GRC	HRV	HUN	IRL	ISL	ISR	ITA	JPN	KOR	LTU L	UX LVA	MEX	MKD	MLT	MNE NLD	NOR	NZL	POL	PRT	ROU	RUS	SRB	SVK SVN	SWE	TUR
Gerardi RV	1501000	GROSS FIXED CAPITAL FORMATION	2 969 720	4 402	176 477	82 850 102	926 138	22 4 289	238 047 125	377 58	155 59 1	5 870)9 5 267	58 798	591 471	52 548	275 745	6 494 37 9	903 442 18	81 421 28	89 28 14	7 13 576	37 262	2 104 700	3 260	49 970	346 787	827 325	417 67	3 10 147 10	108 6 6	93 260 97	5 3 604	2 472	1 530 139 5	16 53 8	71 27 291	103 955	40 824	62 569	363 064	9 518	21 401 9 77	71 100 066	5 398 004
		% Diff G-RV / scaled EKS-RV	26.7	-2.5	5.6	11.0 9.	0 0.8	1.3	4.2 26	5.8 0.0	45	0,4	11.4	6.8	13.7	13.7	15.8	3.2 4.	5 6.0	9,3	7.2	14	3.3	22.6	13.4	7.8	6.6	22.0	1.9	3.7	1.3 3.6	0.7	-0.7	3.9	-4.0 10.4	1.1	18.9	3,9	2.7	-0.8	5,9	2.7	5.4 6.8	19.8	4.6
		Calculation by EKS-PPPs scaled to ICF	143 by XRs	S																																									
RV-EKS	1501000	GROSS FIXED CAPITAL FORMATION	2 343 010	4 514	167 169	74 650 94	421 137	12 4 236	248 539 98	908 58	140 61 9	4 86	2 4730	55 049	520 024	46 231	238 068	6 292 36 3	264 417 18	3 385 30	02 26 25	2 13 391	36 081	1 85 380	2 874	46 343	325 184	678 244	410 03	8 9783 9	246 64	50 259 08	7 3 630	2 379	1 594 126 3	8 53 2	89 22 946	100 029	39 736	63 043	342 691	9 271	20 307 9 14	17 83 503	3 380 554
PPP-EKS	1501000	GROSS FIXED CAPITAL FORMATION	1.705	84.312	2.615	1.167 1.	093 1.3	71 1.334	1.975 1.	653 653	486 3228.9	8 725.06	62 0.894	22.712	1.280	9.970	0.911 (.938 1.4	47 1.23	7 0.92	27 0.88	5 5.510	239.227	7 1.092	199.136	5.705	0.928	191.565	1410.74	1 0.864 1	153 0.86	60 18.71	5 38.299	0.975	0.726 1.1	7 15.1	39 2.822	3.486	0.828	3.049	58.019	91.002	0.885 0.86	1 13.926	2.459
NV	1501000	GROSS FIXED CAPITAL FORMATION	3 995 295	380 551	437 223	87 126 103	172 187	95 5 653	490 903 163	532 37 993	686 200 075 0	0 6 288 03	37 4231	1 250 278	665 889	460 936	216 838	5 899 52	486 515 92	6 357 08	80 23 24	3 73 785	8 631 567	7 93 260	572 386	264 384	301 831	129 927 900	578 456 89	3 8 4 9 10	658 5 5	54 4 848 78	8 139 018	2 3 18	1 157 148 6	0 809 3	36 64 751	348 735	32 888	192 239 1	9 882 646	843 695 4	17 965 7 87	/5 1 162 845	935 656
RV-EKS	1501100	MACHINERY AND EQUIPMENT	1 369 341	814	60 468	29 743 41	513 54	52 1781	76 983 51	534 22	868 16.6	4 35	38 2 262	24 956	252 739	20 317	80 776	2 595 14 3	395 105 68	59 133 00	01 11 90	1 4 992	17 005	5 21 822	1 587	15 094	119 013	405 358	137 26	9 4 250 5	491 27	73 122 30	0 993	899	487 44.7	ið 155	89 14 662	47 455	10 973	20 435	122 428	3 924 4	11 623 442	20 40 980	97 095
PPP-EKS	1501100	MACHINERY AND EQUIPMENT	0.841	95.347	1.329	0.788 0.	762 1.3	51 1.484	1.134 0.	.911 573	.533 3144.7	6 599.05	4 0.744	19.326	0.718	6.465	0.716 (.727 0.8	23 0.78	0 0.60	03 0.80	5.312	210.499	9 0.761	112.661	4.180	0.713	101.308	1226.65	2 0.690 0	773 0.74	2 16.46	7 43.021	0.803	0.715 0.70	8 8.4	2 1.318	2.848	0.845	3.295	43.039	91.303	0.733 0.72	5 7.700	2.901
NV	1501100	MACHINERY AND EQUIPMENT	1 151 641	77 644	80 354	23 447 31	625 73	66 2 643	87 273 46	968 13 115	599 52 278 0	0 21196	16 1 683	482 298	181 493	131 349	57 869	1 887 11 1	350 82.40	07 80 16	67 958	26 517	3 579 525	5 16 603	178 775	63 091	84 828	41 066 073	168 381 21	7 2 932 4	244 2.03	57 201395	2 42 733	722	348 35.2	57 132 0	56 19 319	135 168	9 275	67 338	5 269 135	358 318	8 518 3 20	JA 315 550	281 648
RV-EKS	1501200	CONSTRUCTION	497 894	3 353	61 656	23 347 31	355 64	95 2 279	113 062 20	371 27	098 34.6	6 370	56 1735	18 945	153 086	13 772	51 002	2 700 13	560 153 15	5 126 13	33 10 19	0 6 482	15 270	0 13 574	925	16 375	117 344	157 920	171 10	3 4 252 3	616 28	50 124 11	8 2 3 3 2	983	951 40 8	8 23 4	85 6 528	41 339	19 577	37 220	125 378	3 817	7 445 3 24	16 20 380	221 258
PPP-EKS	1501200	CONSTRUCTION	3.296	86.892	4.327	1.685 1.	537 1.3	82 1.197	3.009 3.	.001 764	.217 3675.4	3 897.35	6 1.041	25.878	2.095	15.703	1.112	.171 2.2	68 1.80	1.33	36 0.94	5.759	262.659	9 1.501	338.008	8.807	1.166	348.456	1714.69	6 1.016 1	641 0.98	5 21.71	6 36.866	1.170	0.756 1.6	8 22.8	26 5.398	4.095	0.831	2.923	76.930	87.317	1.038 0.99	1 24.634	2.256
NV	1501200	CONSTRUCTION	1 641 291	291 320	266 800	39 343 48	187 8 9	76 2 728	340 154 61	129 20 708	755 127 449 0	0 3 379 86	51 1806	490 258	320 730	216 258	56 722	3 162 30 9	975 275 69	168 54	43 9 59	3 37 328	4 010 729	9 20 378	312 812	144 215	136 787	55 028 049	293 390 25	3 4 3 18 5	935 2.8	08 2 695 39	2 85 972	1 1 4 9	719 69 0	9 536 0	56 35 237	169 288	16 262	108 801	9 645 316	333 312	7 732 3 21	18 502 052	2 499 220
