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= Two related papers:

- Fisher versus Tornqvist when Relative Price Changes are Large

(Multiplier effect of price variations [uncertainties] on the Fisher index);

and

- Range of possible results for certain classes of superlative price indices.



Introduction

Improving ICP methodology is an important topic on the ICP Technical
Advisory Group (TAG) agenda. This paper finds the basic aggregation method
used in ICP (the Fisher-based GEKS) to be quite unstable in the face of price and
expenditure volatility (esp. due to measurement errors).

The paper discusses the sources of GEKS instability, introduces a model to
explain the effects of price shocks, and proposes a remedy for the situation, - the
Torngvist-based CCD (Caves, Christensen and Diewert) index. The results of this
paper will be relevant to both spatial and temporal indices.



Temporal price indices

We begin with temporal indices to demonstrate extent of the problem.

For temporal analyses, we utilize the 1990-2023 NIPA PCE data from the US BEA website
(bea.gov). Three types of indices are considered: (1) multilateral, or GEKS (multilateral
Fisher) and CCD (multilateral Tornqvist), (2) direct, or 2023/1990 direct estimates using only
two years, and (3) chained indices. For reference, the Paasche and Laspeyres indices (both
the regular and geometric, direct and chained) are provided as well. The chained indices,
both based on the Tornqvist and Fisher, are a good approximation of the Divisia index and
can serve as our approximation of the "true" price index.

We consider two aggregation scopes: (1) over all items, and (2) over all items without
technology items. The fast-moving tech items will be our proxies for volatile items present
in the ICP (of course, in the temporal setting those items are "volatile" due to the fast pace of
the technical change, not due to measurement errors or other issues).



Temporal price indices

Table A. Price index, 2023 to 1990, NIPA Personal Consumption Expenditures, annual

accounts
2023 indices (1990 = 1.0) Tornqvist (chained) = 1.0
All w/o All w/o
All items tech items! All items tech items!
[a] [b] [c]=[al/[a.6] [d]=1Ibl/[b.6]
1. Fisher (multilateral), GEKS 1.7547 2.1710 0.8656 0.9927
2. Tornqvist (multilateral), CCD 2.0229 2.1799 0.9979 0.9968
3. Fisher (direct), two-year 1.5324 2.1557 0.7559 0.9857
4. Tornqvist (direct), two-year 2.0162 2.1746 0.9946 0.9943
5. Fisher (chained) 2.0269 2.1872 0.9999 1.0001
6. Tornqvist (chained) 2.0272 2.1869 1.0000 1.0000
reference

7. Paasche (direct) 1.0117 1.9717 0.4990 0.9016
8. Laspeyres (direct) 2.3213 2.3570 1.1451 1.0777
9. Geometric Paasche (direct) 2.0061 2.2025 0.9896 1.0071
10. Geometric Laspeyres (direct) 2.0264 2.1470 0.9996 0.9817
11. Paasche (chained) 2.0042 2.1738 0.9887 0.9940
12. Laspeyres (chained) 2.0499 2.2006 1.0112 1.0063
13. Geometric Paasche (chained) 2.0566 2.2205 1.0145 1.0153
14. Geometric Laspeyres (chained) 1.9982 2.1539 0.9857 0.9849

Note: Net purchases abroad and NPISH are excluded
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Figure 2. Price Indices (PCE), 1990
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Figure 4. Price Indices (PCE), 1990
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Figure 3. Price Indices (PCE), 1990
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Temporal price indices
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Model to simulate effects of price shocks on indices

Consider the following model to simulate price shocks:

1) Expenditure shares are kept constant between the two periods for all items.

2) One product [let’s call it product 1] with expenditure share s experiences a price shock R [i.e., the
price of product 1 changes from 1 to R], and prices for all other products are kept constant and equal
to one.

We want to compare behavior of the Fisher and Tornqvist indexes as the price of product 1 increases or
decreases substantially so that we can ignore other items. We will show that with large movements in
relative prices, the Fisher index will show a greater level of volatility than the corresponding Tornqvist
index.

