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This paper aims to find the range of possible results for certain classes of well-

known price indices, both unweighted (elementary) and weighted, for an arbitrary 

smooth weight function. The classes of indices include the Fisher, Tornqvist, Walsh, 

Diewert, Lloyd-Moulton and other indices. Both direct and implicit price indices 

are discussed. In general, approximations of the third order (and, in one case, those 

of the fifth order) are employed. The range of possible results is expressed in 

relationship to the geometric Laspeyres index. Stability of the indices is discussed 

and some recommendations for the “best” index are given. 

 

 

 

The arithmetic-harmonic weighted power mean describes a generalized price index: 

𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼) = (∑ 𝐬0𝑖𝑥𝑖
𝛼 ∑ 𝐬1𝑖𝑥𝑖

−𝛼⁄ )

1
2𝛼

      (1) 

 

Here all sums and products refer to the sums and products with subscripts running from 

1 to N:  ∑ 𝑥𝑖 = ∑ 𝑥𝑖
𝑁
𝑖=1  and ∏ 𝑥𝑖 = ∏ 𝑥𝑖

𝑁
𝑖=1 , where N is the number of products. 

 

Consider the following transformation: 𝑥𝑖 =
𝑝𝑖

1

𝑝𝑖
0 / ∏ (

𝑝𝑖
1

𝑝𝑖
0)

𝐬0𝑖

. Here ∏ (
𝑝𝑖

1

𝑝𝑖
0)

𝐬0𝑖

 is the Geometric 

Laspeyres index. Henceforth, all indices in this paper are presented in terms of the 

Geometric Laspeyres index, which is equal to one under this transformation: ∏ 𝑥𝑖
𝐬0𝑖 = 1.  

 

Expression (1) describes some well-known superlative price indices, such as the Fisher (α 

= 1), Törnqvist (α = 0), and Diewert (α = ½) [the Diewert index is described in Diewert 

(1976)].  The Lloyd-Moulton index can be presented using expression (1) also, and so 

some elementary (i.e., unweighted) indices. However, the Walsh index is not part of this 

index class. 

 

 

Generalized Weighted Index 
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Let’s assume that item shares change with prices with elasticity β: s1𝑖 = s0𝑖𝑒
𝛽𝑑𝑖/ ∑ s0𝑖𝑒

𝛽𝑑𝑖, 

where 𝑑𝑖 = 𝑙𝑜𝑔 𝑥𝑖. Then, we can rewrite expression (1) as: 

 

𝑙𝑜𝑔 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) =
1

2𝛼
𝑙𝑜𝑔 (∑ s0𝑖𝑥𝑖

𝛼  / ∑ s1𝑖𝑥𝑖
−𝛼 )

=
1

2𝛼
(𝑙𝑜𝑔 ∑ s0𝑖𝑒

𝛼𝑑𝑖  −  𝑙𝑜𝑔 ∑ s0𝑖𝑒
𝛽𝑑𝑖𝑒−𝛼𝑑𝑖  +  𝑙𝑜𝑔 ∑ s0𝑖𝑒

𝛽𝑑𝑖  ) ≈

≈
1

2𝛼
(𝑙𝑜𝑔 ∑ s0𝑖 (1 + 𝛼𝑑𝑖 +

𝛼2𝑑𝑖
2

2
+

𝛼3𝑑𝑖
3

6
)

−  𝑙𝑜𝑔 ∑ s0𝑖 (1 + (𝛽 − 𝛼)𝑑𝑖 +
(𝛽 − 𝛼)2𝑑𝑖

2

2
+

(𝛽 − 𝛼)3𝑑𝑖
3

6
)

+ 𝑙𝑜𝑔 ∑ s0𝑖(1 + 𝛽𝑑𝑖 +
𝛽2𝑑𝑖

2

2
+

𝛽3𝑑𝑖
3

6
))  

 

And noting that ∑ s0𝑖  𝑑𝑖 = 0 by construction, we get: 

 
𝑙𝑜𝑔 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽)

≈
1

2𝛼
(𝑙𝑜𝑔 (1 + ∑ s0𝑖(

𝛼2𝑑𝑖
2

2
+

𝛼3𝑑𝑖
3

6
)) − 𝑙𝑜𝑔 (1

+  ∑ s0𝑖 (
𝛽2𝑑𝑖

2

2
+

𝛼2𝑑𝑖
2

2
− 𝛼𝛽𝑑𝑖

2 +
𝛽3𝑑𝑖

3

6
−

𝛼3𝑑𝑖
3

6
+

𝛼2𝛽𝑑𝑖
3

2
−

𝛼𝛽2𝑑𝑖
3

2
)

+ 𝑙𝑜𝑔 (1 + ∑ s0𝑖(
𝛽2𝑑𝑖

2

2
+

𝛽3𝑑𝑖
3

6
)))   

 

Applying Taylor expansion for logarithm, log (1+x) ≈ x-x2/2+x3/3 [in our case only one 

term of the expansion is used, as the second term already produces 𝑑𝑖
4 and above], and 

discarding terms higher than the third order, we get the following (utilizing the moments’ 

notation 〈𝐝𝑛〉 = ∑ s0𝑖𝑑𝑖
𝑛): 

𝑙𝑜𝑔 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) ≈
𝛽

2
〈𝐝𝟐〉 + (

𝛼2

6
−

𝛼𝛽

4
+

𝛽2

4
)〈𝐝3〉     (2) 

 

Törnqvist, Fisher and Diewert Indices 

 

From expression (2) we directly obtain the approximation for the Törnqvist index by 

setting α = 0:  

𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈
𝛽

2
〈𝐝2〉 +

𝛽2

4
〈𝐝3〉      (3) 

 

By setting α = ½ we get the approximation for the Diewert index:  
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𝑙𝑜𝑔 𝐷(𝐱, 𝐬0, 𝐬1, 𝛽) ≈
𝛽

2
〈𝐝2〉 + (

𝛽2

4
+

1

24
 −

𝛽

8
)〈𝐝3〉      (4) 

 

Accordingly, by setting α = 1 we obtain the approximation for the Fisher index: 

 

𝑙𝑜𝑔 𝐹(𝐱, 𝐬0, 𝐬1, 𝛽) ≈
𝛽

2
〈𝐝2〉 + (

𝛽2

4
+

1

6
 −

𝛽

4
)〈𝐝3〉     (5) 

 

Lloyd-Moulton Index 

 

The Lloyd-Moulton index is written as: 

