Labor market informality, risk, and public insurance

Lucas Finamor

(Yale University)

Disclaimer

"This research uses information from the Chilean Social Protection Survey (Encuesta de Protección Social). I thank the Undersecretary of Social Protection, the intellectual owner of the survey, for the authorization to use the de-identified dataset. All the results from this research are the responsibility of the author and do not implicate the Chilean Undersecretary of Social Protection."

How do workers make employment decisions with widespread informality?

How do workers make employment decisions with widespread informality?

Q1) How do career decisions depend on formal insurance?

How do workers make employment decisions with widespread informality?

Q1) How do career decisions depend on formal insurance?

Formal employment tied to a bundle of insurance

• Unemployment Insurance and Pensions

How do workers make employment decisions with widespread informality?

Q1) How do career decisions depend on formal insurance?

- Formal employment tied to a bundle of insurance
 - Unemployment Insurance and Pensions
- Non-contributory elements: welfare transfers, minimum pensions

How do workers make employment decisions with widespread informality?

Q1) How do career decisions depend on formal insurance?

- Formal employment tied to a bundle of insurance
 - Unemployment Insurance and Pensions
- Non-contributory elements: welfare transfers, minimum pensions
- Q2) How do career decisions and savings interact?
 - Private savings can be use to self-insure
 - Private savings can be use to fund start-up informal activities

Labor market informality, risk, and public insurance

Informality over the life-cycle Cohorts Gender/Educ Other Countries

1. Develop a model with employment and savings decisions, risk, and social insurance

- 1. Develop a model with employment and savings decisions, risk, and social insurance
 - <u>Risk-aversion:</u> agents dislike employment risk and income fluctuation
 - Search Frictions: employment risk, uncertain prospects of job search

- 1. Develop a model with employment and savings decisions, risk, and social insurance
 - <u>Risk-aversion:</u> agents dislike employment risk and income fluctuation
 - Search Frictions: employment risk, uncertain prospects of job search
 - Savings: self-insurance
 - <u>Social Insurance:</u> unemployment insurance and pensions

- 1. Develop a model with employment and savings decisions, risk, and social insurance
 - <u>Risk-aversion:</u> agents dislike employment risk and income fluctuation
 - Search Frictions: employment risk, uncertain prospects of job search
 - Savings: self-insurance
 - <u>Social Insurance:</u> unemployment insurance and pensions
 - Life cycle: dynamic incentives

- 1. Develop a model with employment and savings decisions, risk, and social insurance
- 2. Model features rich characterization of informality
 - Two types of informal workers: informal employees & self-employed

- 1. Develop a model with employment and savings decisions, risk, and social insurance
- 2. Model features rich characterization of informality
 - Two types of informal workers: informal employees & self-employed
 - Self-employment requires physical capital

- 1. Develop a model with employment and savings decisions, risk, and social insurance
- 2. Model features rich characterization of informality
 - Two types of informal workers: informal employees & self-employed
 - Self-employment requires physical capital
 - Different job characteristics (amenities, hours of work)

- 1. Develop a model with employment and savings decisions, risk, and social insurance
- 2. Model features rich characterization of informality
- 3. Estimate the model with rich microdata & exploiting pension reforms
 - Chilean microdata: longitudinal survey + administrative data
 - Estimate the causal effects of early retirement restrictions

- 1. Develop a model with employment and savings decisions, risk, and social insurance
- 2. Model features rich characterization of informality
- 3. Estimate the model with rich microdata & exploiting pension reforms
- 4. Use the model:
 - Learn drivers of employment decisions
 - Explore interactions between insurance programs
 - Assess pension reforms

Main findings

- i. From the estimated model:
 - Important drivers for the life-cycle allocation:
 - Savings influence job search (different reservation wages)
 - Physical capital and borrowing constraints

Main findings

- i. From the estimated model:
 - Important drivers for the life-cycle allocation:
 - Savings influence job search (different reservation wages)
 - Physical capital and borrowing constraints
- ii. Policy analysis:
 - Evidence of complementarities between UI and Pensions
 - Formality incentives are higher when they are offered together

