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This paper aims to find the range of possible results for certain classes of well-
known price indices, both unweighted (elementary) and weighted, for an arbitrary
smooth weight function. The classes of indices include the Fisher, Tornquist, Walsh,
Diewert, Lloyd-Moulton and other indices. Both direct and implicit price indices
are discussed. In general, approximations of the third order (and, in one case, those
of the fifth order) are employed. The range of possible results is expressed in
relationship to the geometric Laspeyres index. Stability of the indices is discussed
and some recommendations for the “best” index are given.

The arithmetic-harmonic weighted power mean describes a generalized price index:
1
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Here all sums and products refer to the sums and products with subscripts running from
1toN: Y x; = XN, x; and [Tx; = [1IL; x;, where N is the number of products.
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Consider the following transformation: x; = Z—g /11 (%) . Here [] (Z—g) is the Geometric
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Laspeyres index. Henceforth, all indices in this paper are presented in terms of the
Geometric Laspeyres index, which is equal to one under this transformation: [] x;%0 = 1.

Expression (1) describes some well-known superlative price indices, such as the Fisher (a
= 1), Tornqvist (a = 0), and Diewert (a = %) [the Diewert index is described in Diewert
(1976)]. The Lloyd-Moulton index can be presented using expression (1) also, and so
some elementary (i.e., unweighted) indices. However, the Walsh index is not part of this
index class.

Generalized Weighted Index



Let’s assume that item shares change with prices with elasticity p: s;; = sieP%i/ Y sq;ePd,
where d; = log x;. Then, we can rewrite expression (1) as:

1
log GW (x,s, 81, @, ,B) = —log (Z Soix;* /Z S1i%; %)

(log E seie®% — log E so ePdieg=adi 4 |og E spiePdi) ~
d; d
—(log Esol 1+ad+ > + 6
2 3
— a)%d; —a)3d;
— log Esoi<1+([)’—a)di+(ﬁ 2) l—l—(ﬁ 6) l)

Zd_z 3d'3
+ log Zsm(1+ﬁdi+ﬁz‘ +ﬁ6‘))

And noting that ); so; d; = 0 by construction, we get:
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Applying Taylor expansion for logarithm, log (1+x) = x-x%/2+x%/3 [in our case only one
term of the expansion is used, as the second term already produces d;* and above], and
discarding terms higher than the third order, we get the following (utilizing the moments’
notation (d™) = ¥ so;d;"™):
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lOg GW(X'SO' $,q, ﬁ) ~ g(dz) + (% - _ﬁ + _)<d3) (2)

Tornquist, Fisher and Diewert Indices

From expression (2) we directly obtain the approximation for the Térnqvist index by
setting o = 0:
B B’

log T(x,80,81,8) = —(dz) +— (d3) (3)

By setting o = 2 we get the approximation for the Diewert index:
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Accordingly, by setting a = 1 we obtain the approximation for the Fisher index:

g > 1 B
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log F(X,8¢,81,5) ~ Nd®)  (5)

Lloyd-Moulton Index

The Lloyd-Moulton index is written as: )
LM(X,s,,0) = (Z s()ixl-l_"')ﬁ

Or, utilizing elasticity f = 1 — o

LM(x,s,,8) = (Z SOixiB)

There is also the “backward” LM index described as:

|~

1

LMb(x,s,,B) = (Z sll-xi_ﬁ)_ﬁ

It is easy to see that under the condition that s;; = sq;ef% /Y so;ef%, LM(x,sy,B) =
LMb(x,s4, ). Thus, combining the two will produce GW (X, sg, s1, 5, ). Therefore, from
expression (2), by setting a = 3 we get the following approximation for the Lloyd-Moulton
index:

ﬁ 2

log LM(x,s,,8) = E<d2> + ?(d?’) (6)

U.S.BLS uses the Lloyd-Moulton index with 3 = 0.4 in their preliminary estimates of the
CPI with the target of predicting the Tornqvist index. From expressions (3) and (6) we see

that the misprediction with the Lloyd-Moulton index in this case is —f—;(d3) (from
expressions (3) and (6)).