𝐿𝑀(𝐱, 𝐬0, 𝜎) = (∑ 𝐬0𝑖𝑥𝑖
1−𝜎)

1
1−𝜎

 

 

Or, utilizing elasticity 𝛽 = 1 − 𝜎: 

𝐿𝑀(𝐱, 𝐬0, 𝛽) = (∑ 𝐬0𝑖𝑥𝑖
𝛽

)

1
𝛽

 

 

There is also the “backward” LM index described as: 

𝐿𝑀𝑏(𝐱, 𝐬1, 𝛽) = (∑ 𝐬1𝑖𝑥𝑖
−𝛽

)
−

1
𝛽

 

 

It is easy to see that under the condition that s1𝑖 = s0𝑖𝑒
𝛽𝑑𝑖 ∑ s0𝑖𝑒

𝛽𝑑𝑖⁄ , 𝐿𝑀(𝐱, 𝐬0, 𝛽) =

𝐿𝑀𝑏(𝐱, 𝐬1, 𝛽). Thus, combining the two will produce 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛽, 𝛽). Therefore, from 

expression (2), by setting α = β we get the following approximation for the Lloyd-Moulton 

index: 

𝑙𝑜𝑔 𝐿𝑀(𝐱, 𝐬0, 𝛽) ≈
𝛽

2
〈𝐝2〉 +

𝛽2

6
〈𝐝3〉     (6) 

 

U.S.BLS uses the Lloyd-Moulton index with β ≈ 0.4 in their preliminary estimates of the 

CPI with the target of predicting the Törnqvist index. From expressions (3) and (6) we see 

that the misprediction with the Lloyd-Moulton index in this case is −
𝛽2

12
〈𝐝3〉 (from 

expressions (3) and (6)). 

 

 

Walsh index 

 

The Walsh index cannot be approximated using expression (2). Thus, we need to do it 

separately (note that ∑ s0𝑖𝑒
𝛽𝑑𝑖 in the derivation cancels out): 
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𝑙𝑜𝑔 𝑊(𝐱, 𝐬0, 𝐬1, 𝛽) = 𝑙𝑜𝑔 (∑(s0𝑖s1𝑖)
1/2𝑥𝑖

1/2 / ∑(s0𝑖s1𝑖)
1/2𝑥𝑖

− 1/2 )

= 𝑙𝑜𝑔 ∑(s0𝑖s1𝑖)
1/2𝑒𝑑𝑖/2 − 𝑙𝑜𝑔 ∑(s0𝑖s1𝑖)

1/2𝑒− 𝑑𝑖/2 

= 𝑙𝑜𝑔 ∑ s0𝑖𝑒𝛽𝑑𝑖/2𝑒𝑑𝑖/2 − 𝑙𝑜𝑔 ∑ s0𝑖𝑒
𝛽𝑑𝑖/2𝑒− 𝑑𝑖/2  

 

Or applying Taylor expansion for the exponent and noting that ∑ s0𝑖 𝑑𝑖 = 0 by 

construction, we get: 

 
𝑙𝑜𝑔 𝑊(𝐱, 𝐬0, 𝐬1, 𝛽) ≈

≈ 𝑙𝑜𝑔 ∑ s0𝑖(1 + 
(𝛽 + 1)𝑑𝑖

2
+

(𝛽 + 1)2𝑑𝑖
2

8
 +  

(𝛽 + 1)3𝑑𝑖
3

48
)  

−  𝑙𝑜𝑔 ∑ s0𝑖(1 +  
(𝛽 − 1)𝑑𝑖

2
+

(𝛽 − 1)2𝑑𝑖
2

8
 +  

(𝛽 − 1)3𝑑𝑖
3

48
)  

≈ 𝑙𝑜𝑔 (1 + ∑ s0𝑖(
(𝛽 + 1)2𝑑𝑖

2

8
 +  

(𝛽 + 1)3𝑑𝑖
3

48
)) −  𝑙𝑜𝑔 (1

+ ∑ s0𝑖(
(𝛽 − 1)2𝑑𝑖

2

8
 +  

(𝛽 − 1)3𝑑𝑖
3

48
))  

 

And applying Taylor expansion for logs we get: 

𝑙𝑜𝑔 𝑊(𝐱, 𝐬0, 𝐬1, 𝛽) ≈
(𝛽 + 1)2

8
〈𝐝2〉 +

(𝛽 + 1)3

48
〈𝐝3〉 −

(𝛽 − 1)2

8
〈𝐝2〉 −

(𝛽 − 1)3

48
〈𝐝3〉 

 

Finally, we obtain: 

𝑙𝑜𝑔 𝑊(𝐱, 𝐬0, 𝐬1, 𝛽) ≈
𝛽

2
〈𝐝2〉 + (

1

24
 +

𝛽2

8
)〈𝐝3〉      (7) 

 

 

Elementary indices (Jevons, Dikhanov, CSWD) 

 

The elementary (unweighted) indices can be approximated using expression (2) as well. 

Assuming that s1𝑖 = s0𝑖, or β = 0, we get the following expressions for the elementary 

indices: 

𝑙𝑜𝑔 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 0) ≈
𝛼2

6
〈𝐝3〉     (8) 

In particular, 

Jevons (α = 0):  
𝑙𝑜𝑔 𝐽𝑒(𝐱, 𝐬0, 𝐬1, 0, 0) = 0      (9) 

Dikhanov (α = 0.5):  

𝑙𝑜𝑔 𝐷𝑒(𝐱, 𝐬0, 𝐬1, 0.5, 0) ≈
1

24
〈𝐝3〉      (10) 
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CSWD (α = 1):  

𝑙𝑜𝑔 𝐶𝑒(𝐱, 𝐬0, 𝐬1, 1, 0) ≈
1

6
〈𝐝3〉      (11) 

 

Note that expressions (8) – (11) are correct in the general case s1𝑖 = s0𝑖 (or when item 

shares are constant between the two periods), so they will be correct in the special case 

s1𝑖 = s0𝑖 = 1/𝑁 as well. From expressions (9) – (11) it follows that the Dikhanov index is 

located between the Jevons and CSWD indices in a one-to-three relationship. 