Main findings

- i. From the estimated model:
 - Important drivers for the life-cycle allocation:
 - Savings influence job search (different reservation wages)
 - Physical capital and borrowing constraints
- ii. Policy analysis:
 - Evidence of complementarities between UI and Pensions
 - Formality incentives are higher when they are offered together
- iii. Assessing policy reforms

Institutional setting and data

- Panel survey at the individual level
- 7 waves (2002-2020)
- + labor market history

- Panel survey at the individual level
- 7 waves (2002-2020)
- + labor market history

Historia Previsional de Afiliados (HPA)

- Panel (1980-2019)
- Administrative data on the pension system

+

- Panel survey at the individual level
- 7 waves (2002-2020)
- + labor market history

Historia Previsional de Afiliados (HPA)

- ▶ Panel (1980-2019)
- Administrative data on the pension system

\Rightarrow Sample: Men born between 1941 and 1989 with HS or less (7k individuals)

+

- Panel survey at the individual level
- 7 waves (2002-2020)
- + labor market history

Historia Previsional de Afiliados (HPA)

- ▶ Panel (1980-2019)
- Administrative data on the pension system

 \Rightarrow Sample: Men born between 1941 and 1989 with HS or less (7k individuals)

Additional data: employment surveys, administrative data (UI, pension claims)

+

- 1. Early retirement restrictions were raised in 2004 for those born after August 1949
 - \Rightarrow Sharp decline on early retirement
 - \Rightarrow Much smaller increase on probability to contribute for Pensions

- 1. Early retirement restrictions were raised in 2004 for those born after August 1949
 - \Rightarrow Sharp decline on early retirement
 - \Rightarrow Much smaller increase on probability to contribute for Pensions
- 2. Substantial sector heterogeneity

- 1. Early retirement restrictions were raised in 2004 for those born after August 1949
 - \Rightarrow Sharp decline on early retirement
 - \Rightarrow Much smaller increase on probability to contribute for Pensions
- 2. Substantial sector heterogeneity
- 3. Self-employment
 - Part-time work and flexible work locations Hours Workplace
 - Entry associated with investments in physical capital Regression
 - Use own savings Source of Capital

Model

	Formal	Informal	Self-employment
Entry	Receive offer	Receive offer	Pay up-front investment

	Formal	Informal	Self-employment
Entry	Receive offer	Receive offer	Pay up-front investment
Wage	Accepted offer	Accepted offer	Volatile (AR1 process)

	Formal	Informal	Self-employment
Entry	Receive offer	Receive offer	Pay up-front investment
Wage	Accepted offer	Accepted offer	Volatile (AR1 process)
Hours	Full-time	Full-time	Full or part-time

	Formal	Informal	Self-employment
Entry	Receive offer	Receive offer	Pay up-front investment
Wage	Accepted offer	Accepted offer	Volatile (AR1 process)
Hours	Full-time	Full-time	Full or part-time
Exit	UI + SP	-	Recoup % investment

	Formal	Informal	Self-employment
Entry	Receive offer	Receive offer	Pay up-front investment
Wage	Accepted offer	Accepted offer	Volatile (AR1 process)
Hours	Full-time	Full-time	Full or part-time
Exit	UI + SP	-	Recoup % investment
Taxes & Pension	Yes	-	-

► Risk-averse individuals consume, save and decide employment status

	Formal	Informal	Self-employment
Entry	Receive offer	Receive offer	Pay up-front investment
Wage	Accepted offer	Accepted offer	Volatile (AR1 process)
Hours	Full-time	Full-time	Full or part-time
Exit	UI + SP	-	Recoup % investment
Taxes & Pension	Yes	-	-

- ► If not working:
 - Unemployed or Retired (endogenous)
 - No re-entry after retirement

 Arrival/Destruction rates depend on the sector

Labor market informality, risk, and public insurance

Lucas Finamor (Yale University)

A. Utility: composite of consumption and leisure more

- A. Utility: composite of consumption and leisure more
- B. Employment transition: choose sector that maximizes utility more
 - Formal/Informal: only when receiving an offer
 - Self-employment: paying start-up cost
 - Retirement is an option when meeting the requirements