RV-EKS	1501300	OTHER PRODUCTS	1 103 400	136	53 189	29 110 29	559 20	44 235	48 818 52	158	578 7.8	2 13	58 1000	14 884	184 286	17 819	140 284	1 1 30 9 !	993 179 26	52 159 25	53 5 40	7 2 085	5 031	1 67 177	716	17 930	108 249	271 480	108 17	7 1543	581 9	65 812	2 280	571	136 52.2	13 9	82 6 025	14 978	10 075	5 431	111 795	1 867	2411 206	i5 38 596	68 864
PPP-EKS	1501300	OTHER PRODUCTS	1.090	85.186	1.693	0.836 0.	790 1.20	00 1.200	1.300 1.	.063 550	.188 2601.4	8 576.28	7 0.742	18.659	0.888	6.360	0.729 (.753 0.9	67 0.88	0 0.68	BO 0.75	4.767	206.987	7 0.838	112.887	3.183	0.741	124.627	1078.65	6 0.777 0	825 0.71	4 17.16	9 36.858	0.784	0.664 0.85	io 10.0	6 1.692	2.956	0.729	2.965	44.440	81.448	0.711 0.70	4 8.945	2.248
NV	1501300	OTHER PRODUCTS	1 202 363	11 586	90 069	24 335 23	361 2.4	53 282	63 476 55	434 4 169	332 20 348 0	0 788 56	51 742	277 722	163 666	113 328	102 247	850 9	61 157 82	26 108 37	70 4 06	3 9 940	1 041 313	3 56 280	80 799	57 078	80 217	33 833 779	116 685 42	3 1 199	480 68	39 139 44	4 10 314	447	90 44 3	4 141 2	54 10 194	44 279	7 350	16 100	4 968 195	152 065	1715 145	3 345 243	3 154 788
RV as Sum	1501000	GROSS FIXED CAPITAL FORMATION	2 970 634	4 303	175 313	82 200 102	428 13 9	91 4 295	238 863 124	062 57	544 59 1	86	3 4 9 97	58 786	590 111	51 908	272 062	6 425 38	049 438 OT	6 418 38	87 27 49	8 13 560	37 305	5 102 573	3 228	49 400	344 606	834 758	416 54	9 10 044 9	688 6 5	38 254 54	0 3 605	2 452	1 574 137 8	13 53 0	56 27 216	103 771	40 626	63 085	359 600	9 609 1	21 479 9 73	J1 99 957	387 218
		% Difference (RV by scaled EKS-PPP 1	'otal =100)																																										
	1501000	GROSS FIXED CAPITAL FORMATION	26.8	-4.7	4,9	10.1 8.	5 2.0	1.4	-3.9 25	i.4 -1.0	-4.6	0.0	5.6	6.8	13.5	12.3	14.3	2.1 4.9	5.0	8.6	4.7	1.3	3.4	20.1	12.3	6.6	6.0	23.1	1.6	2.7	.8 2.0	-1.8	-0.7	3.1	-1.3 9.1	-0.4	18.6	3.7	2.2	0.1	4.9	3.6	5.8 6.4	19.7	1.8
		Calculation by EKS-PPPs to USD																																											
RV-EKS	1501000	GROSS FIXED CAPITAL FORMATION	3 995 295	7 697	285 056	127 294 161	006 23 3	82 7 223	423 809 168	658 99	140 105 6	0 1478	8 8 066	93 869	886 744	78 833	405 954 1	0 729 61 1	337 711 38	80 657 01	16 44 76	6 22 834	61 525	5 145 590	4 901	79 023	554 504	1 156 540	699 19	5 16 682 15	766 11 0	16 441 79	5 6 190	4 056	2 718 215 4	90 8	58 39 127	170 570	67 757 '	107 500	584 355	15 809 3	34 627 15 59	142 389	648 919
PPP-EKS	1501000	GROSS FIXED CAPITAL FORMATION	1.000	49,444	1.534	0.684 0.	641 0.8	04 0.783	1.158 0.	.970 383	.232 1893.5	8 425.20	0.525	13.319	0.751	5.847	0.534 (.550 0.8	49 0.72	5 0.54	43 0.51	3.231	140.293	3 0.641	116.782	3,346	0.544	112.342	827.31	8 0.507 0	676 0.50	4 10.97	5 22.460	0.572	0.426 0.69	0 8.9	07 1.655	2.045	0.485	1.788	34.025	53,368	0.519 0.50	15 8.167	1.442
NV	1501000	GROSS FIXED CAPITAL FORMATION	3 995 295	380 551	437 223	87 126 103	172 187	95 5 653	490 903 163	532 37 993	686 200 075 0	0 6 288 03	37 4231	1 250 278	665 889	460 936	216 838	5 899 52	486 515 92	26 357 OB	80 23 24	3 73 785	8 631 567	7 93 260	572 386	264 384	301 831	129 927 900	578 456 89	3 8 4 9 10	658 5 5	54 4 848 78	8 139 018	2 3 1 8	1 157 148 6	10 809 3	64 751	348 735	32 888	192 239 1	9 882 646	843 695 4	17 965 7 87	/5 1 162 845	935 656
RV-EKS	1501100	MACHINERY AND EQUIPMENT	1 151 641	685	50 855	25 015 34	913 45	85 1 498	64 744 43	341 19	232 13 9	29	76 1902	20 988	212 558	17 087	67 934	2 183 12	107 88 86	111 8	56 10 00	9 4 199	14 301	1 18 353	1 335	12 695	100 092	340 913	115 44	6 3 574 4	618 23	32 102 85	7 835	756	410 376	19 13 1	11 12 331	39 910	9 229	17 186	102 964	3 301	9775 371	17 34 465	81 659
PPP-EKS	1501100	MACHINERY AND EQUIPMENT	1.000	113.370	1.580	0.937 0.	906 1.6	07 1.764	1.348 1.	.084 681	.951 3739.2	1 712.29	5 0.885	22.979	0.854	7.687	0.852 (.865 0.9	79 0.92	7 0.71	17 0.95	6.316	250.291	1 0.905	133.958	4.970	0.848	120.459	1458.53	2 0.820 0	919 0.88	2 19.58	0 51.154	0.955	0.850 0.93	7 10.0	3 1.567	3.387	1.005	3.918	51.175	108.563	0.871 0.86	12 9.156	3,449
NV	1501100	MACHINERY AND EQUIPMENT	1 151 641	77 644	80 354	23 447 31	625 73	66 2 643	87 273 46	968 13 115	599 52 278 0	0 21196	16 1683	482 298	181 493	131 349	57 869	1887 111	350 82.40	07 80 16	67 958	7 26 517	3 579 525	5 16 603	178 775	63 091	84 828	41 066 073	168 381 21	7 2 932 4	244 2 0	57 2 013 95	2 42 733	722	348 35.2	57 132 0	6 19319	135 168	9 275	67 338	5 269 135	358 318	8 518 3 20	JA 315 550	281 648
RV-EKS	1501200	CONSTRUCTION	1 641 291	11 052	203 247	76 963 103	362 214	11 7513	372 705 67	152 89	328 114 3	9 12.4	6 5718	62 453	504 643	45 397	168 127	8 902 45	030 504 86	69 415 79	94 33 59	2 21 368	50 336	6 44 747	3 051	53 980	386 822	520 577	564 03	7 14 016 11	921 9 3	85 409 15	2 7 687	3 239	3 134 134 8	8 77 4	16 21 519	136 273	64 536 4	122 694	413 305	12 583 1	24 543 10 69	<i>i</i> 9 67 183	3 729 371