 

 

Range of possible results of Generalized Power Index 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) 

 

Let us combine expressions (2) – (11) to build up the range of possible results for the 

function 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) and the Walsh index presented here. We will express all 

indices relative to the Törnqvist index. Thus, the difference between 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) 

and the Tornqvist becomes: 

𝑙𝑜𝑔 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ (
𝛼2

6
−

𝛼𝛽

4
)〈𝐝3〉     (12) 

For the Walsh, Diewert, Fisher, and Lloyd-Moulton indices, the difference becomes, 

respectively: 

𝑙𝑜𝑔 𝑊(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ (
1

24
−

𝛽2

8
)〈𝐝3〉     (13) 

𝑙𝑜𝑔 𝐷(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ (
1

24
−

𝛽

8
)〈𝐝3〉     (14) 

𝑙𝑜𝑔 𝐹(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ (
1

6
−

𝛽

4
)〈𝐝3〉     (15) 

𝑙𝑜𝑔 𝐿𝑀(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ (−
𝛽2

12
)〈𝐝3〉     (16) 

 

The expressions for the elementary indices do not change, as the Tornqvist becomes the 

Jevons index when α = 0 and β = 0. From expressions (13) – (16) it follows that the indices 

described by expressions (8) – (11) are degenerate cases (i.e., the unweighted varieties) of 

the weighted indices described by expressions (12) – (15). Note that the Dikhanov index 

(α = 0.5) is the unweighted variant of both the Diewert and Walsh indices. The CSWD 

index (α = 1) is the unweighted variant of the Fisher index, and the Jevons index (α = 0) 

is the unweighted variant of the Törnqvist index. 
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Let’s define the boundaries of the range under consideration. We will vary α from 0 to 1, 

and β from 0 to 1. Those ranges will cover indices from the Tornqvist (α = 0) to the Fisher 

(α = 1), on the α dimension, and the cases from elasticity (β=0) to elasticity (β=1)1; with 

everything else in between. The surface of possible results in the 3D space is presented in 

Fig. 1 below.  

 

 

 
 

 

 
1 From the U.S.BLS experience, the most plausible values of β lie between 0.3 and 0.5 at the aggregate 

level. 
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𝛼

〈𝐝
3 〉

𝛽

Fig. 1. Surface of possible results of 𝐺𝑊(𝐱,𝐬0,𝐬1,𝛼,𝛽),

in terms of 〈𝐝3〉
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Now, consider the projection of this surface onto the [〈𝐝3〉 - β] plane. Note that the 

minimum of the projected surface is achieved at α = 3β/4 (we find it by differentiating 

expression (12)) where 𝑚𝑖𝑛(𝑙𝑜𝑔 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽)) ≈ − 3𝛽2 32⁄ .  

 

 

 
 

 

Figure 2 shows all indices investigated in this paper as well as the general behavior of 

𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) with α ranging from 0 to 1. We see that as power α increases, elasticity 

β becomes more discriminating for the indices with the Fisher index (α = 1) exhibiting the 

highest degree of variation. In this graph we also show the Walsh index described by 

expression (13). 

 

The Walsh index approaches the Diewert index when β -> 0 and β -> 1, and, as mentioned 

earlier, its unweighted counterpart is the same index as for the Diewert. The Diewert 

index approaches the Törnqvist when β -> 1/3, for the Walsh this value is 1/√3, and for the 

Fisher, it is 2/3. The Lloyd-Moulton index approaches the Tornqvist index as β -> 0. The 

four indices [Walsh, Diewert, Fisher, and Lloyd-Moulton] converge to −
1

12
〈𝐝3〉 when β -

> 1, relative to the Törnqvist index. It also follows that the indices can change their order 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1

〈𝐝
3 〉

𝛽

Fig. 2. Range of possible results of 𝐺𝑊(𝐱,𝐬0,𝐬1,𝛼,𝛽) and 

Walsh indices, in terms of 〈𝐝3〉

Fisher (α=1) Walsh Diewert (α=0.5)
Tornqvist (α=0) α=0.9 α=0.8
α=0.7 α=0.6 α=0.4
α=0.3 α=0.2 α=0.1
min(GW) (α = 3β/4) Lloyd-Moulton (α = β)
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[relative position], as their order depends on the sign of 〈𝐝3〉 and the value of β. For 

example, the Walsh index is located between the Fisher and Tornqvist indices when β < 

1/√3, at the same time the Walsh is located between the Diewert and Fisher indices when 

𝛽 ∈ [0, 1]. As β -> 0, the Tornqvist index approaches the Geometric Laspeyres, the Fisher 

approaches 
1

6
〈𝐝3〉, and both the Walsh and Diewert approach 

1

24
〈𝐝3〉. Note that this 

corresponds to expression (8) for unweighted indices with 𝛼 being equal to 1 and 0.5, 

respectively. Thus, when β -> 0 the weighted indices mirror the behavior of their 

unweighted counterparts.  

 

Figure 3 below depicts the bounds of 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) and the Walsh index. The Fisher 

index determines the upper bound (until β = 2/3), then the Törnqvist index determines 

the upper bound. The lower bound is achieved with α = 3β/4 (note the behavior of the 

Lloyd-Moulton index (α = β) located somewhat above the lower bound, see Figure 2). The 

Walsh index is located in between the bounds of 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) for all β. 

 

 

 
 

Precision of the third-order approximation 

 

Precision evaluation of expressions (2) – (11) was carried out with the Monte Carlo 

process. To this end, we set up a series of 1,000 simulations with 𝛽 ranging from 0 to 1, 

and r = 0.25. Prices were simulated with process log x = r* U[0,1] (uniform distribution). 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1〈𝐝
3 〉

𝛽

Fig. 3. Walsh index vs. min and max of 

𝐺𝑊(𝐱,𝐬0,𝐬1,𝛼,𝛽), in terms of 〈𝐝3〉

Walsh max bound min bound

Fisher 
(α=1)

Tornqvist 
(α=0)

min(GW) 
(α = 3β/4)
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Weights were simulated with process s = U[0,1], then normalized for their sum to be 

equal to one. 

 

Results of the simulation: The third-order approximations ensure high precision results, 

with the worst approximation exceeding a five-digit accuracy, and with the average 

error being as low as in the seventh digit. That is more than adequate for any practical 

purposes. 

 

 
 

 

Some practical considerations for the Consumer Price Index 

 

The sign of 〈𝐝3〉 is mostly negative, as we have a few technology products whose prices 

decline (relatively or absolutely) against the background of mostly rising prices for the 

rest2. Therefore, the combination of Fisher and Tornqvist in this case represents the 

absolute minimum of 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) (with a switching point at β = 2/3). 

𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) will be positioned above the combination of these two indices at all 

points. Thus, the Walsh index may look attractive in this setting as it is placed right in 

the middle of all possible results of 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽), never approaching its bounds. 