- A. Utility: composite of consumption and leisure more
- B. Employment transition: choose sector that maximizes utility more
 - Formal/Informal: only when receiving an offer
 - Self-employment: paying start-up cost
 - Retirement is an option when meeting the requirements
- C. Accumulate informal earnings and UI benefits more

- A. Utility: composite of consumption and leisure more
- B. Employment transition: choose sector that maximizes utility more
 - Formal/Informal: only when receiving an offer
 - Self-employment: paying start-up cost
 - Retirement is an option when meeting the requirements
- C. Accumulate informal earnings and UI benefits more
- D. Bequeath remaining wealth when dying more

Estimation

Two steps estimation (State Space) (Estimation Details)

1. Set and estimate some parameters outside the model (interest rates, coefficient of risk-aversion)

Two steps estimation (State Space) (Estimation Details)

- 1. Set and estimate some parameters outside the model (interest rates, coefficient of risk-aversion)
- 2. Estimate remaining parameters using SMM (more

Preferences

- Discount factor
- Consumption weight
- Amenities for Self-Employed/Informal sector
- Bequest weight and shifter

Labor market informality, risk, and public insurance

Two steps estimation State Space Estimation Details

- 1. Set and estimate some parameters outside the model (interest rates, coefficient of risk-aversion)
- 2. Estimate remaining parameters using SMM (more

Preferences

- Discount factor
- Consumption weight
- Amenities for Self-Employed/Informal sector
- Bequest weight and shifter

Technology

- Arrival and destruction rates
- Wage offer distributions and Self-Employment earnings
- Investment to become Self-Employed
- Ability vectors and types' proportions

Two steps estimation State Space Estimation Details

- 1. Set and estimate some parameters outside the model (interest rates, coefficient of risk-aversion)
- 2. Estimate remaining parameters using SMM (more

Preferences

- Discount factor
- Consumption weight
- Amenities for Self-Employed/Informal sector
- Bequest weight and shifter

Technology

- Arrival and destruction rates
- Wage offer distributions and Self-Employment earnings
- Investment to become Self-Employed
- Ability vectors and types' proportions
- Choose set of moments related to these parameters (Momentary Choose set of momentary Choose set of

Arrival and destruction rates

► Informal arrival rates > Formal rates

	Unemp	Formal	Informal	SelfEmp
Destruction	-	0.030	0.003	0.010
	-	(0.001)	(0.000)	(0.001)
Arrival Formal	0.181	0.161	0.054	0.249
	(0.008)	(0.012)	(0.001)	(0.027)
Arrival Informal	0 991	0 850	0.374	0 713
	(0.048)	(0.082)	(0.021)	(0.152)

Labor market informality, risk, and public insurance

Sector allocation over the life-cycle

Reservation wages for the informal sector

Reservation wages for the informal sector

Counterfactuals

Change	Δ Formal participation rate (pp)
Increase in UI	0.25
Increase in both	0.00

Complementarities

△ Pension ● 0.0% ● 10.0%

Pension Reform Counterfactuals

► Use the model to run series of counterfactuals on pension reforms:

Were implemented (Pension Reform in 2008): decomposition exercise

Are discussed: predict effects on labor choices over the life-cycle

- Importance of the combined safety-net
- Importance of liquidity

Conclusions

► Takeaways

- Importance of analyzing the bundle of social insurance
- Life cycle trends: savings (self-insurance and source of capital investment)

Directions for future research

- Identify complementarities in other settings
- Frictions in formal employment:
 - Search frictions
 - No part-time work, work-place
- Endogeneizing labor force participation

Thank you

Lucas Finamor lucas.finamor@yale.edu

Presentation

- Introduction
- Institutional setting and data
- Empirical Findings
- Model
- Estimation
- Results
- Counterfactuals
- Conclusions
- Appendix
- Additional Results

- ► Why Chile
- Risk and Insurance in the model
- Wage growth
- Minimum Wage
- Family and Spouses
- Pension returns risk
- No amenities
- ► Equal returns
- 2008 Reform
- ► Welfare
- Value Functions (formulae)
- Agenda

Additional results

- ► All parameters
- Transitions
- Accepted wages
- Self-Employment earnings
- ► Self-Employment capital
- Wealth
- Retirement