PPP-EKS	1501200	CONSTRUCTION	1.000	26.359	1.313	0.511 0.	466 0.4	19 0.363	0.913 0.	910 231	.829 1114.9	4 272.2	6 0.316	7.850	0.636	4.764	0.337 (.355 0.6	88 0.54	6 0.40	05 0.28	6 1.747	79.679	9 0.455	102.536	2.672	0.354	105.706	520.16	1 0.308 0	498 0.29	9 6.58	8 11.183	0.355	0.229 0.5	2 6.9	4 1.637	1.242	0.252	0.887	23.337	26.488	0.315 0.30	1 7.473	0.684
NV	1501200	CONSTRUCTION	1 641 291	291 320	266 800	39 343 48	187 8 9	76 2 728	340 154 61	129 20 708	755 127 449 0	0 3 379 88	51 1806	490 258	320 730	216 258	56 722	3 162 30 9	975 275 68	2 168 54	43 9 59	3 37 328	4 010 729	9 20 378	312 812	144 215	136 787	55 028 049	293 390 25	3 4 3 18 5	935 2.8	08 2 695 39	2 85 972	1 1 4 9	719 690	9 536 0	56 35 237	169 288	16 262 4	108 801	9 645 316	333 312	7 732 3 21	18 502 052	2 499 220
RV-EKS	1501300	OTHER PRODUCTS	1 202 363	148	57 959	31 720 32	210 2 2	28 256	53 196 56	836 8	258 8 5	3 14	91 1 090	16 219	200 815	19 417	152 866	1 231 10	390 195 34	AD 173 53	36 589	2 2 272	5 482	2 73 202	780	19 538	117 958	295 829	117 87	9 1 681	633 1 0	51 885	0 305	622	148 56 9	12 152	47 6 566	16 321	10 979	5 918	121 821	2 034	2 627 2 25	i 42.058	3 75 041
PPP-EKS	1501300	OTHER PRODUCTS	1.000	78.174	1.554	0.767 0.	725 1.1	01 1.101	1.193 0.	.975 504	.903 2387.3	5 528.85	5 0.681	17.123	0.815	5.836	0.669 (.691 0.8	87 0.80	8 0.62	24 0.69	4.374	189.951	0.769	103.596	2.921	0.680	114.369	989.87	4 0.713 0	757 0.65	5 15.75	6 33.825	0.719	0.609 0.70	0 9.2	65 1.553	2.713	0.669	2.721	40.783	74.744	0.653 0.64	6 8.209	2.063
NV	1501300	OTHER PRODUCTS	1 202 363	11 586	90 069	24 335 23	361 2.4	53 282	63 476 55	434 4 165	332 20 348 0	0 788 56	51 742	277 722	163 666	113 328	102 247	850 9 (561 157 83	26 108 37	70 4 06	3 9 940	1 041 313	3 56 280	80 799	57 078	80 217	33 833 779	116 685 42	3 1 199	480 61	39 139 44	4 10 3 14	447	90 44 3	4 141 2	54 10 194	44 279	7 350	16 100	4 968 195	152 065	1715 145	3 345 243	3 154 788
RV as Sum	1501000	GROSS FIXED CAPITAL FORMATION	3 995 295	11 885	312 061	133 698 170	486 28 2	24 9 267	490 645 167	328 116	818 136 8	3 16 8	3 8710	99 660	918 016	81 902	388 928 1	2 316 68)26 789 07	701 18	86 49 49	3 27 839	70 120	0 136 302	5 165	86 213	604 872	1 157 320	797 36	2 19 271 17	172 127	78 520 85	9 8 828	4617	3 691 229 3	1057	74 40 416	192 504	84 743 ⁴	145 797	638 090	17 919 :	36 945 16 66	57 143 707	886 071
		% Difference (RV by EKS-PPP to USD)	Total =100)																																										
	1501000	GROSS FIXED CAPITAL FORMATION	0,0	54,4	9,5	5.0 5.	9 20,7	7 28.3	15.8 -0	.8 17.3	3 29,5	14.2	8.0	6.2	3,5	3,9	-4.2	4.8 10.	0 10.9	6,7	10.6	21.9	14,0	-6,4	5,4	9,1	9,1	0,1	14.0	15.5 8	.9 16.0	17.9	42.6	13.8	35.8 6.5	16,4	3.3	12.9	25.1	35.6	9,2	13.3	6.7 6.9	0,9	36,5

Annex 1: Global ICP 2017: Average percentage absolute deviations: GFCF-Total vs Sum of 3 categories

	ICP 2017 (Global)	Real values (mio.USD-W)	AGO	BDI	BEN	BFA B	WA C	AF CI	V CN	R COD	COG	COM	C	W D.	I DZA	EGY	ETH	GAB	GHA	GIN	GMB	GNB	GNQ	KEN	LBR	LSO	MAR M	OG MLI	MOZ	MRT	MUS	IWI 1	NAM NE	R NGA	RW	A SDN	SEN	SLE	STP	SWZ	SYC TO	D TG	30 T	UN	TZA U	IGA 7	ZAF ZA	WB Z	ZWE
Canadi DV	4004000		AC 443	107		4.00			1000 7	070 40	FTA			784	A40 70	a7 50.0			7 41 100	4.004	-		4.10	40.000	4.000	650						707	4.005			007 7 004	C 444		-					7.000	40 700	0.050	F7 000 4	A 447	4.000
Gelardi Kv	1301000	UNITED CAPITAL FORMATION	JO 41J	45/	2001	3 308 3	09/4 00 /	.398 8	1 180	9/0 10: 0 0.0	208 J81		(1)	303 0 0	640 /04	8/ 393	19 24 34	8 302	4 14 400	10,4	200	80	1400	19 300	1003	009	40404	2400 308	7 0	20	12 3012	151	1900 2	000 4/1	40 1	921 7991	0 195	4/1	95	390	4//	1.500 N.C. A	1101	1 389	12/55	8302 C	3/ 892 10	J 50/	1828
)) UIII GHAV / SCAIEU ENGHAV	11,1	0.0	-0.5	0.0 1	3.Z l	10 -1	4 1.	0.0	0.3	-23	4	s 1.	5 1.0	21	14.0	3.3	4.)	-479	•0.2	۹.1	4.5	414	LU	3.2	0.9 0	2 -1.5	1.0	-1.2	4.0	4.0	4/ 4/	• •1	4.3	0 2.8	-24	N /	4.1	NA.	0.4 -10		.0 4	9.4	1 64	2 1	M2 0.	J (-0,0
		Colouistian by EVC DDDe cooled to ICD	H AD hu VDe																																														
DV EVC	4504000	CODES EVED CADITAL CODMATION	20.02	125	1 500	2540 8	5 976	115 0	19/7 0	(m) (C)	140 150		124	200	0C/ CN	NC 67.4	10 14 44	c 10	20 4E 440	4 704	917	00	4 522	60.017	002	612	45.000	1947 949	n 9302	20	M 6.100	760	2.064 - 5	770 404	70 4	0// 7 776	6.994	400	404	#1	514	1 540	4 454	7 104	42 402	0 110	EE 700	1.044	4 027