 

 
2 This consideration applies only to temporal indices. For spatial indices the technical change responsible 

for relative price declines of technology items would be applicable to all countries/ territories 

simultaneously. 
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Fig. 4. Precision of third-order approximation
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Another practical implication of expression (12) is a straightforward derivation of 

elasticity β. From 𝑙𝑜𝑔 𝐹(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ (
1

6
−

𝛽

4
)〈𝐝3〉 we get: 

 𝛽 ≈ 4((𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝐹(𝐱, 𝐬0, 𝐬1, 𝛽))/〈𝐝3〉 +
1

6
). 

 

 

Extension of GW to arbitrary weight function 

 

From Dikhanov (2024, https://stats.unece.org/ottawagroup/download/Dikhanov-A-

New-Elementary-Index.pdf) it follows that the expressions (8) - (16) [the differences 

between various indices and the Törnqvist] are valid for the weight function s1𝑖 = s0𝑖  (1 +

𝛽𝑑𝑖) as well. The only difference exists in expressions (2) – (7) where an extra term 

(
𝛽2

4
〈𝐝3〉) is present but that doesn’t affect the differences between the indices and the 

Törnqvist.  

 

Now, consider a general weight functional form s1𝑖 = s0𝑖  𝑓(𝑑𝑖) ∑ s0𝑖 𝑓(𝑑𝑖)⁄  where 𝑓(𝑑𝑖) is 

smooth three-times continuously differentiable function, and 𝑓(0) = 1 at 𝑑𝑖 = 0.  

 

 

Generalized Weighted Index (extended) 

 

Now we can rewrite expression (1) with s1𝑖 = s0𝑖 𝑓(𝑑𝑖) ∑ s0𝑖  𝑓(𝑑𝑖)⁄  in mind as: 

 

𝑙𝑜𝑔 𝐺𝑊𝐸(𝐱, 𝐬0, 𝐬1, 𝛼, (. )) =
1

2𝛼
𝑙𝑜𝑔 (

∑ s0𝑖𝑥𝑖
𝛼 

∑ s1𝑖𝑥𝑖
−𝛼 

) =

=
1

2𝛼
(𝑙𝑜𝑔 ∑ s0𝑖𝑒

𝛼𝑑𝑖  −  𝑙𝑜𝑔 ∑ s0𝑖 𝑓(𝑑𝑖)𝑒−𝛼𝑑𝑖 +  𝑙𝑜𝑔 ∑ s0𝑖 𝑓(𝑑𝑖)) 

 

Using Taylor (actually, Maclaurin) expansion 𝑓(𝑑𝑖) ≈ 𝑓(0) + 𝑓′(0)𝑑𝑖 + 1/2𝑓′′(0)𝑑𝑖
2 +

1/6𝑓′′′(0)𝑑𝑖
3, we get:  

 
𝑙𝑜𝑔 𝐺𝑊𝐸(𝐱, 𝐬0, 𝐬1, 𝛼, (. )) ≈

≈
1

2𝛼
(𝑙𝑜𝑔 ∑ s0𝑖 (1 + 𝛼𝑑𝑖 +

𝛼2𝑑𝑖
2

2
+

𝛼3𝑑𝑖
3

6
)

−  𝑙𝑜𝑔 ∑ s0𝑖 (𝑓(0) + 𝑓′(0)𝑑𝑖 +
𝑓′′(0)𝑑𝑖

2

2
+

𝑓′′′(0)𝑑𝑖
3

6
) (1 − 𝛼𝑑𝑖 +

𝛼2𝑑𝑖
2

2

−
𝛼3𝑑𝑖

3

6
) + 𝑙𝑜𝑔 ∑ s0𝑖(𝑓(0) + 𝑓′(0)𝑑𝑖 +

𝑓′′(0)𝑑𝑖
2

2
+

𝑓′′′(0)𝑑𝑖
3

6
))  

 

https://stats.unece.org/ottawagroup/download/Dikhanov-A-New-Elementary-Index.pdf
https://stats.unece.org/ottawagroup/download/Dikhanov-A-New-Elementary-Index.pdf
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And noting that ∑ s0𝑖  𝑑𝑖 = 0 by construction, we obtain: 

 
𝑙𝑜𝑔 𝐺𝑊𝐸(𝐱, 𝐬0, 𝐬1, 𝛼, (. ))

≈
1

2𝛼
(𝑙𝑜𝑔 (1 + ∑ s0𝑖 (

𝛼2𝑑𝑖
2

2
+

𝛼3𝑑𝑖
3

6
))

−  𝑙𝑜𝑔 (∑ s0𝑖 (1 + 𝑓′(0)𝑑𝑖 +
𝑓′′(0)𝑑𝑖

2

2
+

𝑓′′′(0)𝑑𝑖
3

6
) (1 − 𝛼𝑑𝑖 +

𝛼2𝑑𝑖
2

2

−
𝛼3𝑑𝑖

3

6
)) + 𝑙𝑜𝑔 (1 + ∑ s0𝑖(

𝑓′′(0)𝑑𝑖
2

2
+

𝑓′′′(0)𝑑𝑖
3

6
)))  

 

Noting that ∑ s0𝑖  𝑓′(0)𝑑𝑖 = 0 , 

 
𝑙𝑜𝑔 𝐺𝑊𝐸(𝐱, 𝐬0, 𝐬1, 𝛼, (. ))

≈
1

2𝛼
(∑ s0𝑖 (

𝛼2𝑑𝑖
2

2
+

𝛼3𝑑𝑖
3

6
)

− ∑ s0𝑖 (
𝑓′′(0)𝑑𝑖

2

2
+

𝑓′′′(0)𝑑𝑖
3

6
− 𝛼𝑓′(0)𝑑𝑖

2 −
𝛼𝑓′′(0)𝑑𝑖

3

2
+

𝛼2𝑑𝑖
2

2

+
𝛼2𝑓′(0)𝑑𝑖

3

2
−

𝛼3𝑑𝑖
3

6
) + ∑ s0𝑖(

𝑓′′(0)𝑑𝑖
2

2
+

𝑓′′′(0)𝑑𝑖
3

6
)))  

 

Or, 

 
𝑙𝑜𝑔 𝐺𝑊𝐸(𝐱, 𝐬0, 𝐬1, 𝛼, (. ))

≈
1

2𝛼
(∑ s0𝑖 (

𝛼2𝑑𝑖
2

2
+

𝛼3𝑑𝑖
3

6
)