- Part-time work
- ► Wage correlation
- Amenities
- Decision to be self-employed
- (Andrews, Gentzkow and Shapiro 2017) Sensitivity analysis
- Untargeted moments pension wealth and contributions

A. Firms' and workers' formality decision

B. Social Insurance and Informality

C. Self-employment in developing countries

A. Firms' and workers' formality decision

Zenou (2008), Albrecht, Navarro and Vroman (2009), Ulyssea (2010), Bosch and Esteban-Pretel (2012), Lopez Garcia (2015), Meghir, Narita and Robin (2015), Pardo and Ruiz-Tagle (2016), Ulyssea (2018), Albertini and Terriau (2019), Narita (2020), Haanwinckel and Soares (2021), Herreño and Ocampo (2021), Bobba, Flabbi, Levy and Tejada (2021), Bobba, Flabbi and Levy (2022), Conti, Ginja and Narita (2022), da Costa and Lobel (2022)

Risk-aversion, savings, and social insurance

 $\label{eq:Savings} \text{Savings} \Rightarrow \left\{ \begin{array}{l} \text{job search behavior} \\ \text{self-employment investment} \end{array} \right.$

- B. Social Insurance and Informality
- C. Self-employment in developing countries

Labor market informality, risk, and public insurance

A. Firms' and workers' formality decision

B. Social Insurance and Informality

[Unemployment Insurance] Huneeus, Leiva and Micco (2012), Espino and Sanchez (2013), Gonzalez-Rozada and Ruffo (2016), Audoly (2018), Gerard and Gonzaga (2021), Britto (2022), de Azevedo (2022), Bloise and Santos (2022)
 [Health Insurance] Calderón-Mejía and Marinescu (2012), Azuara and Marinescu (2013)
 [Minimum Wage] Granda and Hamann (2015), Parente (2022), Engbom and Moser (2021)
 [Pensions] Attanasio, Meghir and Otero (2011), Behrman, Calderon, Mitchell, Vasquez and Bravo (2011), Cruces and Bérgolo (2013), Todd and Vélez-Grajales (2008), Joubert (2015), McKiernan (2019), Joubert and Todd (2020), Ferreira and Parente (2020), Moreno (2022)

Causal effects of early retirement restrictions

Dynamic model combining main social insurance programs

C. Self-employment in developing countries

- A. Firms' and workers' formality decision
- B. Social Insurance and Informality

C. Self-employment in developing countries

Narita (2020), Bobba, Flabbi, Levy and Tejada (2021), Herreño and Ocampo (2021), Bobba, Flabbi and Levy (2022), Moreno (2022)

Importance of start-up costs, borrowing constraints, and amenities

Consumption/savings choice Back

$$\underbrace{V_t(\chi)}_{\substack{\uparrow \\ \text{state space}}} \max_{h,\ell,c,\tilde{k}} \left\{ \frac{\phi_j (c^{\nu} \ell^{1-\nu})^{1-\gamma}}{1-\gamma} + \beta \underbrace{\mathbb{E}}_{\downarrow} [V_{t+1}(\chi')] \right\}$$

Job Destruction, Arrival Offers, Self-Emp Earnings, Survival,...

Consumption/savings choice Back

$$\underbrace{V_t(\chi)}_{\substack{\uparrow \\ \text{state space}}} \max_{h,\ell,c,\tilde{k}} \left\{ \frac{\phi_j (c^{\nu} \ell^{1-\nu})^{1-\gamma}}{1-\gamma} + \beta \underbrace{\mathbb{E}}_{\downarrow} [V_{t+1}(\chi')] \right\}$$

Job Destruction, Arrival Offers, Self-Emp Earnings, Survival,...

(budget constraint)

(leisure)

(no borrowing constraint)

 $ilde{k} \geq \underline{B}$

 $c + \tilde{k} = (1 + r)k + y^{j}(wh)$

 $\ell = \overline{L} - h$ stock of hours

Consumption/savings choice Back

$$\underset{\substack{\uparrow \\ \text{state space}}}{\mathsf{V}_{t}(\chi)} = \max_{\substack{h,\ell,c,\tilde{k}}} \left\{ \frac{\phi_{j}(c^{\nu}\ell^{1-\nu})^{1-\gamma}}{1-\gamma} + \beta \underbrace{\mathbb{E}}_{\downarrow}[\mathsf{V}_{t+1}(\chi')] \right\}$$

Job Destruction, Arrival Offers, Self-Emp Earnings, Survival,...