RV-ENJ	1501000	COOSS FIXED CAPITAL FORMATION	100 355	400 (705 360 6	2 308	0 NOC 0	02/0 022 57	390 0 190 527	0.04/ 0 0.02 E7E	120 107	240 J 30 134 056 07	0 /00/	221 300 44	300 5 247 242	004 094 142 440 0	UD 3/1 43 40.0	0 2141	0 200 4 697 AG	06 10 14U 50 <i>4</i> 674	1/01	307	00 567 202	1 333	19 02/	900 (17 220	000	40 008	2 317 3 12 : N40 EEN EN	E EE EAS	200	14 07004	700 765 4	2001 2	113 900 AND DATA	N 040	770 44 600	0 2 2/1 500 2/1	403	101 20 A7A	42,020	304 45 276 506	010 000 000	1 101	7 201 2 544 - 26	13 192	0 320 0 30 547 7	20106 10420	3 014 0 647	1 937
rrr•snə W	1501000	CONCESSIVED CAPITAL FORMATION	0.424.055	770 074 4	11.303 122 770 4	320,301 3 073.073 54	1.832 311 3.405 33	1013 301 7 402 4 747	.300 010 1520 4.070	140 1340.3	224 000.81	2 420.0 5 0/1	100 II 240 0	7.702 402	913 110.0 903 7.004 (10 10.0	a 22.31	1 021,40 n 4 700,63	N 4.071	3000.00/	40,330	JUI 203	001.040	00.220	121.320	0.010	0.102 3130	1.010 303.30 2700 4792.00	0 00.042	203.2	13 34,301 70 403.001	100.100 1	0.400 4.500	992 397.9	04 343. 24 4754	201 01 000	000.241	1001000	22.414	10.020 6 227	7757 00	1.030 30 1.405 cm	1.030	2.JII 20 10.102 2/	ANA 200 24 0	0.011 1.	2.403 3 H0.00/ 0	1.011	2.424
DV EKG	4504400		0 131 000	470	100 / 40 I	4 474	011	475 1	1000 40/0	123 23 0001 592 91	022 0 U Z 30 024 E A	0 54	00 0	446	002 03 0 504 92	53 0100 60 14 9	10 430 00 10 977	0 1/55 50	00 TU 724	10 5/0 0/0	14 000	40713	C/H HCD 004	032 231	120211	422	49 500	5103 1 102 00 552 0/	12 100 300 In 101	1041	10 103 002 17 9 600	000 045 2	0400 1000 4467 - 4	407 04.0	34 1 131 100	ADD 2 041	4 704	4 334 200	2 201	0 331	113/ 003	9450 04 006	440 I	4 652	444 200 31 30 6 747	10 101 01	10 004 04	1 002	4 2121
DDD_EKC	1501100	MACHINERY AND EQUIPMENT	205 257 2	1/0 2002 272 6	1 34 66 678	14/4 617 3/2 42	524 66	110 4	204 22	937 1991 T	001 34 709 009 53	9 5 /00 9	02 147 43	140	304 <u>22</u> 1 156 135 P	39 210 3/ 13.6	0 211	3 6/2 8	91 3319 66 5,120	117	50 /30	501 303	CEU DAA CAA	0 000	330 173,107	16 175	7 797 206/	105 672 73	105 UI 85133 3	274.54	47 2000 18 20.744	3/0 961 3/9 4	5049 740	624 204 2	03 As 4064	409 0 040 5/8 10 766	69/ 157	202 030 13301	30 24 764	16 272	010 010	900 750 66	413 / 292	2 040 27	J /4/ 795 /97 /9/	1900 Z	16 020 11	2 0/4	1 200
W	1501100	MACHINERY AND EQUIPMENT	1 59/ /01	2003.312 0	100.010	010.5/5 //	7 222 11	5.123 013 6.159 0.101	1304 WEE 1325 1577	16/ 5 29/	100 300.33	2 482.0 2 /0	241 142 521 1	7.641 1037	600 123. GM 3 8744	34 13.0 17 109.1	10 JT.JZ 16 97.05	3 040.00 2 20/10	10 J.HJZ 30 30 075	7 223 625	10.100	201.100	/50 000	022.050	CQ 751	1 000	105 7/0 2 10	1000 072.10 1070 022.00	0 00.130	201.0	10 JJJ.141	215.0/7 1	2.340 TTU 2.440 QE7	001 004.0	4J 1004. 0/ /07	952 /1 270	1 105 705	2 603 912	1.0/1	2 100	5 227 E00	1.130 00- 1.536 07	4.200 I 70.200	1077 10	00.401 403	2,010 1 20061 2	10.003 12 107 nan 2	5.170	1./00
RV.FKS	1501200	CONSTRUCTION	20 710	248	1 552	1843	1 015	910 2 ISI 919 8	1357 8	170 131	100 10001 041 130	1	108	215	201 41	47 151	10 07 00 18 01 00	0 0042.	7 6514	817	120	10	562	11 087	615	406	25 191	1763 160	1 2543	00.0	51 103 044 05 2 200	223 347	774 4	236 214	37 101 117 1	452 3 00F	2 573	2000012	1241	214	149	1300 21 130	684	5402	6106	704	13.457	7 080	615
PPP_EKS	1501200	CONSTRUCTION	145 728	1587 AR7 A	01 651	152 541 7	686 /0	1 6/6 A75	125 521	308 1207 2	20 762 05	2 274 7	100	a 053 232	135 07 1	41 JJ1 AA 88	17.82	4 570 19	1 0 304 1 1 10 2	8653 889	12 580	JE 731	510 100	68 303	01 211	10.050	5 877 2534	103 179 80	ADD AN A	282.00	5J 2200 10 30 607	700 817 1	102/ //7	736 308 2	22 836	202 12 530	/08 011	7334 204	20 476	10 111	1/ 618 5/8	172 17	3 /80	2118 21	172 610 331	21 788	0.602 7	7 631	1 025
W	1501200	CONSTRUCTION	4 333 958	393,797	762 937	R24151 2	.000 401 7 781 10	5 285 2 07	1236 2 221	374 18 (85)	RET 192.00 RET 2.544.92	1 10	285 3	6 571 67	529 4 268 1	17 0.0 20 2121	7 17463	6 1 380 8/	10 4.012 11 26 217	7 069 885	164	12.113	291.485	758 281	56 128	4 980	149 155 4 49	NING R11 21	5 119.273	202.00	57 67 509	206 574	9.224 553	247 62931	50 000.	222 12.000	1 283,875	1 593 803	1013	2.058	2 168 18	1953 - 30	22.840 1	11.413 15	12.010 332	70 300 8	17.002 5	31 097	630
RVJEKS	1501200	OTHER PRODUCTS	700	22	270	211	172	4	702 1	300	74 3	,	28	111	60 4 LOUI	06 12	2 0	7 4	50 2670	154	1 1	15	201 400	100 201	20120	84	6 399	164 50	5 116	2004	01 01 02.5	70	45	263 28	60 1214	64 <i>U</i>	073	6	1010	2000	2100 10	195	67	638	1 201	71	851	415	2
PPP_FKS	1501300	OTHER PRODUCTS	294 839	1997 488 6	50 964	603 878 13	393 65	7 087 673	812 627	666 1880 8	17 898.28	6 497 S	86 12	1 996 210	20 1246	97 13.5	a 31 27	1 642 33	5 5 424	10258 702	59 239	693 581	659 421	106 716	171 566	16 270	7 774 3973	674 671 06	2 66 513	2717	40.469	859 955 1	1029 709	689 3897	94 1076	466 10 841	688 485	10590 158	24 523	16 509	16 956 645	502 66	1 289	3 005 27	782 285 431	AL MA I	16 187 12	2311	1 219