This leads to the following expressions for the indices corresponding to our model (Laspeyres, Paasche,
and Tornqvist price indices):

slog(R) = s Jog(R) = sr

log T(r,s) =loge
log La(r,s) =log(1—s+sR)=1log(1—s+se")

log Pa(r,s) = —log(1—s+s/R)=—log(1—s+se™")



Model to simulate effects of price shocks on indices

Using Taylor expansions for logarithms and exponentials, and discarding all terms higher than the fourth order, we
obtain the following:

s s s
log La(r,s) = sr + 5 (1—-s)r?+ A (2s?2 —3s+ 13 + ﬁ(l — 75 + 1252 — 653)r* + 0(r>)

s s S
log Pa(r,s) = sr — 5 (1—9)r?+ A (2s? —3s+ Dr3 — ﬁ(l — 75+ 1252 —6s3)r* + 0(r>)

Thus, the Fisher index is approximated as:

1 s s? :
log F(r,s) =sr+s cTotg r3 + 0(r>)

Finally, the distance between the Fisher and Tornqvist indices can be expressed as following:

1 s s?

log F(r,s) — log T(r,s) =s <E -5+ ?> r3+0(r®) (3a)



Model to simulate effects of price shocks on indices

Another derivation:

From Dikhanov (2024a), p.12, [Dikhanov-A-New-Elementary-Index.pdf (unece.org)] we know that in the general
case, the log difference between the indices is described by expression (10) of the paper:

B
4

1
lOg F(Xr S0,S81, ﬁ) — lOg T(X, S0,S1, ﬁ) ~ (g _ )<d3> (1)

1

1 1\ Soi 1\ Soi
Where x; = % /11 (%) , and [] (%) is the Geometric Laspeyres index (GL). (d®), or the third moment, using the

notation d; = log x; and (d™) = Y s¢;d;", is the measure of skewness in price changes. It is assumed here that the item
shares s change with prices with elasticity : s; = sp;€P% /Y so;eP4.

The expenditure share elasticity f equals zero when all expenditure shares stay the same between the two periods not
reacting to price changes, this also means that quantities are inversely proportional to prices; and  equals one when
item quantities do not respond to price changes and stay proportional between the two periods.

Setting the share elasticity 3 to 0 keeps all shares s constant between the two periods, and in this case, we can write:

1
log F(X,Sg,S9,0) — log T(X,Sg,Sq,0) ~ A (d3)


https://stats.unece.org/ottawagroup/download/Dikhanov-A-New-Elementary-Index.pdf

Model to simulate effects of price shocks on indices

Noting that log(GL) = sr and r = log(R), with all other prices kept constant, we get
(d3) =1 —-5)0—sr)3+s(r—sr)3=s(1—3s+25%)r3
From which we immediately obtain:

1 s s?

_ ~olZ 212 )3
log F(r,s) — log T(r,s) 5(6 2+3>r (2)

This expression can be re-written as the multiplier effect on the Fisher relative to the Tornqvist as r changes:

log F ~log T 1 15,5, 3
og F(r,s) = log (r,s)[ +(g—§+?)r] (3)

2
The multiplier effect 1 + (é — % + %) r# is always greater than one if s < 0.5. Thus, an error in price r would

always create a bigger jolt to the Fisher than to the Tornqvist index. This would also work for other price hikes
or drops, such as fast-declining tech prices over time. The multiplier effect reaches the maximum at s being

2
around 20% (this is argmax (s (% — % + S?)), 0<s<1, also see Figure A).



Model to simulate effects of price shocks on indices

Figure A. Effect of price shock R on the Tornqvist-Fisher
log differences

=5 LY
=
-
AW o
40157 \




Explaining the NIPA PCE index discrepancies with the model of the tech

items’ price shocks

First, it will be useful to investigate higher-level approximations of the model as in our case the price “shocks”
are extremely large over the 1990-2023 period. From Dikhanov (2024, Range of possible results for certain classes of
superlative price indices, ANNEX II) we know that when 8 = 0, the distance between the Fisher and Tornqvist
indices can be approximated as:

1 1
log F(X,S9,51,0) — log T(X,S¢,51,0) = g<d3> + 50 ((d®) + 10(d*Xd3)) (4)

Thus, using the same derivations as in the case above for the third-order approximation, the distance between
the Tornqvist and Fisher indices using the fifth-order approximation becomes:

6 2 3 120 8 12 2 5

Or, if s is small, the above expression simplifies to:

1 s s? 1 s _s* s s*\
log F(r,s) — logT(r,s) =s|-—s+—=5|r*+s|—==—<s+5—=—-—=+—=|r+00") (5

log F(r,s) — log T(r,s) = S S 0" (6)
’ ’ 6 120

The same results can be obtained by applying Taylor expansions directly to log La(r,s) = log (1 — s + se” ) and
log Pa(r,s) = —log (1 —s + se™" ) as in Section 3.3 of Chapter 3.