− ∑ s0𝑖 (−𝛼𝑓′(0)𝑑𝑖
2 −

𝛼𝑓′′(0)𝑑𝑖
3

2
+

𝛼2𝑑𝑖
2

2
+

𝛼2𝑓′(0)𝑑𝑖
3

2
−

𝛼3𝑑𝑖
3

6
)) 

Finally, collecting the terms, we obtain: 

𝑙𝑜𝑔 𝐺𝑊𝐸(𝐱, 𝐬0, 𝐬1, 𝛼, (. )) ≈
𝑓′(0)

2
〈𝐝𝟐〉 + (

𝛼2

6
−

𝛼𝑓′(0)

4
+

𝑓′′(0)

4
)〈𝐝3〉     (17) 

 

Törnqvist, Fisher and Diewert Indices 

 

From expression (17) we directly obtain the approximation for the Törnqvist index by 

setting α = 0:  

𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈
𝑓′(0)

2
〈𝐝2〉 +

𝑓′′(0)

4
〈𝐝3〉      (18) 
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By setting α = ½ we get the approximation for the Diewert index:  

𝑙𝑜𝑔 𝐷(𝐱, 𝐬0, 𝐬1, 𝛽) ≈
𝑓′(0)

2
〈𝐝2〉 + (

𝑓′′(0)

4
+

1

24
 −

𝑓′(0)

8
)〈𝐝3〉      (19) 

 

Accordingly, by setting α = 1 we obtain the approximation for the Fisher index: 

 

𝑙𝑜𝑔 𝐹(𝐱, 𝐬0, 𝐬1, 𝛽) ≈
𝑓′(0)

2
〈𝐝2〉 + (

𝑓′′(0)

4
+

1

6
 −

𝑓′(0)

4
)〈𝐝3〉     (20) 

 

Expressing these indices relative to the Törnqvist index, we obtain: 

𝑙𝑜𝑔 𝐺𝑊𝐸(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ (
𝛼2

6
−

𝛼𝑓′(0)

4
)〈𝐝3〉     (21) 

 

Thus, for the Diewert and Fisher indices, the difference becomes, respectively: 

𝑙𝑜𝑔 𝐷(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ (
1

24
−

𝑓′(0)

8
)〈𝐝3〉     (22) 

𝑙𝑜𝑔 𝐹(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ (
1

6
−

𝑓′(0)

4
)〈𝐝3〉     (23) 

 

Therefore, the expressions (18) – (23) will be valid for any smooth weight function on 𝑑𝑖 

for which the first derivative at 𝑑𝑖 = 0 exists, for example, 𝑓(𝑑𝑖) = 1 + 𝛽𝑑𝑖, 𝑓(𝑑𝑖) = 𝑒𝛽𝑑𝑖, 

𝑓(𝑑𝑖) = 1 + 𝛽𝑑𝑖
2, 𝑓(𝑑𝑖) = 1 + 𝑙𝑜𝑔 (1 + 𝛽𝑑𝑖), etc. 

 

Thus, for instance, for function 𝑓(𝑑𝑖) = 1 + 𝛽𝑑𝑖
2, the first derivative 𝑓′(0) = 0, and 

𝑙𝑜𝑔 𝐹(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈
1

6
〈𝐝3〉, and the differences for the weighted 

indices behave in the same way as the differences for the unweighted (elementary) 

indices (compare to expression (11)). 

 

 

Walsh and Lloyd-Moulton indices 

 

The Walsh index is more complicated to derive as it is not part of the 𝐺𝑊𝐸(𝐱, 𝐬0, 𝐬1, 𝛼, (. )) 

family. Using the same methods as above (and omitting some intermediate steps) we get: 

𝑙𝑜𝑔 𝑊(𝐱, 𝐬0, 𝐬1, (. )) ≈
𝑓′(0)

2
〈𝐝𝟐〉 + (

1

24
−

𝑓′(0)2

8
+

𝑓′′(0)

4
)〈𝐝3〉     (24) 

𝑙𝑜𝑔 𝑊(𝐱, 𝐬0, 𝐬1, (. )) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, (. )) ≈ (
1

24
−

𝑓′(0)2

8
)〈𝐝3〉     (25) 

 

Thus, for example, the distance between the Walsh and Diewert indices becomes: 

𝑙𝑜𝑔 𝑊(𝐱, 𝐬0, 𝐬1, (. )) −  𝑙𝑜𝑔 𝐷(𝐱, 𝐬0, 𝐬1, (. )) ≈ (
𝑓′(0)

8
−

𝑓′(0)2

8
)〈𝐝3〉 
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The Lloyd-Moulton-Törnqvist - Tornqvist distance is straightforward to approximate. 

From the above (expression (6)) we know that: 𝑙𝑜𝑔 𝐿𝑀(𝐱, 𝐬0, 𝛽) ≈
𝛽

2
〈𝐝2〉 +

𝛽2

6
〈𝐝3〉. 

 

Hence, 

𝑙𝑜𝑔 𝐿𝑀(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, (. )) ≈ (
𝛽

2
−

𝑓′(0)

2
)〈𝐝2〉 + (

𝛽2

6
−

𝑓′′(0)

4
)〈𝐝3〉     (26) 

 

For example, if 𝑓(𝑑𝑖) = 1 + 𝛽𝑑𝑖, we get 𝑙𝑜𝑔 𝐿𝑀(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈
𝛽2

6
〈𝐝3〉 

vs. (−
𝛽2

12
)〈𝐝3〉, if 𝑓(𝑑𝑖) = 𝑒𝛽𝑑𝑖 . 

 

 

Implicit Price Indices 

 

Implicit price indices are the indices obtained as the ratio of value and volume indices: P 

= V / Q. 

 

Consider one more normalization without restricting generality: Q(0) = 1, hence V(0) = 1 

and 𝑞𝑖
0 = s0𝑖. Now, consider the following transformations: 

𝑥𝑖 =
𝑝𝑖

1

𝑝𝑖
0 / ∏ (

𝑝𝑖
1

𝑝𝑖
0)

s0𝑖

= 𝑒𝑑𝑖/𝑒∑ s0𝑖𝑑𝑖 and 𝑦𝑖 =
𝑞𝑖

1

𝑞𝑖
0 /𝑞 = 𝑒(𝛽−1)𝑑𝑖/𝑞, 

where ∏ (
𝑝𝑖

1

𝑝𝑖
0)

s0𝑖

 is the Geometric Laspeyres price index and q is a volume (quantity) 

index. For the quantity index q, the exact formula is not important as it gets cancelled out 

in the derivations below. For example, 𝑞 = ∏ (
𝑞𝑖

1

𝑞𝑖
0)

s0𝑖

 (the Geometric Laspeyres volume 

index) can be implied for the convenience.  