W	1501300	OTHER PRODUCTS	212 796	43141	181 323	129.147	2 313	5960 477	967 872	585 138	312 28.49	9 13	195 1	3.577 12	RR 548	13 16.9	28.98	6 32.39	6 14 532	1.576.563	51	10.503	144.063	5020	338	1.360	49.667 65	1695 338.76	4 773	108.4	12 688	67.527	728 189	704 1 1156	81 69	289 521	660,700	66.650	7	112	362 11	9706 4	14 501	1918 3	340.676 3	13.448	13 782	5113	3
RV as Sum	1501000	GROSS FIXED CAPITAL FORMATION	35 825	439	2 565	3 531	5 999	395 8	1313 8	102 161	876 3.92	0	719	540	855 71	43 583	0 2472	8 303	34 14 732	1685	243	81	14/3	19 800	1014	701	45 349	2480 313	6 3 590	27	1 5121	74	1976 2	696 473	68 1	956 7 797	5 250	476	100	414	480	1422	1 170	7 692	13 053	8978	68 364 1	0 378	1855
		% Difference (RV by scaled FKS-PPP T	otal =100)																											-																			
	1501000	GROSS FIXED CAPITAL FORMATION	15.8	10	22	-0.3 1	37 (4 -0	2 10.7	94	-11	0	1 4	0 25	2.0	155	58	.27	-10	46	-52	40	0.9	31	7.0	0.7 7	0 02	57	.))	.26	-33	42 3	.,,1	6.1	1 03	-13	.27	-0.7	-14	49 -6	2 1	1 5	57	41 7	18 (39 5	18	42
			1010													-	IVIV			in e			IIV	***	•		•		•										VII			•							
		Calculation by EKS-PPPs to USD																																															
RV-EKS	1501000	GROSS FIXED CAPITAL FORMATION	52 733	742	4,277	6 037 8	R 997	674 14	1234 13	846 26	001 611	3	377	1002 1	673 118:	51 974	6 36.51	9 4 89	1 25 816	2 901	573	146	2615	33 468	1 677	1117	76 801	3 952 5 33	8 5790	47	8 8 963	1311	3515 4	739 82 9	92 3	144 13 258	9.073	834	172	699	860 (7 585	1963 1	12 415	77 494	14200 1	12147 1	6 735	3 302
PPP-EKS	1501000	GROSS FIXED CAPITAL FORMATION	116,266	1046,951 3	35,189	310.217 5	.825 33	212 333	042 337	286 908.0	102 502.56	4 251.3	196 6	7.626 124	861 64.9	85 6.3	5 13.43	6 367,96	3 2,740	5504,866	28,460	332,632	342.095	50,563	74.666	7,437	3,966 1850	872 333.98	2 32.572	157.88	81 20.514	457,873	1.079 335	704 203.7	32 556.	991 6.854	343,796	5219.673	13,180	7.640	9.017 344	142 32	9.516	1,473 15	531,249 225	51.068	7,295 5	5.640	0.642
W	1501000	GROSS FIXED CAPITAL FORMATION	6 131 055	776871 1	433 749 1	872.842 53	2 405 22	7 403 4 740	1538 4670	123 23 608	622 3 072 36	5 94	B10 E	7 793 183	862 7 691 (99 618 5	490.68	0 1 799 53	35 70 724	15 970 073	14,886	48 713	894 475	692 251	125 217	8 310	304 571 7 31	3 769 1 782 68	2 188 585	754 7	78 183 862	600 049 2	8 400 1 590	929 16 908 1	34 1751	364 90 869	3 119 399	4 354 266	2 261	5 337	7 757 88	9495 64	16 730 1	18 283 34	444 298 31 9	66 101 8	18 094 9	4 382	2 121
RV-EKS	1501100	MACHINERY AND EQUIPMENT	4512	143	617	1239	766	147 2	2737 2	130 2	407 46	2	69	122	424 19	59 18 4	0 233	8 50	12 4 6 4 1	601	144	29	583	7 289	333	102	11 421	465 79	1 783	11	33 2 193	318	973 1	007 202	59	370 3 232	1433	212	42	163	261	762	352	1 389	4 833	1602	20 231	2 417	1041
PPP-EKS	1501100	MACHINERY AND EQUIPMENT	351,190 (2382.078 7	92,703	733.923 16	.080 79).854 802	.959 740	560 2237.4	416 1080.27	9 586.0	112 14	4.078 244.	294 149,2	64 16.2	8 37.24	4 765.57	9 6,458	12195,702	70.664	827.691	787.675	127,453	206,293	19.233	9,259 4713	.393 799.90	6 78.640	322.8	4 47,254	1	8.963 844	964 468.8	90 1265.	785 12.801	813,486	12680,174	29.445	19,467	20.022 772	576 78	9,856	3.543 33	312.040 52?	30.931 1	19.131 1/	4.553	1,430
W	1501100	MACHINERY AND EQUIPMENT	1 584 401	340 104	489 490	909 545 12	2 323 11	6 158 2 197	335 1 577	164 5 384	463 498 94	2 40	531 1	7 644 103	644 2 874 (47 298 4	15 87 05	8 384 29	38 29 975	7 323 625	10 190	24 097	458 926	928 950	68 751	1 969	105 749 2 19	3 976 632 68	2 61 578	365 83	31 103 644	325 947 1	8 448 850	958 9 499 2	94 467	853 41 370	1 165 725	2 693 812	1241	3 168	5 227 588	8 536 27	78 389	4 922 16	006 915 83	.82.261 31	,87 030 3'	5 172	1 488
RV-EKS	1501200	CONSTRUCTION	98 035	818	5115	6 077 16	6 203	697 14	363 13	776 45	957 11 00	9	357	1 105	958 144	40 1160	8 69 29	9 786	58 21 540	2 693	397	104	1 851	36 548	2 029	1 633	83 668	5811 557	3 8 383	32	78 7 252	945	2 550 4	073 67 3	04 4	787 12 877	8 483	716	163	671	488	1 089	2 255 1	17 807	20 127	23 079 1	43 256 2	3 370	2 0 2 7
PPP-EKS	1501200	CONSTRUCTION	44.207	481.572 1	49.145	137.272 2	.332 15).963 144	.135 161	175 393.5	537 231.17	2 112.	62 3	3.082 70.	510 29.5	30 2.6	3 5.40	6 175.75	0 1,217	2625,199	11.704	135,215	157,474	20.747	27.669	3.049	1.783 769	.036 145.55	2 14.229	85.54	9.312	218.663	3.617 135	823 93.5	04 253.	.672 3.804	151.347	2224.894	6.211	3.067	4,440 166	.382 14	3.632	0.643 7	750.078 10°	18.287	2.913 7	2.315	0.311