Explaining the NIPA PCE index discrepancies with the model of the tech

items’ price shocks

Let us apply our model to explain the multiplier effect on the GEKS system. The 2023/1990 GEKS index can be
written using its constituent binary Fisher indices as:

2023
1
log GEKS33S === ) log Fiaeg + log F2%  (7)
1990

This expression can be rewritten in the integral form. Thus, assuming that the average rate of relative price declines
for the tech products has been constant over the period, and using expression (6) to approximate the Fisher —
Toérnqvist discrepancies, we obtain the following for log AGEKS} = log GEKS] — log CCD{:

og aaist=s/r [ (2(rt) + o (r) w2 (rTE) w2 () e e
9 o= s/T | \e\"'t) T120\"T) Te\" 7 120\' T (8)




Explaining the NIPA PCE index discrepancies with the model of the tech

items’ price shocks

Here we scaled the time period without loss of generality to [0; T]. Then the tech price shock becomes r% for time t,

assuming a constant rate of relative price decline for tech items over the period. Taking the definite integral we
arrive at (note that T gets canceled out):

log AGEKSy~ S[3¢q T3(r* + 30) (9)

Now we can find out the ratio of expression (9) to expression (6) under the assumption that s is small:

10

log AGEKS], /(log F{— log T}) ~ 5 307 1 20) (10)




Accuracy of the simulation

Fig. 10. Fisher-Tornqvist ratio vs. (d”*3 ), NIPA 1990-2023, Fig. 11. Fisher-Tornqvist ratio vs. s*R”3 (shocks), NIPA 1990-2023,
all items all items
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Spatial (ICP) price indices: “skewness”

, .1 . Fig. 12. Fisher-Tornqvist ratio vs. (d*3 ), 2021 ICP, binar
Now, let’s look at the spatial indices. s ! Y

0.8

We built the same graph for binary indices. The first thing
we learn from the graph is that the relationship becomes y °
much fuzzier (r*2=0.34). The fuzziness is attributed not only '

to the uncertainty of prices (price shocks of different o
directions) but also to the fact that there is also no such . A
single dominant item as tech in the NIPA temporal series.
Besides, tech price declines apply to all countries
simultaneously and thus are not relevant for the spatial
case. We see that (d3) in the ICP case is extremely high — up
to 3 and more, compared to 0.09 in the temporal NIPA case
w/o tech items (Figure 9). Thus, we can conclude that the
ICP case should be almost completely described with the
shock equations.

o y = 0.1096x - 0.0012
We know that the effects of price shocks are symmetric R*=0.336

(shocks of opposite directions of the same magnitude and 0.6
weight get canceled out), hence we can conclude that these
price shocks in ICP are non-symmetric, which points to the
possibility of serious biases due to data errors.

-0.8



Thus, the resulting effect of multiple price shocks can be
described by the sum of models described by expression
(2) (when s and r are small).

S
log F(r,s) — log T(r,s) = zgkr,f (11)

It is clear, that the uncertainty in expenditure weights has
substantial influence as well.



Fig. 5. Fisher-Tornqvist differences (in logs,
absolute value), matrix, by region, by
country, 154 ICP countries, 2021 PCE w/o
Net Expenditure Abroad

legend for colors:
black >0.40; red >0.20, orange > 0.10,
grey > 0.05, no color <0.05
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1. Explaining the ICP discrepancies with the model of price shocks (errors)

Now we will apply the same model to the ICP (spatial comparison). First, we notice that we cannot know the
“true” index, and all we can do is to look at the GEKS/CCD and Fisher/Tornqvist differences. But what we do
know is that the GEKS and Fisher do amplify distortions due to shocks. The task at hand is immensely
complicated by an extremely high uncertainty of the price relatives — the PPPs (as well as an equally distortive
uncertainty in expenditure shares, but this is a story for another paper). Indirectly, the PPP volatility can be
inferred from the temporal volatility of the BH PPPs which we can compare against our expectations.