(budget constraint)(leisure)(no borrowing constraint) $c + \tilde{k} = (1 + r)k + y^j (wh)$
labor earnings $\ell = \overline{L} - h$
stock of hours $\tilde{k} \ge \underline{B}$

ϕ_j : amenities from each sector

Labor market informality, risk, and public insurance

June-August 2022: Discussion of a new pension reform

Labor market informality, risk, and public insurance

Lucas Finamor (Yale University)
New pension floor to 250 thousand pesos (doubling)

Additional 6% of pension contributions (from 10% to 16%)

– – Baseline — 2022 Pension Reform

Risk and Social Insurance in the paper

-	In the model	Not in the model
Risk		
Separation shocks	All sectors	-
Earnings shocks (within job)	Self-employment	Formal and informal jobs
Uncertain prospects job-search	All sectors	-
Longevity risk	After retirement	Up to retirement
Returns risk	-	Pension returns, liquid savings returns
Health risk	-	Health shocks
Social Insurance		
Unemployment insurance	When fired	When quitting
Severance payment	Yes	-
Pensions	Yes	-
Welfare programs	Yes	-
Minimum wage	Yes	-
Health insurance	-	No
Disability insurance	-	No

Earnings variance

- ► Using employment survey I compute the (de-trended) 1-year log-wage growth
- Compute the variance for those formal, informal, and self-employed (and remaining in that state)
- Variance of log-wage increase
 - Formal: 0.100
 - Informal: 0.286
 - Self-employed: 0.631

Setting: Chile

1. Social insurance programs co-existing with labor market informality

Setting: Chile

- 1. Social insurance programs co-existing with labor market informality
- 2. Country implemented several reforms in those programs

Setting: Chile

- 1. Social insurance programs co-existing with labor market informality
- 2. Country implemented several reforms in those programs
- 3. Data
 - Long longitudinal survey
 - Disaggregated wealth
 - Administrative data on the pension system

Life Cycle - Educ Back

Life Cycle - Cohorts Back

- Formal Workers — Informal Workers — Self-Employed — 1940 --- 1950 -- 1960 - 1970 ····

Labor market informality, risk, and public insurance

Lucas Finamor (Yale University)

Life Cycle - Other Countries Back

Fig. 1. Composition of workforce by age.

Extracted from Narita (2020)

Life Cycle - Other Countries Back

USA

Education over time

Institutional setting - Chile 🔤

1. Unemployment Insurance more payments

 3% of wages: (individual account) + (collective account) forced savings insurance/redistribution

2. Severance Payment

One monthly wage for every year on the job

3. Pension system

- Individual capitalization with privately managed accounts
- 10% of wages

4. Welfare Programs and Income Tax

- Withdrawal schedule (50%,45%,40%,...)
- Limit of 5 months from the collective account

- Normal retirement age for men is 65
 Early retirement is possible
- Minimum pension policies

Institutional setting - Chile Back

- 1. Unemployment Insurance more payments
 - 3% of wages: (individual account) + (collective account) forced savings insurance/redistribution
- 2. Severance Payment
 - One monthly wage for every year on the job
- 3. Pension system
 - Individual capitalization with privately managed accounts
 - 10% of wages
- 4. Welfare Programs and Income Tax

- Withdrawal schedule (50%,45%,40%,...)
- Limit of 5 months from the collective account

- Normal retirement age for men is 65
 Early retirement is possible
- Minimum pension policies

Social Security

Formal Workers Pay:					Formal Firms Pay:			
7%		0.6%		10%		≈2%	1	2.4%
Health System	+	Unemp Insurance	+	Pension Contributions	+	Commissions & Disab. Insurance		Unemp Insurance