 

Thus, we can write: 

𝑉(𝐩𝟏, 𝐪𝟏, 𝐩𝟎, 𝐪𝟎) = 𝑉(1)/𝑉(0) = 

=
∑ 𝑝1𝑖𝑞1𝑖 

∑ 𝑝0𝑖𝑞0𝑖 
= 𝑞 ∑ s0𝑖𝑥𝑖𝑦𝑖  = 𝑞 ∑ s0𝑖𝑒

𝑑𝑖𝑒(𝛽−1)𝑑𝑖 = 𝑞 ∑ 𝑠0𝑖𝑒
𝛽𝑑𝑖   

 

The following functional form describes the implicit price index corresponding to 

expression (1) for the direct price index 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼): 

𝑖𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼) = ∑ s0𝑖𝑥𝑖𝑦𝑖 / (∑ s0𝑖𝑦𝑖
𝛼 ∑ s1𝑖𝑦𝑖

−𝛼⁄ )

1
2𝛼

         (27) 

 

Now, noting that s1𝑖 = s0𝑖𝑒𝛽𝑑𝑖 ∑ s0𝑖𝑒𝛽𝑑𝑖⁄ , and cancelling out the quantity index q from 

both the numerator and denominator we get: 
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𝑖𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼) = ∑ 𝑠0𝑖𝑒
𝛽𝑑𝑖  / (∑ s0𝑖𝑒

𝛽𝑑𝑖 ∑ 𝐬0𝑖𝑒𝛼(𝛽−1)𝑑𝑖 ∑ s0𝑖𝑒
𝛽𝑑𝑖𝑒−𝛼(𝛽−1)𝑑𝑖⁄ )

1
2𝛼

 

 

Using the same methods for approximating functions from above [omitting some 

intermediate steps and after some algebra], we arrive at: 

 
𝑙𝑜𝑔 𝑖𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽)

≈
𝛽2

2
〈𝐝𝟐〉 +

𝛽3

6
〈𝐝𝟑〉 −

1

2𝛼
(
𝛽2

2
〈𝐝𝟐〉 +

𝛽3

6
〈𝐝𝟑〉 + 𝛼2

(𝛽 − 1)2

2
〈𝐝𝟐〉

+ 𝛼3
(𝛽 − 1)3

6
〈𝐝𝟑〉 −

(𝛽 + 𝛼 − 𝛼𝛽)2

2
〈𝐝𝟐〉 −

(𝛽 + 𝛼 − 𝛼𝛽)3

6
〈𝐝𝟑〉) 

 

After collecting the terms, we obtain the following: 

 
𝑙𝑜𝑔 𝑖𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽)

≈
𝛽

2
〈𝐝𝟐〉 + (

𝛼2

6
+ 𝛽 (

𝛼

4
−

𝛼2

2
) + 𝛽2 (

𝛼2

2
−

𝛼

2
+

1

4
) + 𝛽3(−

𝛼2

6
+

𝛼

4

−
1

12
))〈𝐝3〉     (28) 

 

And the difference between the implicit and direct (expression (2)) indices is expressed 

as: 
𝑙𝑜𝑔 𝑖𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) − 𝑙𝑜𝑔 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽)

≈ (𝛽 (
𝛼

2
−

𝛼2

2
) + 𝛽2 (

𝛼2

2
−

𝛼

2
) + 𝛽3(−

𝛼2

6
+

𝛼

4
−

1

12
))〈𝐝3〉     (29) 

 

When α equals one, we see that the direct and implicit Fishers are equivalent (this is a 

well-known fact, of course). For the Tornqvist (α = 0), that difference is approximately 

−
𝛽3

12
〈𝐝3〉. For the Diewert (α = ½), the difference between the direct and implicit indices 

is approximately (−
𝛽2

8
+

𝛽

8
)〈𝐝3〉: 

 
𝑙𝑜𝑔 𝑖𝐹(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝐹(𝐱, 𝐬0, 𝐬1, 𝛽) = 0     (30) 

𝑙𝑜𝑔 𝑖𝐷(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝐷(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ (−
𝛽2

8
+

𝛽

8
)〈𝐝3〉     (31) 

𝑙𝑜𝑔 𝑖𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ −
𝛽3

12
〈𝐝3〉     (32) 

 

This therefore means that the implicit Diewert index is equivalent to the Walsh index (see 

expressions (13) – (14)). And we know that, vice versa, the implicit Walsh is equivalent to 

the Diewert index. I.e., there exists a duality between the Walsh and Diewert indices.   
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Difference between 𝑖𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) and the Tornqvist (direct) index is expressed as: 
𝑙𝑜𝑔 𝑖𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) − 𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽)

≈ (
𝛼2

6
+ 𝛽 (

𝛼

4
−

𝛼2

2
) + 𝛽2 (

𝛼2

2
−

𝛼

2
) + 𝛽3(−

𝛼2

6
+

𝛼

4
−

1

12
))〈𝐝3〉     (33) 

 

The surface of possible results of expression (33) in the 3D space is presented in Fig. 5 

below.  

 

 
 

 

The minimum of [𝑙𝑜𝑔 𝑖𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) − 𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽)] is achieved at the Törnqvist 

(implicit) line. The maximum is attained at the Fisher line. Now, consider the projection 

of this surface onto the [〈𝐝3〉 - β] plane (Figure 6). The graph shows that the domain of the 

possible results of [𝑙𝑜𝑔 𝑖𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) − 𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽)] is bounded by the Fisher 

index (black line) from above and the implicit Törnqvist index (red line) from below. For 

comparison, the direct Törnqvist and the minimum of [𝑙𝑜𝑔 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) −

𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽)] are shown as well. 
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Fig. 5. Surface of possible results of iG𝑊(𝐱,𝐬0,𝐬1,𝛼,𝛽),

in terms of 〈𝐝3〉
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The implicit Diewert index (α = 0.5), which is equivalent to the Walsh index, is shown as 

the green line. 

 

Note some important properties of the implicit indices: as β -> 1, all discussed implicit 

indices converge to −
1

12
〈𝐝3〉; as β -> 0, all discussed implicit indices converge to the 

corresponding direct indices (see expression (29)). 

 

We see that the range in Figure 6 is tighter than the one in Figure 2 and starting from β = 

2/3 the direct Törnqvist index lies outside the range for the implicit indices. The Fisher, 

Walsh (implicit Diewert) and implicit Törnqvist are the only indices that are fully located 

in both ranges. Those three indices can be called truly “ideal”3. 