NV	1501200	CONSTRUCTION	4 333 858	393 727	762 937	834 151 - 31	7 780 10	5 285 2 070	1 2 36 2 220	374 18 085	847 2 544 92	4 40	285 3	6 571 67	529 4 268 3	39 303 1	37463	6 1 382 84	1 26 217	7 069 885	4644	14 113	291 485	758 281	56 128	4 980	149 155 4 48	9 098 811 21	5 119 272	280 48	67 67 529	206 574	9 224 553	247 62931	59 1214	221 48 979	1 283 875	1 593 803	1 013	2 058	2 168 181	1 253 32	23 840 1	11 443 15	.096 708 23 2	.70 392 4	17 282 5	A 097	630
RV-EKS	1501300	OTHER PRODUCTS	786	23	304	233	187	10	765 1	515	80 3	5	31	121	66 4	91 13	7 10	0 5	55 2 920	167	1	17	238	51	2	91	6 961	178 55	i0 127	4	35 342	86	49	287 31	19	70 52	1060	1	0	1	23	202	73	696	1 308	78	928	453	2
PPP-EKS	1501300	OTHER PRODUCTS	270.572	1833.080 5	97.384	554.175 12	.291 603	3.004 618	.352 576	.004 1726.0	166 824.35	0 456.4	47 11	1.955 193.	09 114.4	34 12.4	4 28.69	7 589.46	6 4.977	9414.332	54.363	636.494	605.146	97.932	157.445	14.930	7.135 3646	.565 615.82	8 61.039	249.3	12 37.138	789.174 1	1.710 651	276 357.7	11 987.	.864 9.949	631.818	9718.507	22.505	15.151	15.561 592	.372 60	6.860	2.758 25	.i53.281 40?	12.383 1	14.855 11	1.298	1.119
NV	1501300	OTHER PRODUCTS	212 796	43041	181 323	129 147 2	2 303	5 960 472	2 967 872	585 138	312 28 49	9 13	195 1	3 577 12	688 548	13 169	28 98	6 32 39	6 14 532	1 576 563	51	10 503	144 063	5 020	338	1 360	49 667 65	0 695 338 78	4 773	108 48	80 12 688	67 527	728 186	724 11156	81 69	289 520	669 799	66 650	1	112	362 119	9706 4	14 501	1918 3	340 676 3	13 448	13 782	5 1 1 3	3
RV as Sum	1501000	GROSS FIXED CAPITAL FORMATION	103 333	984	6 036	7549 11	7 157	854 17	1865 17	421 48	44 11 50	5	457	1349 1	448 168	90 1357	6 7264	6 842	25 29 100	3 461	542	150	2 672	43 888	2 364	1 827	102 050	6 455 6 91	4 9 292	48	47 9787	1 349	3 572 5	367 906	82 5	226 16 161	10 976	936	206	841	773 1	2 053	2 680 1	19 892	26 268	24759 11	64 414 2	6 239	3 070
		% Difference (RV by EKS-PPP to USD T	Total =100)																																														
	1501000	GROSS FIXED CAPITAL FORMATION	96.0	32.6	41.1	25.0 9	0.7 2	6.7 25	5 25	.8 86.3	88.2	21.2	3	.6 -1.	1 42.4	39.3	98.9	72.3	12.7	19.3	3.6	2.4	2.2	31.1	41.0	63.5	32.9 63	4 29.5	60.5	1.4	9.2	2.9	1.6 13.	3 9.3	66.	2 21.9	21.0	12.2	19.8	20.4	-10.2 -20	1.6 36	6.6 6	0.2	16.8 7	44 4	46.6 5f	ò.8 🕴	-7.0

Annex 1: Global ICP 2017: Average percentage absolute deviations: GFCF-Total vs Sum of 3 categories (cont.)

	ICP 2017 (Global)	Real values (mio.USD-W)	BGD	BRN	BTN	CHN	F NI	HKG	IDN	ND	KHM	LAO	LKA	MDV	MMR	MNG	MYS	NPL.	PAK	PHL	SGP	THA	TWN	VNM	ARG	BOL BRA	DOM	ECU	HND	HT	NIC	PAN	PER	PRY	SLV	URY	ARE BHR	IRQ	JOR	KWT	OMN	PSE Q	AT §	SAU
Correcti DV	4504000		440 700	E 694	2016	1 040 040	4.045	C4 400	570 400	4 400 040	9 507	7 6 /0	10.044	3.400	17 400	2.042	447 005	44 323	65 110	05 020	77 040	400.400	443.057	02 704	70.004	0.927 200.90	02.020	40 715	6 000	0 070	1.000	22.000	44.007	7.000	1015	e 400	400 404 40 00	10.440	0.000	44.050	10 550	3477 6	0.050 /	225 440
Ocidiui Kv	1301000	W DIFF C DV (appled EVC DV	110 /00	20 <u>2</u> 1	2010	4013010	1040	04 409	0/9 190	1 100 040	3 30/	1 040	30 811	2400	3/ 100	3013	11/ 200	11 332	00,000	90 909	11 040	130 420	113 20/	00 / 04 44 C	70 391	9 231 200 30	1 22 639	26 130	0 020	2010	2.4	23 002	99 201	1000	4 623	0400	109 494 12 004	33 410	9 900	41 200	20 330	31// 00	3200 L	200 140
)) Dill GHAV / Staleu ENGHAV	13.0	3,0	14.0	9.1	-0.0	0.2	10.0	ы	61	-2.0	-0.0	0.2	2.3	•1.0	4.0	2.0	-0.0	-1.1	-0.0	-1.3	-2.0	11.0	2.4	20 11	2.2	2.4	-0.0	3.0	2.4	2.0	2.1	2.0	-0.0	2.0	4.0 0.2	372	4.0	1.2	10.1	2.1 3.	A	1.0
		Coloulation by EVS DDDc cooled to ICD	4.42 hu VDe																																									
DV EVe	4504000	CODOSC EIVED CADITAL EODMATION	14J UY ANS	C 165	4 761	4.475.044	4.495	EA 900	400 700	4 453 053	2 250	7 8/2	20.002	1 2/2	25 244	1 001	444 000	60.072	20 000	07 010	00.045	444 674	445 604	75 022	69 740	0 004 077 00	2 24 640	10 0.00	C 0C/	1 616	2.046	22 400	12 421	6 052	1 010	6 9 9 9	405 220 42 05	24.000	0.404	40.745	16 016	244 6	1 601 1	101 010
DDD CKG	1501000	CROSS FIXED CAPITAL FORMATION	61 634	1 205	1702	44/39/1	1 722	00.506	490 730	1 100 000	3 330	7 040 5002 A2A	442 220	42 272	30 241	3 003 1760 120	2 052	75 705	75 052	9/ 020	4 538	24 770	31 006	15060 120	22 200	6 470 2 45	04012 0 000114 9	20 000	10 600	50 452	28 2/0	1 000	10 104	CC0 U 730 7513	4 039 0 00 P	0 332	2 835 0 34	34 000 4072 864	9 404	40 745	0.286	3764	1003 2	232 023
	1501000	CROSS FIXED CAPITAL FORMATION	C 510 050	C 070	91.001	25 172 205	1.000	575 001	4 270 574 700	40.010	0 702 201	J002.404	2,602,124	21 217	133.112 20 540 100	1703.123 2 900 350	3.03Z	230 704	10.000	2 052 520	102 200	24.113	50/ 250	1 100 //7/ 000	1 601 527	55 104 050 77	010 290	20,700	107.023	150 150	100 170	24.724	J.201	10 101.007	2.002	201 210	2.000 0.01	20 592 2/0	0.00Z	10.200	7./20	3.101 J	11/6 (C10 021