Walsh index

The Walsh index cannot be approximated using expression (2). Thus, we need to do it
separately (note that ) so;e#% in the derivation cancels out):
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Or applying Taylor expansion for the exponent and noting that ) sq; d; = 0by
construction, we get:
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And applying Taylor expansion for logs we get:

log W(x,50,51,8) ~ LI @y  EL D oy Dy B 5
Finally, we obtain:
By L

log W(x,50,51,8) = 5(d%) + Gz +)(d)  (7)
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Elementary indices (Jevons, Dikhanov, CSWD)

The elementary (unweighted) indices can be approximated using expression (2) as well.
Assuming that s;; = sy;, or B =0, we get the following expressions for the elementary

indices:
2

a
log GW (X,S¢,81,a,0) ~ ?(dg’) (8)
In particular,
Jevons (a = 0):
log Je(x,8(,51,0,0) =0 (9)
Dikhanov (o = 0.5):

1
log De(X,sy,S4,0.5,0) ~ ﬁ<d3> (10)



CSWD (= 1):
1
log Ce(X,s¢,81,1,0) = €<d3) (11)

Note that expressions (8) — (11) are correct in the general case s;; = so; (or when item
shares are constant between the two periods), so they will be correct in the special case
S1; = Soi = 1/N as well. From expressions (9) — (11) it follows that the Dikhanov index is
located between the Jevons and CSWD indices in a one-to-three relationship.

Range of possible results of Generalized Power Index GW (X, g, S1, @, f3)

Let us combine expressions (2) — (11) to build up the range of possible results for the
function GW(X,sy,s;,a, ) and the Walsh index presented here. We will express all
indices relative to the Tornqvist index. Thus, the difference between GW (X, sq, s1, @, 5)
and the Tornqvist becomes:

2
log GW (x,50,51,@,8) ~ log T(x 50,51, 8) = (-~ 4@ (12)

For the Walsh, Diewert, Fisher, and Lloyd-Moulton indices, the difference becomes,
respectively:

1 2
lOg W(X' S0, 81, ﬁ) - lOg T(X'SO'Slﬂ ﬁ) ~ (ﬁ - ?)(d:;) (13)

1
lOg D(Xr S0, 81, ﬁ) - lOg T(X' S0, $1, ﬁ) ~ (ﬁ - g)(d:;) (14)
1
lOg F(Xr SO'slﬂﬁ) - lOg T(X'SO'slﬂﬁ) ~ (g_§)<d3) (15)
2

lOg LM(X, S0, S1, ﬁ) - lOg T(X, S0, S1, ﬁ) ~ (_ ﬁ)(d3) (16)

The expressions for the elementary indices do not change, as the Tornqvist becomes the
Jevons index when a =0 and 3 = 0. From expressions (13) — (16) it follows that the indices
described by expressions (8) — (11) are degenerate cases (i.e., the unweighted varieties) of
the weighted indices described by expressions (12) — (15). Note that the Dikhanov index
(a0 = 0.5) is the unweighted variant of both the Diewert and Walsh indices. The CSWD
index (a = 1) is the unweighted variant of the Fisher index, and the Jevons index (a = 0)
is the unweighted variant of the Térnqvist index.



Let’s define the boundaries of the range under consideration. We will vary a from O to 1,
and 3 from 0 to 1. Those ranges will cover indices from the Tornqvist (a = 0) to the Fisher
(a = 1), on the a dimension, and the cases from elasticity (=0) to elasticity (=1)}; with

everything else in between. The surface of possible results in the 3D space is presented in
Fig. 1 below.

Fig. 1. Surface of possible results of GIW(x,s,,s,,,5),
in terms of (d?)

0.2

0.15

0.1

0.05

(d°)

-0.05

-0.1

! From the U.S.BLS experience, the most plausible values of 8 lie between 0.3 and 0.5 at the aggregate
level.



Now, consider the projection of this surface onto the [(d°) - ] plane. Note that the
minimum of the projected surface is achieved at a = 36/4 (we find it by differentiating
expression (12)) where min(log GW (X, s, 81, @, B)) = — 3B%/32.

0.2

Fig. 2. Range of possible results of GIV(x,s,,5;,2, /) and
Walsh indices, in terms of (d3)
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Figure 2 shows all indices investigated in this paper as well as the general behavior of
GW(x,sy, s, a, ) with a ranging from 0 to 1. We see that as power a increases, elasticity
[ becomes more discriminating for the indices with the Fisher index (a = 1) exhibiting the
highest degree of variation. In this graph we also show the Walsh index described by
expression (13).