 

 

 
3 Note that all indices described by 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) and 𝑖𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) are superlative, in the sense 

that they all approximate each other to the second order at any β. 
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Fig. 6. Range of possible results of i𝐺𝑊(𝐱,𝐬0,𝐬1,𝛼,𝛽)

(implicit indices), in terms of 〈𝐝3〉
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ANNEX I 

 

Laspeyres and Paasche indices, PLS 

 

The Laspeyres and Paasche indices play a very important role in index number theory.  

Using notation from the previous sections, here we derive approximations for the 

Paasche and Laspeyres indices: 

𝑙𝑜𝑔 𝐿𝑎(𝐱, 𝐬0, 𝛽) = 𝑙𝑜𝑔 ∑ s0𝑖𝑥𝑖 = 𝑙𝑜𝑔 ∑ s0𝑖𝑒𝑑𝑖 ≈ 𝑙𝑜𝑔 ∑ s0𝑖 (1 + 𝑑𝑖 +
𝑑𝑖

2

2
+

𝑑𝑖
3

6
)

≈ ∑ s0𝑖 (
𝑑𝑖

2

2
+

𝑑𝑖
3

6
) ≈

1

2
〈𝐝𝟐〉 +

1

6
〈𝐝3〉          (34) 

  

𝑙𝑜𝑔 𝑃𝑎(𝐱, 𝐬1, 𝛽) = − 𝑙𝑜𝑔 ∑ s1𝑖/𝑥𝑖 = 2𝑙𝑜𝑔 𝐹(𝐱, 𝐬0, 𝐬1, 𝛽) − 𝑙𝑜𝑔 𝐿𝑎(𝐱, 𝐬0, 𝛽)

≈ 𝛽〈𝐝2〉 + (
𝛽2

2
 −

𝛽

2
+

1

3
)〈𝐝3〉 −

1

2
〈𝐝𝟐〉 −

1

6
〈𝐝3〉

=
2𝛽 − 1

2
〈𝐝2〉 + (

𝛽2

2
−

𝛽

2
+

1

6
)〈𝐝3〉          (35) 

And for the PLS we have the following: 
𝑙𝑜𝑔 𝑃𝐿𝑆(𝐱, 𝐬0, 𝐬1, 𝛽) = 𝑙𝑜𝑔 𝑃𝑎(𝐱, 𝐬1, 𝛽) −  𝑙𝑜𝑔 𝐿𝑎(𝐱, 𝐬0, 𝛽) =

≈
2𝛽 − 1

2
〈𝐝2〉 + (

𝛽2

2
−

𝛽

2
+

1

6
)〈𝐝3〉 −

1

2
〈𝐝𝟐〉 −

1

6
〈𝐝3〉

= (𝛽 − 1)〈𝐝2〉 + (𝛽 − 1)
𝛽

2
〈𝐝3〉          (36) 

 

For comparison, the geometric PLS will be written as: 

𝑙𝑜𝑔 𝑔𝑃𝐿𝑆(𝐱, 𝐬0, 𝐬1, 𝛽) = 2𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ 𝛽〈𝐝2〉 +
𝛽2

2
〈𝐝3〉          (37) 

From here, we can see the conditions for PLS < 1: when 〈𝐝3〉 is small (i.e., the skewness 

of prices is low), PLS < 1 holds for all 𝛽 < 1 (compare this to the von Bortkiewicz 

inequality). On the other hand, gPLS is always greater than one when 〈𝐝3〉 is small and 

𝛽 > 0. 

 

The relationship between the PLS and gPLS can be expressed as: 

𝑙𝑜𝑔 𝑃𝐿𝑆(𝐱, 𝐬0, 𝐬1, 𝛽) − 𝑙𝑜𝑔 𝑔𝑃𝐿𝑆(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ −〈𝐝2〉 −
𝛽

2
〈𝐝3〉          (38) 

 

From here it is easy to derive the condition when the PLS is greater than one. If 𝛽 < 1, 

the condition becomes: 

〈𝐝2〉 +
𝛽

2
〈𝐝3〉 < 0          (39) 
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At the same time, if 𝛽 > 0, expression (39) is the condition of gPLS to be less than one (it 

follows from expression (37)). Thus, when 0 < 𝛽 < 1 the log PLS and log gPLS are of 

opposite signs. 

 

Special case: if 𝛽 = 0, i.e., the shares stay constant between the two periods, the Fisher 

index will be located at 
1

6
〈𝐝3〉 above the Törnqvist; and in this case:  𝑙𝑜𝑔 𝑃𝐿𝑆(𝐱, 𝐬0) ≈

−〈𝐝2〉, 𝑙𝑜𝑔 𝑔𝑃𝐿𝑆(𝐱, 𝐬0) = 0, 𝑙𝑜𝑔 𝑃𝑎(𝐱, 𝐬0) ≈ −
1

2
〈𝐝𝟐〉 +

1

6
〈𝐝3〉 and 𝑙𝑜𝑔 𝐿𝑎(𝐱, 𝐬0) ≈

1

2
〈𝐝𝟐〉 +

1

6
〈𝐝3〉.4 Note that 〈𝐝3〉 can only be a significant value if the prices are skewed 

substantially.  

 

 

 

 

 

4 Note that all formulae are expressed in terms of 𝑥𝑖 =
𝑝𝑖

1

𝑝𝑖
0 / ∏ (

𝑝𝑖
1

𝑝𝑖
0)

𝐬0𝑖

, i.e., the prices are normalized 

versus the Geometric Laspeyres index. 
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ANNEX II 

 

Fifth-order approximation of Generalized Power Index 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) 

 

It is possible to extend expression (2) to include higher-order expansion terms: 

𝑙𝑜𝑔 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) ≈
𝛽

2
〈𝐝𝟐〉 + (

𝛼2

6
−

𝛼𝛽

4
+

𝛽2

4
)〈𝐝3〉 

 

Using the same methods of derivation, the fifth-term approximation will be written 

[omitting intermediate steps] as follows: 
𝑙𝑜𝑔 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽)

≈
𝛽

2
〈𝐝𝟐〉 + (

𝛼2

6
−

𝛼𝛽

4
+

𝛽2

4
) 〈𝐝3〉 + (

𝛼2𝛽

12
−

𝛼𝛽2

8
+

𝛽3

12
) (〈𝐝4〉 + 3〈𝐝2〉2)

+
1

240𝛼
(𝛼5 − (𝛽 − 𝛼)5 + 𝛽5)(〈𝐝5〉 + 10〈𝐝2〉〈𝐝3〉)     (40) 

 

An interesting special case when β = 0 (i.e., item shares kept constant between the two 

periods) will be written as: 

𝑙𝑜𝑔 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 0) ≈
𝛼2

6
〈𝐝3〉 +

𝛼4

120
(〈𝐝5〉 + 10〈𝐝2〉〈𝐝3〉)     (41) 

 

As we can see in this special case the fourth order term disappears. 