Unemployment Insurance Back

- Using data from a 20% sample of the UI system
- Among those involuntarily separated in my sample:
 - 72.7% were eligible to use the common funds
 - 43.9% actually used it

UI number of payments (Back)

Labor market informality, risk, and public insurance

Lucas Finamor (Yale University)

Data manipulation

- ► Men born between 1941-1989, with at most high school degree
- Discard individuals that did not switch to new pension system in 1980
- Monetary values are in 2004 values (de-trended). 1,000 Chilean pesos \approx 1.50 USD Use information that was reported within 18 months
- Restricted monetary values from (2002-2008). Labor market information from (2002-2015)
- Recent data for retirement patterns (up to 2019) and older cohorts to get wealth accumulation at old ages (up to 89 years)

Self-emploment is informal Back

Table: Proportion among self-employed

Variable	Value
Formal Accounting	22.0%
Separate Accounting (from HH)	32.4%
Registered in the Tax Authority	32.7%
Only 1 worker	91.7%
Contributing to Pension	15.7%

Note: EME 2009/2011 and EPS 2002-2016

2004 Reform – Retirement at age 55 (BOCK)

2004 Reform – Retirement at age 55 (BOCK)

2004 Reform – Retirement at age 55 (BOCK)

- Working part-time more
 - Self-employed: 24%
 - Informal employees: 8%
 - Formal employees: 2%

- Working at the firm site more
 - Self-employed: 14%
 - Informal employees: 56%
 - Formal employees: 70%

Hours distribution by sector Back

Work place by sector Back

2004 Reform – Delayed Retirement (Back)

Outcome:	Retired (1)	Contributing (2)
(Intercept)	0.246 (0.031)	0.382 (0.027)
T1 (Sep1949-Aug1950)	-0.062 (0.052)	0.018 (0.050)
T2 (Sep1950-Aug1952)	-0.155 (0.037)	0.064 (0.046)
Age Range	63	63
Age fixed-effects	-	-
Observations	7,584	7,584

2004 Reform – Delayed Retirement (Back)

Outcome:	Retired (1)	Contributing (2)	Retired (3)	Contributing (4)
(Intercept)	0.246 (0.031)	0.382 (0.027)		
T1 (Sep1949-Aug1950)	-0.062 (0.052)	0.018 (0.050)	-0.040 (0.038)	0.028 (0.048)
T2 (Sep1950-Aug1952)	-0.155 (0.037)	0.064 (0.046)	-0.105 (0.032)	0.044 (0.037)
Age Range	63	63	[50-63]	[50-63]
Age fixed-effects	-	-	Yes	Yes
Observations	7,584	7,584	56,105	56,105

2004 Reform – Delayed Retirement (Back)

Outcome:	Retired (1)	Contributing (2)	Retired (3)	Contributing (4)	Formal (5)	Informal (6)	Self-Employed (7)
(Intercept)	0.246 (0.031)	0.382 (0.027)					
T1 (Sep1949-Aug1950)	-0.062 (0.052)	0.018 (0.050)	-0.040 (0.038)	0.028 (0.048)	0.005 (0.042)	-0.007 (0.019)	-0.003 (0.032)
T2 (Sep1950-Aug1952)	-0.155 (0.037)	0.064 (0.046)	-0.105 (0.032)	0.044 (0.037)	0.052 (0.039)	0.003 (0.016)	0.045 (0.030)
Age Range	63	63	[50-63]	[50-63]	[50-63]	[50-63]	[50-63]
Age fixed-effects	-	-	Yes	Yes	Yes	Yes	Yes
Observations	7,584	7,584	56,105	56,105	56,105	56,105	56,105

Empirical Findings III: Physical capital for self-employment 🚥

What was the main source of funding to start self-employment activity?