The Walsh index approaches the Diewert index when 3 ->0 and 8 -> 1, and, as mentioned
earlier, its unweighted counterpart is the same index as for the Diewert. The Diewert
index approaches the Térnqvist when 8 -> 1/3, for the Walsh this value is 1/¥3, and for the
Fisher, it is 2/3. The Lloyd-Moulton index approaches the Tornqvist index as  -> 0. The
four indices [Walsh, Diewert, Fisher, and Lloyd-Moulton] converge to — 11—2 (d®) when g -

> 1, relative to the Tornqvist index. It also follows that the indices can change their order



[relative position], as their order depends on the sign of (d*) and the value of B. For
example, the Walsh index is located between the Fisher and Tornqvist indices when f <
1/¥3, at the same time the Walsh is located between the Diewert and Fisher indices when
p € [0,1]. As g -> 0, the Tornqvist index approaches the Geometric Laspeyres, the Fisher
approaches %(d3), and both the Walsh and Diewert approach i(d3). Note that this

corresponds to expression (8) for unweighted indices with a being equal to 1 and 0.5,
respectively. Thus, when f -> 0 the weighted indices mirror the behavior of their
unweighted counterparts.

Figure 3 below depicts the bounds of GW (X, sy, s1, @, f) and the Walsh index. The Fisher
index determines the upper bound (until § = 2/3), then the Tornqvist index determines
the upper bound. The lower bound is achieved with a = 35/4 (note the behavior of the
Lloyd-Moulton index (a = ) located somewhat above the lower bound, see Figure 2). The
Walsh index is located in between the bounds of GW (X, sy, s1, @, 8) for all .

Fig. 3. Walsh index vs. min and max of

0.2
GW(x,8,,8,,2,[3),in terms of (d3)
0.1 Fisher
& (a=1)
0.1
Tornqvist
0.05 (a=0)
B0 A i
~ 0
0.05 /'
min(GW)
0.1 (a=3p/4)
-0.15
e==\Valsh max bound min bound

Precision of the third-order approximation

Precision evaluation of expressions (2) — (11) was carried out with the Monte Carlo
process. To this end, we set up a series of 1,000 simulations with § ranging from 0 to 1,
and r = 0.25. Prices were simulated with process log x = r* U[0,1] (uniform distribution).



Weights were simulated with process s = U[0,1], then normalized for their sum to be
equal to one.

Results of the simulation: The third-order approximations ensure high precision results,
with the worst approximation exceeding a five-digit accuracy, and with the average
error being as low as in the seventh digit. That is more than adequate for any practical
purposes.

Fig. 4. Precision of third-order approximation
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Some practical considerations for the Consumer Price Index

The sign of (d3) is mostly negative, as we have a few technology products whose prices
decline (relatively or absolutely) against the background of mostly rising prices for the
rest?. Therefore, the combination of Fisher and Tornqvist in this case represents the
absolute minimum of GW (X, sy, 81, a, ) (with a switching point at = 2/3).

GW (X, 8¢, 51, @, B) will be positioned above the combination of these two indices at all
points. Thus, the Walsh index may look attractive in this setting as it is placed right in
the middle of all possible results of GW (X, sy, 81, @, ), never approaching its bounds.

2 This consideration applies only to temporal indices. For spatial indices the technical change responsible
for relative price declines of technology items would be applicable to all countries/ territories
simultaneously.
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Another practical implication of expression (12) is a straightforward derivation of

elasticity 5. From log F(X,Sq,s1,8) — log T(X,S¢,81,8) = (% _ é)(d3) we get:
B ~ 4((log T(X,S¢,51,5) — log F(x,s0,81,8))/{d®) + %)'

Extension of GW to arbitrary weight function

From Dikhanov (2024, https://stats.unece.org/ottawagroup/download/Dikhanov-A-
New-Elementary-Index.pdf) it follows that the expressions (8) - (16) [the differences
between various indices and the Tornqvist] are valid for the weight function s;; = s¢; (1 +
pd;) as well. The only difference exists in expressions (2) — (7) where an extra term

(’%Z(d3)) is present but that doesn’t affect the differences between the indices and the

Torngvist.

Now, consider a general weight functional form s,; = so; f(d;)/2 so; f(d;) where f(d;) is
smooth three-times continuously differentiable function, and f(0) = 1 atd; = 0.