RV.EKS	1501000	MACHINERY AND FOLIPMENT	10 520 630	1./12	22/	826 442	500	100 STIC	501 210 314 100	972 947	1 083	1 530 214	12 105	31317 699	10 572	1 023 330	25 000	1 0/9	4 342 303	233 82	23 300	60 510 5 NAR CA	A1 750	12 256	25 602	JJ 124 JJ0 11	5 JUL JOU 1 A A55	6 673	3 000	130 130	1 550	1.124	44.047	2 004 4/0	1704	1 992	200,000 0,100	16 133	1 174	10/	2 472	659 1	7 500 /	100 511
PPP.FKS	1501100	MACHINERY AND FOLIPMENT	97 715	1 507	74 416	7 848	2 069	7 823	12020 2/3	52 350	4073 954	8520 022	148 654	16 900	1066 412 3	2927 245	3,876	90 283	07 230	50 461	1 638	32 553	22 603	20781 834	25 167	6 160 3 56	50 707	0 074	10 556	75 740	26 716	1 030	3.046	6370 553	0.906	24 957	3.076 0.35	1086 328	0.624	0.257	0 356	2744	1 362	2 911
W	1501100	MACHINERY AND FOUIPMENT	1 912 923	2 297	24.822	6 485 939	1229	161 419	717 377 037	14 255 856	4 414 087	13 261 653	1 799 424	11.629	11 274 000	2 367 834	100 428	175 909	1719.332	1 446 352	36,585	7 036 623 1	402 902	277 553 373	644 341	27 397 341 28	3 225 918	6.498	58.846	3967	41 40R	4561	42 699	15.327.251	1.626	R5 774	98,455 1.06	17 525 476	732	50	880	1806 9	0.551 1	292,600
RV-EKS	1501200	CONSTRUCTION	95 115	3 825	1 621	3 226 317	387	26 876	491 251	716.061	2 353	4 697	16 821	1688	22 805	2 078	77 931	7 612	34 944	55 907	29 783	60 521	40 848	65 533	43 084	3 362 143 77	6 18 266	20 873	3 014	2 813	1721	18 509	27 034	4 280	2 904	3 963	70 935 9 56	17 879	7 398	19 992	21 773	2 325 5	0 565	109 087
PPP-EKS	1501200	CONSTRUCTION	48,158	1.078	34.878	7.610	1.558	13,411	6683,831	33,943	2200.025	4430.641	90.821	11.092	565,293	436,498	2.534	65,196	60,483	34,682	1.611	19.621	31,484	12925.624	21,717	6,160 3,30	36,693	0.898	17,486	54,051	29.095	1.089	3.339	5846,589	0.711	48,841	2.601 0.28	1033.915	0.567	0.247	0.244	4.087	2.996	2,478
W	1501200	CONSTRUCTION	4 580 581	4 123	56 538	24 553 312	602	360 424	3 283 435 901	24 305 555	5 175 741	20 811 372	1 527 680	18 723	12 891 600 :	2 985 220	197 440	496 258	2 113 522	1 938 944	47 988	1 187 472 1	286 085	847 051 874	935 630	20 713 475 55	3 670 242	18 743	52 706	152 033	50 081	20 163	90 257	25 022 475	2 066	193 547	184 505 2 72	18 485 776	4 192	4 932	5311	9502 15	1 481 - 2	270 346
RV-EKS	1501300	OTHER PRODUCTS	373	283	42	536 908	68	6 977	28 738	173 166	29	1547	1211	57	2 352	678	11 496	1712	11 552	11 546	25 617	8 9 1 2	27 541	3 224	852	1 117 39 31	8 121	1 280	836	2	624	0	2 848	269	205	613	5 182 2	529	1 278	20 866	3 497	145	8 029	22 219
PPP-EKS	1501300	OTHER PRODUCTS	94.678	1.619	73.538	7.698	2.009	7.761	12866,616	49,915	3938.752	8351.392	144,561	16.842	1009.671	243.257	3,799	92,581	96,091	49.225	1.515	31.846	32.511	20432,110	25.312	6.280 3.61	51.502	0,981	19.527	72.958	26,749	1.019	3.098	6326,289	0.918	35,705	3.012 0.35	1079.722	0.612	0.259	0.353	2.718	3.377	2.880
NV	1501300	OTHER PRODUCTS	35 352	458	3 115	4 133 055	136	54 148	369 761 827	8 643 549	113 533	12 923 249	175 020	965	2 374 560	1 521 295	43 680	158 537	1 110 051	568 333	38 808	283 818	895 371	65 868 754	21 566	7 014 141 94	6 220	1 255	16 323	150	16 683	0	8 822	1 704 747	188	21 898	15 609	570 994	783	5 399	1235	393 2	7 115	63 985
RV as Sum	1501000	GROSS FIXED CAPITAL FORMATION	115 065	5 5 47	1 997	4 589 667	1 049	54 487	575 473	1 161 543	3 465	7 799	30 136	2 433	35 729	3 789	115 337	11 273	64 178	96 116	77 730	131 997	110 139	82 112	69 538	8 927 278 71	4 22 842	28 826	6 859	2 867	3 895	22 936	43 899	6 955	4 903	6 458	108 128 12 62	34 541	9 851	41 052	27 742	3 127 8	6 123 7	231 817
		% Difference (RV by scaled EKS-PPP T	otal =100)																																									
	1501000	GROSS FIXED CAPITAL FORMATION	13.9	3.6	13.4	2.5	-1.1	0.2	15.8	0.7	3,4	-0.5	-2.5	3.9	1.4	2.4	3.1	2.7	-2.6	-0.9	-3.1	-6.8	-4.7	9.4	1.2	-0.1 0.5	5.6	2.7	-0.1	9.2	2.1	2.0	1.8	1.5	1.3	2.0	2.7 4.7	1.4	3.9	0.8	7.0	0.5 1	1	-0.1
		Calculation by EKS-PPPs to USD																																										
RV-EKS	1501000	GROSS FIXED CAPITAL FORMATION	172 255	9 131	3 004	7 632 315	1937	92 691	847 057	1 967 564	5713	13 373	52 694	3 993	60 092	6 621	190 851	18711	112 302	165 452	136 833	241 406	197 123	127 929	117 215	15 235 472 82	36 901	47 862	11 705	4 479	6 507	38 363	73 551	11 685	8 251	10 797	179 591 20 55	58 089	16 172	69 479	44 208	5305 14	4 401 - 2	395 646