Thus, expressions (8) - (11) are in fact the fourth order approximations. Hence expression 

(8), for example, becomes in fact:   

𝑙𝑜𝑔 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 0) =
𝛼2

6
〈𝐝3〉 + 𝑂(〈𝐝5〉)          (8𝑎) 

The same goes for expressions (9) – (11). 

 

Expressions (40) and (41) are of a purely academic interest, of course, as the third order 

approximation is quite precise for all practical purposes (see Fig. 4 and the section on 

precision of the approximations). 
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ANNEX III 

 

Generalized Weighted Index GW2 that incorporates Walsh index 

 

Generalized index 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) discussed in the previous sections does not include 

the Walsh index. However, it is possible to construct an index that would go through 

the Fisher (α = 1) and Tornqvist (α = 0) indices in the limiting cases, and, 

simultaneously, pass through the Walsh index (α = ½). Let’s call it GW2 and define it as 

follows: 

𝐺𝑊2(𝐱, 𝐬0, 𝐬1, 𝛼) = (∑ 𝐬0𝑖
𝛼𝐬1𝑖

1−𝛼𝑥𝑖
𝛼 ∑ 𝐬0𝑖

1−𝛼𝐬1𝑖
𝛼𝑥𝑖

−𝛼⁄ )

1
2𝛼

          (42) 

 

Let’s assume that item shares change with prices with elasticity β: s1𝑖 = s0𝑖𝑒
𝛽𝑑𝑖/ ∑ s0𝑖𝑒

𝛽𝑑𝑖, 

where 𝑑𝑖 = 𝑙𝑜𝑔 𝑥𝑖. Then, we can rewrite expression (42) as: 

𝑙𝑜𝑔 𝐺𝑊2(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) =
1

2𝛼
𝑙𝑜𝑔 (∑ s0𝑖

𝛼s1𝑖
1−𝛼𝑥𝑖

𝛼
 / ∑ s0𝑖

1−𝛼s1𝑖
𝛼𝑥𝑖

−𝛼 )

=
1

2𝛼
(𝑙𝑜𝑔 ∑ s0𝑖𝑒

(𝛼+𝛽−𝛼𝛽)𝑑𝑖  

− 𝑙𝑜𝑔 ∑ s0𝑖𝑒
(−𝛼+𝛼𝛽)𝑑𝑖 + 𝑙𝑜𝑔 ∑ s0𝑖𝑒

𝛼𝛽𝑑𝑖  − 𝑙𝑜𝑔 ∑ s0𝑖𝑒(1−𝛼)𝛽𝑑𝑖  ) 

 

Which, using Taylor expansion as in the case of 𝐺𝑊(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽), leads to: 
𝑙𝑜𝑔 𝐺𝑊2(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽)

≈
1

2𝛼
(
(𝛼𝛽)2

2
〈𝐝𝟐〉 +

(𝛼𝛽)3

6
〈𝐝𝟑〉 −

((1 − 𝛼)𝛽)2

2
〈𝐝𝟐〉 −

((1 − 𝛼)𝛽)3

6
〈𝐝𝟑〉

+
(𝛼 + 𝛽 − 𝛼𝛽)2

2
〈𝐝𝟐〉 +

(𝛼 + 𝛽 − 𝛼𝛽)3

6
〈𝐝𝟑〉 −

(−𝛼 + 𝛼𝛽)2

2
〈𝐝𝟐〉

−
(−𝛼 + 𝛼𝛽)3

6
〈𝐝𝟑〉) 

Or, 

𝑙𝑜𝑔 𝐺𝑊2(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) ≈
𝛽

2
〈𝐝𝟐〉 + (

𝛼2

6
+ 𝛽 (

𝛼

4
−

𝛼2

2
) + 𝛽2 (

𝛼2

2
−

𝛼

2
+

1

4
))〈𝐝3〉          (43) 

 

Finally, the difference between GW2 and the Tornqvist index can be expressed as 

following: 

𝑙𝑜𝑔 𝐺𝑊2(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) − 𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽) ≈ (
𝛼2

6
+ 𝛽 (

𝛼

4
−

𝛼2

2
) + 𝛽2 (

𝛼2

2
−

𝛼

2
))〈𝐝3〉     (44) 

 

And setting α = 0, ½ and 1, we arrive at the Tornqvist (expression (3)), Walsh 

(expression (7)) and Fisher (expression (5)) indices, respectively. 
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The surface of possible results of expression (44) in the 3D space is presented in Fig. 7 

below.  

 

 
 

Note the similarities between Fig. 1 (GW) and Fig. 7 (GW2). Consider the projection of 

this surface onto the [〈𝐝3〉 - β] plane (Figure 8 below). The maximum of 

[𝑙𝑜𝑔 𝐺𝑊2(𝐱, 𝐬0, 𝐬1, 𝛼, 𝛽) − 𝑙𝑜𝑔 𝑇(𝐱, 𝐬0, 𝐬1, 𝛽)] is achieved at the Fisher line (until β = 2/3) 

and then at the Törnqvist line, just as in the case of GW function. However, the Tornqvist 

line is also the minimum of the range for GW2 function until β = 1/√3. Thus, the difference 

between the ranges for GW and GW2 functions is the area above the yellow line in Fig. 8 

(min(GW), α = 3β/4) and the area delineated by the Tornqvist line (until β = 1/√3) and, 
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Fig. 7. Surface of possible results of 𝐺𝑊2(𝐱,𝐬0,𝐬1,𝛼,𝛽),

in terms of 〈𝐝3〉
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after that, by the envelope of lowest boundaries of the lines corresponding to GW2 with 

α > ½. The Diewert index lies partially outside the range for GW2. 
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Fig. 8. Range of possible results of 𝐺𝑊2(𝐱,𝐬0,𝐬1,𝛼,𝛽),

in terms of 〈𝐝3〉

1 0.9 0.8
0.7 0.6 0.5
0.4 0.3 0.2
0.1 0 min(GW) (α = 3β/4)