Generalized Weighted Index (extended)

Now we can rewrite expression (1) with s;; = so; f(d;)/2 So; f(d;) in mind as:

1 2 Soixi”
E J) =0 Seix-a )
log GW (Xl sOr Sll a’( )) Za log <Z Slixi_a

1
== (log ) soe™ — log D s f(dDe % + log ) so; f(d)

Using Taylor (actually, Maclaurin) expansion f(d;) = £(0) + f'(0)d; + 1/2f"(0)d;* +
1/6f"'(0)d;>, we get:

log GWE(X,s0,81,a,(.)) =

L Z 1+ ad +a:2d"2+063di3
~2a(09 Soi ad; > 6

i 2 " 3 2 .2
— log ZsOi (f(o) + f'(0)d; i ((;)di i (g)di ><1 —ad;+2 j‘

" 0 diz nr 0 di3
>+zog S 5ol + £(0)d; + LI LN,

3
a3dl-

6



https://stats.unece.org/ottawagroup/download/Dikhanov-A-New-Elementary-Index.pdf
https://stats.unece.org/ottawagroup/download/Dikhanov-A-New-Elementary-Index.pdf
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And noting that ) sq; d; = 0 by construction, we obtain:

log GWE(X,s9,81,,(.))

1 szdiz a3di3
zz(log(1+250i 5 + G )

2

~ log (Z Soi <1 +f'(0)d; + f”(?diz + fm(g)di3> (1 — ad; + a’d,
)) Flog (14 s Q40 L1040,
Noting that )} so; f'(0)d; =0,
log GWE(X,sg,81,a,(.))
Q)
-Y s <f"<c;)di2 N f"'(g)dﬁ a0 — af"(ZO)df N azng
aZf'<20>dﬁ ~ a36df> S s (f”«;)df s f"'(g)dﬁ)))

Or,
log GWE (x,s9,81,a,(.))
1 Z a?d;’ N a3d;’
~ a’( Soi ) 6

" 3 292 2 o1 3 33
_ZSOi <_afl(0)di2_af (ZO)dl +C¥ dl +C¥ f(O)dl _a dl >)

2 2 6

Finally, collecting the terms, we obtain:

2 "
log GWE(X,s0,81,@,(.)) = f ( ) L2 (d?) + (a af4(0) f (0)

d®)  (17)
Tornquist, Fisher and Diewert Indices

From expression (17) we directly obtain the approximation for the Tornqvist index by
setting o = 0:

£'(0)

log T(x,80,81,8) = _(dZ) f' (O)

——(d®) (18)
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By setting o = Y2 we get the approximation for the Diewert index:
f ( ) f(0) f ( )
+( 4 T4 24

log D(X,s¢,81,8) = (19)

Accordingly, by setting a = 1 we obtain the approximation for the Fisher index:

£'(0)

() 1 (0
log F(x,s0,81,8) zT(d2)+ (f_() Z _&

Tz ) @

Expressing these indices relative to the Tornqvist index, we obtain:

o SO,
lOg GWE(X! S0, 81, @, B) - lOg T(X,SO,Sl, B) = (?_ )(d > (21)

Thus, for the Diewert and Fisher indices, the difference becomes, respectively:

lOg D(X, S0, S1, ﬁ) - lOg T(X,So, S1, ﬁ) ~ (i - f ( ))<d3> (22)
f( ))<d3) (23)

1
lOg F(X! 50,51,3) - lOg T(X'SO'Slﬂﬁ) ~ (6

Therefore, the expressions (18) — (23) will be valid for any smooth weight function on d;
for which the first derivative at d; = 0 exists, for example, f(d;) = 1 + fd;, f(d;) = eP4,

f(d) =14+ Bd> f(d) =1+log (1+ Bd,), etc.

Thus, for instance, for function f(d;) = 1+ Bd;? the first derivative f'(0) =0, and
log F(x,s0,81,8) — log T(x,s9,51, ) z%(d3), and the differences for the weighted

indices behave in the same way as the differences for the unweighted (elementary)

indices (compare to expression (11)).

Walsh and Lloyd-Moulton indices

The Walsh index is more complicated to derive as it is not part of the GWE (X, s, 51, @, (.))
family. Using the same methods as above (and omitting some intermediate steps) we get:

(0 1 '(0)2 (0
log Wt 50,51, () ~ 2 (a?) + (o~ L0 L0y 2
1 2
lOg W(X, S0, S1, ()) - lOg T(X’ S0, S1, ()) = (ﬁ - f ( ) )<d3) (25)

Thus, for example, the distance between the Walsh and Diewert indices becomes:

log W(X,s0,81,(.)) — log D(X,80,81,(.)) = (f( ) f( )2)(d3>
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The Lloyd-Moulton-Tornqvist - Tornqvist distance is straightforward to approximate.
From the above (expression (6)) we know that: log LM (X, ¢, B) = §<d2) + %2 (d3).