Empirical Findings III: Physical capital for self-employment

- Use panel dimension to investigate wealth held as physical capital
- 4 groups based on the self-employment status in *t* and *t* + 1
Empirical Findings III: Physical capital for self-employment

- Use panel dimension to investigate wealth held as physical capital
- 4 groups based on the self-employment status in t and t + 1

$$\blacktriangleright Y_i = \beta_g G_i \times Post_t + G_i$$

CDF survey

<u>Outcome variable:</u> Indicator for physical capital > 0

Group		Coeff
Group 00	(NotSE \rightarrow NotSE)	-0.0002 (0.0017)
Group 11	$(SE \rightarrow SE)$	0.0021 (0.0100)
Group 01	(NotSE \rightarrow SE)	0.0335*** (0.0117)
Group 10	$(SE \rightarrow NotSE)$	-0.0451*** (0.0121)
N Obs		27,926

Self-Employment and start-up costs (Back)

- Period 1 ---- Period 2

Self-Employment and start-up costs (BOCK)

- Period 1 ---- Period 2

Physical capital Back

Formal

$$\tilde{V}_{a+1}^{F} := \max \left\{ \overbrace{V_{a+1}(b',p',\tilde{k},F,w)}^{\text{stay}}, \right.$$

$$\tilde{V}_{a+1}^{F} := \max\left\{\overbrace{V_{a+1}(b',p',\tilde{k},F,w)}^{\text{stay}},\overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}},\right.$$

$$\tilde{V}_{a+1}^{F} := \max \left\{ \underbrace{V_{a+1}(b', p', \tilde{k}, F, w)}_{V_{a+1}(b', p', \tilde{k}, U, 0)}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{\text{move SE}}, \underbrace{\int_{W_{a+1}(b', p', \tilde{k} - X, S, \tilde{w}) dW^{S}(\tilde{w})}_{$$

$$\begin{split} \tilde{V}_{a+1}^{F} &:= \max \left\{ \overbrace{V_{a+1}(b',p',\tilde{k},F,w)}^{\text{stay}}, \overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}}, \underbrace{\int_{a+1}^{v} V_{a+1}(b',p',\tilde{k},F,w)}_{\text{move SE}}, \underbrace{V_{a+1}(b',p',\tilde{k},V,0)}_{\text{retire}}, \underbrace{V_{a+1}^{\text{Ret}}(\tilde{k},y^{P},q)}_{\text{retire}} \right\} \end{split}$$

$$\begin{split} \tilde{V}_{a+1}^{F} &:= \max\left\{\overbrace{V_{a+1}(b',p',\tilde{k},F,w)}^{\text{stay}}, \overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}}, \overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}}, \overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}}, \overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}}, \overbrace{V_{a+1}(\tilde{k},y^{P},q)}^{\text{retire}}\right\}\\ &= \underbrace{\int_{F}[V_{a+1}(b',p',k',j',w')]}_{\delta_{F}} = \delta_{F} \end{split}$$

$$\begin{split} \tilde{V}_{a+1}^{F} &:= \max\left\{\overbrace{V_{a+1}(b',p',\tilde{k},F,w)}^{\text{stay}}, \overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}}, \underbrace{\int_{a+1}^{v} V_{a+1}(b',p',\tilde{k},U,0)}_{\text{move SE}}, \underbrace{V_{a+1}(b',p',\tilde{k},V,0)}_{\text{retire}}, \underbrace{V_{a+1}^{\text{Ret}}(\tilde{k},y^{P},q)}_{\text{retire}}\right\}\\ \mathbb{E}_{F}[V_{a+1}(b',p',k',j',w')] &= \\ \delta_{F} \max\left\{V_{a+1}(b',p',\tilde{k}+SP(w),U,0), \right. \end{split}$$