PPP-EKS	1501000	GROSS FIXED CAPITAL FORMATION	37.902	0.753	28.121	4.608	1.016	6.214	5159.720	23.992	1698.485	3514.216	66,462	7.843	441.657	037.492	1.790	44.396	44.014	23.896	0.902	14.531	18.183	9305.743	13.663	3.618 2.02	3 24.454	0.554	10.925	34.865	16.625	0.644	1.928	3599.035	0.470	26.046	1.662 0.18	629.759	0.353	0.149	0.168	2.206	1.878	1.585
NV	1501000	GROSS FIXED CAPITAL FORMATION	6 528 856	6 878	84 475	35 172 305	1968	575 991	4 370 574 766	47 204 960	9 703 361	46 996 274	3 502 124	31 317	26 540 160	6 869 350	341 547	830 704	4 942 905	3 953 630	123 380	3 507 913 3	584 358	1 190 474 000	1 601 537	55 124 958 77	902 380	26 496	127 874	156 150	108 172	24 724	141 778	42 054 473	3 880	281 219	298 569 3 79	36 582 246	5 707	10 380	7 426	11 701 27	1 146 - E	626 931
RV-EKS	1501100	MACHINERY AND EQUIPMENT	16 464	1210	281	695 053	500	17 354	46 664	229 023	911	1 308	10 180	579	8 891	869	21 790	1 639	14 870	24 106	18 780	52 617	35 112	11 232	21 532	3 741 80 41	3 747	5612	2 531	44	1 304	3 724	11 788	2 023	1 509	1 582	26 922 2 54	13 568	987	163	2 079	553 2	3 152	84 531
PPP-EKS	1501100	MACHINERY AND EQUIPMENT	116.187	1.899	88.484	9.332	2.460	9.302	15373.318	62.246	4844.072	10141.302	176.755	20.095	1268.000 2	2719.577	4.609	107.350	115.621	59,999	1.948	38.706	39.955	24710.319	29.925	7.324 4.24	4 60.292	1.158	23.252	90.022	31.766	1.225	3.622	7574.807	1.077	41.566	3.657 0.417	1291.681	0.741	0.306	0.423	3.263	3.998	3.461
NV	1501100	MACHINERY AND EQUIPMENT	1 912 923	2 297	24 822	6 485 939	1 229	161 419	717 377 037	14 255 856	4 414 087	13 261 653	1 799 424	11 629	11 274 000 3	2 362 834	100 428	175 909	1 719 332	1 446 352	36 585	2 036 623 1	402 902	277 553 373	644 341	27 397 341 28	3 225 918	6 498	58 846	3 967	41 408	4 561	42 699	15 327 251	1 626	65 774	98 455 1 064	17 525 476	732	50	880	1806 9	2 551 2	292 600
RV-EKS	1501200	CONSTRUCTION	313 543	12610	5 344	10 635 456	1 275	88 595	1 619 392	2 360 473	7 755	15 484	55 449	5 564	75 176	6 850	256 899	25 092	115 192	184 296	98 180	199 505	134 655	216 027	142 024	11 084 473 95	60 214	68 806	9 936	9 272	5 674	61 013	89 117	14 108	9 572	13 063	233 836 31 52	58 939	24 388	65 904	71 774	7 663 16	6 687 - <u>3</u>	359 604
PPP-EKS	1501200	CONSTRUCTION	14.609	0.327	10.580	2.309	0.473	4.068	2027.573	10.297	667.388	1344.056	27.551	3.365	171.485	435.769	0.769	19.777	18.348	10.521	0.489	5.952	9.551	3921.051	6.588	1.869 1.00	3 11.131	0.272	5.305	16.397	8.826	0.330	1.013	1773.591	0.216	14.816	0.789 0.08	313.643	0.172	0.075	0.074	1.240 (J.909	0.752
NV	1501200	CONSTRUCTION	4 580 581	4 123	56 538	24 553 312	602	360 424	3 283 435 901	24 305 555	5 175 741	20 811 372	1 527 680	18 723	12 891 600 3	2 985 220	197 440	496 258	2 113 522	1 938 944	47 988	1 187 472 1	286 085	847 051 874	935 630	20 713 475 55	3 670 242	18 743	52 706	152 033	50 081	20 163	90 257	25 022 475	2 066	193 547	184 505 2 72	18 485 776	4 192	4 932	5311	9 502 15	1 481 - 2	270 346
RV-EKS	1501300	OTHER PRODUCTS	407	308	46	585 063	74	7 603	31 316	188 697	31	1 686	1 319	62	2 563	739	12 528	1 866	12 588	12 581	27 914	9712	30 011	3 513	928	1 217 42 84	4 132	1395	911	2	680	0	3 103	294	224	668	5 647 2	576	1 393	22 738	3 810	157	8 750	24 212
PPP-EKS	1501300	OTHER PRODUCTS	86.885	1.485	67.485	7.064	1.844	7.122	11807.595	45.807	3614.563	7664.008	132.663	15.456	926.567	2058.620	3.487	84.961	88.182	45.173	1.390	29.225	29.835	18750.392	23.228	5.763 3.31	3 47.263	0.900	17.920	66.953	24.548	0.935	2.843	5805.587	0.842	32.767	2.764 0.32	990.852	0.562	0.237	0.324	2.495	J.099	2.643
NV	1501300	OTHER PRODUCTS	35 352	458	3 115	4 133 055	136	54 148	369 761 827	8 643 549	113 533	12 923 249	175 020	965	2 374 560	1 521 295	43 680	158 537	1 110 051	568 333	38 808	283 818	895 371	65 868 754	21 566	7 014 141 94	6 220	1 255	16 323	150	16 683	0	8 822	1 704 747	188	21 898	15 609	570 994	783	5 399	1 235	393 2	7 115	63 985
RV as Sum	1501000	GROSS FIXED CAPITAL FORMATION	330 414	14 128	5 670	11 915 571	1 848	113 552	1 697 372	2 778 194	8 698	18 478	66 949	6 205	86 630	8 458	291 216	28 597	142 650	220 983	144 874	261 834	199 778	230 772	164 484	16 041 597 21	6 64 093	75 813	13 377	9 319	7 657	64 737	104 008	16 425	11 305	15 314	266 404 34 10	73 083	26 769	88 804	77 664	8 374 19	8 588 4	468 347
		% Difference (RV by EKS-PPP to USD 1	l otal =100)																																									
	1501000	GROSS FIXED CAPITAL FORMATION	91.8	54.7	88.8	56.1	-4.6	22.5	100.4	41.2	52.2	38.2	27.1	55.4	44.2	27.7	52.6	52.8	27.0	33.6	5.9	8.5	1.3	80.4	40.3	5.3 26.3	73.7	58.4	14.3	108.1	17.7	68.7	41.4	40.6	37.0	41.8	48.3 66.0	25.8	65.5	27.8	75.7	57.9 37	1.5 1	18.4

Annex 1: Global ICP 2017: Average percentage absolute deviations: GFCF-Total vs Sum of 3 categories (cont.)