Hence,

2 "
log LM(x,50,51,8) — 10g T(x,50,5:,()) ~ & ~Loyaty + E - LOye) (26
For example, if f(d;) = 1+ fd;, we get log LM(X,s¢,51,8) — log T(X,8¢,81,8) = %Z(dg’)
vs. (=)@, if £(d) = P,

Implicit Price Indices

Implicit price indices are the indices obtained as the ratio of value and volume indices: P

=V/Q.

Consider one more normalization without restricting generality: Q(0) = 1, hence V(0) =1
and g = sy;. Now, consider the following transformations:

1 1\ So
x =2 /T1(%) " = eftyeZsotiand y, = 5 /q = e/,

where H< L

index. For the quantity index g, the exact formula is not important as it gets cancelled out

1
in the derivations below. For example, g = [] (Z‘

Soi
) is the Geometric Laspeyres price index and q is a volume (quantity)

Soi
) (the Geometric Laspeyres volume

14

index) can be implied for the convenience.

Thus, we can write:
vip',q"p°%q®) =v(@)/v(0) =

Zpllqll 2 : E :
— di,(f-1)d; — Z pd;
= S = Spi€ te Spi€
meqm q 0iXiYi = (q 0i =q 0i

The following functional form describes the implicit price index corresponding to
expression (1) for the direct price index GW (X, s¢, S, @):

1
. _o\2a
i6W (50,50, = ) soxe /(D 5o/ Y sy @)

Now, noting that s;; = sy;e#% /Y s0;ef%, and cancelling out the quantity index q from
both the numerator and denominator we get:
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1
IGW (X,80,81, @) = Z seiePd / (Z spieP z Soiea(ﬂ_l)di/E Soieﬁdie_a(ﬁ_l)di)za

Using the same methods for approximating functions from above [omitting some
intermediate steps and after some algebra], we arrive at:

log lGW(X, So, SlJa B)
3
—(dz) +— i

s (B — 1)3
+a g —(d?) -

2 3 _ 2
sty -y + Py 1 2 B
G )’y G )

———(d?)

(d®))
After collecting the terms, we obtain the following:

log iGW (x,s¢,81,2,3)
%ﬁ(d2>+ (a_z_{_[g(E_a_Z)+ﬁ2<a_2_g+_)+ﬁ3(_a_+_
2 6 4 2 2 2
- @) (@29)
12

And the difference between the implicit and direct (expression (2)) indices is expressed
as:
log LGW(Xr Sp,S1, &, ﬁ) - log GW(X S0, 81, &, ﬁ)
a

2
~(ﬁ<———) ﬁ2<———>+ﬁ(——+———))<d3) 29)

When a equals one, we see that the direct and implicit Fishers are equivalent (this is a
well-known fact, of course). For the Tornqvist (a = 0), that difference is approximately

- ﬁ—3 (d3) For the Diewert (a0 =1%), the difference between the direct and implicit indices

is approx1mately (— i )(d3)

log iF (X,s0,81,8) — log F(X,80,81,) =0 (30)
2
log iD(X,s0,51,8) — log D(X,80,51, ) = (_ﬁ_ + 'B)(d3> (31)
3
log iT(X,S9,51,B8) — log T(X,8¢,81,8) = —E(d3) (32)

This therefore means that the implicit Diewert index is equivalent to the Walsh index (see
expressions (13) — (14)). And we know that, vice versa, the implicit Walsh is equivalent to
the Diewert index. Le., there exists a duality between the Walsh and Diewert indices.
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Difference between iGW (X, sy, 51, @, ) and the Tornqvist (direct) index is expressed as:
log iGW (X,s8¢,81,a,8) —log T(X,sy,51, )

_al a a? ,(a° «a 3a2a1d3 33
~(?+ﬁ<z—7>+ﬁ <7—§)+ﬁ gtz ) B3

The surface of possible results of expression (33) in the 3D space is presented in Fig. 5
below.