The US NIPA PCE data we work with contain 72 components which is not too far off from the ICP BH count for
the same aggregate — 109. The 2017-2021 PCE component volatility in the US was less than 10% for those 72
components. In the international setting we expect many components (BHs) to behave in a correlated manner
across countries, esp. those traded internationally such as cars, electronics, fuel, etc. Thus, if we assume that
within, say, the OECD the markets are functioning reasonably well, we can expect temporal volatility of US prices
relative to the OCED average (or, PPP(US, 2017)/PPP(OECD, 2017) vs. PPP(US, 2021)/PPP(OECD, 2021)) to be
even lower than 10% (probably significantly lower). In reality, it is 13.9% (in logs) which is still not too bad, and
this probably means that the average BH PPP error (uncertainty) for the US in the OECD comparison is about
10% or so.



1. Explaining the ICP discrepancies with the model of price shocks (errors)

Unfortunately, it is worse for many other countries: the chart below shows the 2021/2017 PPP changes by country
(shown in PLI form in order to exclude local inflation). The chart below is presented in logs, thus the scale spans
from -2.5 to +2.5, or 148 times (148 = Exp(5)). This is quite significant as a price jolt of that magnitude can seriously
distort the aggregate PPPs.

It would be fair to say that the data points beyond the 20% band around the midpoint on this graph probably
indicate price measurement errors. Which are significant.



Fig. 8. PLI changes by BH, by country, 2021 to 2017, OECD=0.0, ICP 2021, in logs
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Conclusions

This paper finds that the Tornqvist-based CCD index is strongly preferrable to the
Fisher-based GEKS index under the condition of strong price and expenditure shocks

[uncertainties]. So how does it correspond to the results of Dikhanov (2024) that finds the
Walsh index “ideal”?

In short, that paper finds that the range of the best superlative indices lies between the
Fisher and implicit Tornqvist, with the Walsh being lodged comfortably in the middle
[see Figure 6 of Dikhanov (2024) reproduced below, the Walsh index is in green)].



Some notation (from paper #2)

The arithmetic-harmonic weighted power mean describes a generalized price index:

1
2a
GW (X,Sq,S81,) = (2 soixf‘/z sll-xi‘“> (1)

Expression (1) describes some well-known superlative price indices, such as the Fisher (a = 1), Tornqvist (a = 0), and Diewert (a = ¥2) .
The Lloyd-Moulton index can be presented using expression (1) also, and so some elementary (i.e., unweighted) indices. The Walsh
index is not part of this index class.

The following functional form describes the implicit price index corresponding to expression (1) for the direct price index

GW(X,sy,81,Q):
1
2a
iGW (X,80,81,) = z SoiXiYi /(Z SOiYia/z S1i3’i_“> (27)

Generalized index GW (X, s¢, S1, @, B) discussed in the previous sections does not include the Walsh index. However, it is possible to
construct an index that would go through the Fisher (a = 1) and Tornqvist (a = 0) indices in the limiting cases, and, simultaneously,

pass through the Walsh index (a = ¥2). Let’s call it GW2 and define it as follows:
1

2a
GW?2(X,S¢,81, @) = <z SOiaslil_ax{z/z SOil_asliaxi_a> (42)

And setting a = 0, ¥2 and 1, we arrive at the Tornqvist (expression (3)), Walsh (expression (7)) and Fisher (expression (5)) indices,
respectively.
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First, the Walsh was found in that paper to be the best for the whole interval of 3
C [0,1], and until B=2/3 the regular Tornqvist was within that range of the best
superlative indices, thus for most reasonable cases of elasticity 3 the Tornqvist is
still quite good. Another consideration is the following: that paper assumes
measurement errors to be small. However, when shocks [measurement errors]
start contributing significantly (and, especially, overwhelmingly) to (d>) (i.e., to
the “skewness” of price variations), the situation changes dramatically, and the
index stability considerations become extremely important.

Perhaps, when the ICP price uncertainties diminish in the future ICP rounds we
could consider the Walsh-based EKS index [we can call it W-EKS] for PPP
calculations. Until then, the CCD index will be the best index we can get for the
ICP under the circumstances.

A bonus: the GEKS computation can collapse if some weights become negative,
not the CCD.



Thank you!
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