Fig. 5. Surface of possible results of iGW (x,s,,s,,a,),
in terms of (d°)

0.2

The minimum of [log iGW (X, Sy, sy, a, B) — log T (X, So, 51, £)] is achieved at the Tornqvist
(implicit) line. The maximum is attained at the Fisher line. Now, consider the projection
of this surface onto the [(d%) - f] plane (Figure 6). The graph shows that the domain of the
possible results of [log iGW (X,s,s1,a, ) — log T(X,Sq,81,8)] is bounded by the Fisher
index (black line) from above and the implicit Tornqvist index (red line) from below. For
comparison, the direct Tornqvist and the minimum of [log GW(X,so, S, @, ) —
log T(x,sg,s1,)] are shown as well.
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0.2
Fig. 6. Range of possible results of iGIV (x,s,,8,,2,[3)
(implicit indices), in terms of (d3)
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The implicit Diewert index (a = 0.5), which is equivalent to the Walsh index, is shown as
the green line.

Note some important properties of the implicit indices: as  -> 1, all discussed implicit
indices converge to —%(d'ﬁ); as 3 -> 0, all discussed implicit indices converge to the

corresponding direct indices (see expression (29)).

We see that the range in Figure 6 is tighter than the one in Figure 2 and starting from 3 =
2/3 the direct Tornqvist index lies outside the range for the implicit indices. The Fisher,
Walsh (implicit Diewert) and implicit Tornqvist are the only indices that are fully located
in both ranges. Those three indices can be called truly “ideal”.

3 Note that all indices described by GW (X, s, 51, @, f) and iGW (X, sy, 81, @, ) are superlative, in the sense
that they all approximate each other to the second order at any 3.
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ANNEXI
Laspeyres and Paasche indices, PLS

The Laspeyres and Paasche indices play a very important role in index number theory.
Using notation from the previous sections, here we derive approximations for the
Paasche and Laspeyres indices:

d;? d;°
log La(x,sq, ) = log z SoiX; = log Zsol-edi ~ logz Soi (1 + d; +71 +?l>

d? d*\ 1 1
~ z Soi <71 + %) ~ E(dz) + g(d3) (34)

log Pa(x,s1,B) = — log Z s1i/x; = 2log F(X,8g,81, ) — log La(x,s,, )
2 1
~ p(d?) + & - £+ )(d3) —(dz) —g(d3)
2 -1 2
P+ & - 5 L@ @9)
And for the PLS we have the following;:
log PLS(X,8¢,81,8) = log Pa(x,s1,8) — log La(x,sy,B) =

_ 2
2p 1(d2)+(__ﬁ+_)<d3)—%(d2>—%<d3)

=~

=B -1+ (B - 1)§(d3) (36)

For comparison, the geometric PLS will be written as:

log gPLS(X,s¢,81,B) = 2log T(X,Sg,81,8) = f{d?) + — (d3) (37)

From here, we can see the conditions for PLS < 1: when (d3) is small (i.e., the skewness
of prices is low), PLS <1 holds for all § < 1 (compare this to the von Bortkiewicz
inequality). On the other hand, gPLS is always greater than one when (d*) is small and
g > 0.

ﬁz

The relationship between the PLS and gPLS can be expressed as:

log PLS(X,s¢,81,8) — log gPLS(X,Sq,S1, B) = —(d?) — §<d3) (38)

From here it is easy to derive the condition when the PLS is greater than one. If f < 1,
the condition becomes:

B

(d?) + E<d3) <0 (39)
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At the same time, if f > 0, expression (39) is the condition of gPLS to be less than one (it
follows from expression (37)). Thus, when 0 < 8 <1 the log PLS and log gPLS are of
opposite signs.

Special case: if f = 0, i.e., the shares stay constant between the two periods, the Fisher
index will be located at % (d3) above the Tornqvist; and in this case: log PLS(x,sy) =
—(d?), log gPLS(x,s,) = 0, log Pa(x,sy) ~ —%(dz) + %(d3) and log La(x,s,) ~ %(dz) +
%(d3).4 Note that (d*) can only be a significant value if the prices are skewed

substantially.

1 1\ Soi
4 Note that all formulae are expressed in terms of x; = % /11 (Z—B) , i.e., the prices are normalized
i i

versus the Geometric Laspeyres index.
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ANNEX II
Fifth-order approximation of Generalized Power Index GW (X, s¢, S1, @, 3)

It is possible to extend expression (2) to include higher-order expansion terms:

2 2
lOg GW(X’SOI S1, 4, ,8) ~ g(d2> + (% - _’B + B_)<d3)

Using the same methods of derivation, the fifth-term approximation will be written

[omitting intermediate steps] as follows:
log GW(X,s¢,81,a,f)

B a’_ap P a’p_ap® p
~5<d2>+<g—7+ ><d3> (12 - ><<d4>+3<d2>2>

+ 725 (@ = (B = @ + B () + 10(d?)(d%)  (40)

An interesting special case when 3 = 0 (i.e., item shares kept constant between the two

periods) will be written as:
2 4-

a
log GW (X, 0,51, 0) = —(d*) + =5 ((d°) + 10(d*}d%))  (41)

As we can see in this special case the fourth order term disappears.
Thus, expressions (8) - (11) are in fact the fourth order approximations. Hence expression

(8), for example, becomes in fact:
2

log GW(x, s,,5,, @, 0) = %(d3) +OUd®))  (8a)

The same goes for expressions (9) — (11).

Expressions (40) and (41) are of a purely academic interest, of course, as the third order
approximation is quite precise for all practical purposes (see Fig. 4 and the section on
precision of the approximations).
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ANNEX III
Generalized Weighted Index GW?2 that incorporates Walsh index

Generalized index GW (%, s, 81, @, 8) discussed in the previous sections does not include
the Walsh index. However, it is possible to construct an index that would go through
the Fisher (a = 1) and Tornqvist (a = 0) indices in the limiting cases, and,
simultaneously, pass through the Walsh index (a = %2). Let’s call it GW2 and define it as
follows:

L
a

GW2(X,80,51,a) = (Z Soiaslil_axia/z Sol'l_asuaxi_a)z (42)

Let’s assume that item shares change with prices with elasticity p: s;; = soiePdi) Y sp;eP%,
where d; = log x;. Then, we can rewrite expression (42) as:

1 —
log GW2(x,8¢,81, @, ) = ﬁlog (Z Soi%s1:t ;" /Z Soit*s1:%%; )
1
= Z (log Z Soie(a"'ﬁ_aﬁ)di
—log z soie TP + [og Z seie®% — log z Sgie 1Py

Which, using Taylor expansion as in the case of GW (X, sy, s1, @, ), leads to:
log GWZ(X! So, sl! Q, ﬁ)

(063)2 (ab’)3 (A -o)p)? (A -o)p)°

( (d?) + ——(d?) - > (d?) — e (d3)
— 2 _ 3 _ 2
_I_(“‘l'ﬁz apB) (d2)+( +ﬁ6 apB) (d3)—( a-;aﬁ) (d?)
_ 3
_%“13))
Or,
2 2 2
log GW2(X,s0,81, @, B) zg(d2)+(%+ﬁ<%—a7) + p? <a___+ ))(d3) (43)

Finally, the difference between GW2 and the Tornqvist index can be expressed as
following;:

a? a a? 2
log GWZ(X, S0, 81, 4, ﬁ) - lOg T(X’ S0, S1, ﬁ) ~ (? + :B <Z - _> ﬁZ <_ - _>)<d3) (44)

And setting a =0, Y2 and 1, we arrive at the Tornqvist (expression (3)), Walsh
(expression (7)) and Fisher (expression (5)) indices, respectively.
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The surface of possible results of expression (44) in the 3D space is presented in Fig. 7
below.

Fig. 7. Surface of possible results of GIW2(x,s,,8,,2,[),
in terms of (d?)

Note the similarities between Fig. 1 (GW) and Fig. 7 (GW2). Consider the projection of
this surface onto the [(d°) - p] plane (Figure 8 below). The maximum of
[log GW2(X,s¢,51,a,B) —log T(X,Sy,S1,)] is achieved at the Fisher line (until § = 2/3)
and then at the Tornqvist line, just as in the case of GW function. However, the Tornqvist
line is also the minimum of the range for GW2 function until = 1/N3. Thus, the difference
between the ranges for GW and GW2 functions is the area above the yellow line in Fig. 8
(min(GW), a = 3B/4) and the area delineated by the Tornqvist line (until f = 1/3) and,
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after that, by the envelope of lowest boundaries of the lines corresponding to GW2 with
o > Y2. The Diewert index lies partially outside the range for GW2.

02 Fig. 8. Range of possible results of GIW2(x,s,,5,,2,[3),
in terms of (d3)
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