$$\begin{split} \tilde{V}_{a+1}^{F} &:= \max\left\{\overbrace{V_{a+1}(b',p',\tilde{k},F,w)}^{\text{stay}}, \overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}}, \underbrace{V_{a+1}(b',p',\tilde{k},U,0)}_{\text{retire}}, \underbrace{\int_{\mathsf{retire}}^{\mathsf{V}_{a+1}(b',p',\tilde{k},F,w)}, \underbrace{V_{a+1}(b',p',\tilde{k},U,0)}_{\text{retire}}, \underbrace{V_{a+1}(\tilde{k},y^{P},q)}_{\text{retire}}\right\} \\ \mathbb{E}_{F}[V_{a+1}(b',p',k',j',w')] &= \\ \delta_{F} \max\left\{V_{a+1}(b',p',\tilde{k}+SP(w),U,0), \int_{\mathsf{V}_{a+1}(b',p',\tilde{k}+SP(w)-X,S,\tilde{w})dW^{S}(\tilde{w}), \underbrace{V_{a+1}(b',p',\tilde{k}+SP(w)-X,S,\tilde{w})dW^{S}(\tilde{w}), \underbrace{V_{a+1}(b',p',\tilde{k}+SP(w)-X,S,\tilde{w})dW^{S}(\tilde{w}), \underbrace{V_{a+1}(b',p',\tilde{k}+SP(w)-X,S,\tilde{w})dW^{S}(\tilde{w}), \underbrace{V_{a+1}(b',p',\tilde{k}+SP(w)-X,S,\tilde{w})dW^{S}(\tilde{w}), \underbrace{V_{a+1}(b',p',\tilde{k}+SP(w),U,0), \underbrace{V_{a+1}(b',p',\tilde{k}+SP(w)-X,S,\tilde{w})dW^{S}(\tilde{w}), \underbrace{V_{a+1}(b',p',\tilde{k}+SP(w),U,0), \underbrace{V_{a+1}(b',p',\tilde{k}+SP(w)-X,S,\tilde{w})dW^{S}(\tilde{w}), \underbrace{V_{a+1}(b',p',\tilde{k}+SP(w)-X$$

$$\begin{split} \tilde{V}_{a+1}^{F} &:= \max\left\{\overbrace{V_{a+1}(b',p',\tilde{k},F,w)}^{\text{stay}}, \overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}}, \overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}}, \overbrace{V_{a+1}(k,y^{P},q)}^{\text{quit}}\right\} \\ &= \underbrace{\int_{\text{move SE}} V_{a+1}(b',p',\tilde{k}-X,S,\tilde{w})dW^{S}(\tilde{w})}_{\text{retire}}, \underbrace{V_{a+1}^{\text{Ret}}(\tilde{k},y^{P},q)}_{\text{retire}}\right\} \\ \mathbb{E}_{F}[V_{a+1}(b',p',k',j',w')] = \\ &\delta_{F} \max\left\{V_{a+1}(b',p',\tilde{k}+SP(w),U,0), \int V_{a+1}(b',p',\tilde{k}+SP(w)-X,S,\tilde{w})dW^{S}(\tilde{w}), V_{a+1}^{\text{Ret}}(\tilde{k},y^{P},q)\right\} + \end{split}$$

$$\begin{split} \tilde{V}_{a+1}^{F} &:= \max\left\{\overbrace{V_{a+1}(b',p',\tilde{k},F,w)}^{\text{stay}}, \overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}}, \overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}}, \overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}}, \overbrace{V_{a+1}(k,y^{P},q)}^{\text{quit}}\right\}\\ &= \underbrace{\int_{\text{move SE}} V_{a+1}(b',p',\tilde{k}-X,S,\tilde{w})dW^{S}(\tilde{w})}_{\text{retire}}, \underbrace{V_{a+1}^{\text{Ret}}(\tilde{k},y^{P},q)}_{\text{retire}}}_{F(F(a+1)(b',p',k',j',w')] = \\ &\delta_{F} \max\left\{V_{a+1}(b',p',\tilde{k}+SP(w),U,0), \int V_{a+1}(b',p',\tilde{k}+SP(w)-X,S,\tilde{w})dW^{S}(\tilde{w}), V_{a+1}^{\text{Ret}}(\tilde{k},y^{P},q)\right\} + (1-\delta_{F})\Big[(1-\lambda_{F}^{F})(1-\lambda_{F}^{I})\tilde{V}_{a+1}^{F} + \end{split}$$

Labor market informality, risk, and public insurance

$$\begin{split} \tilde{V}_{a+1}^{F} &:= \max \left\{ \overbrace{V_{a+1}(b',p',\tilde{k},F,w)}^{\text{stay}}, \overbrace{V_{a+1}(b',p',\tilde{k},U,0)}^{\text{quit}}, \underbrace{V_{a+1}(k,y^{P},q)}_{F(k,y,v)}, \underbrace{V_{a+1}(k,y^{P},q)}_{F(k,y,v)} \right\} \\ &= \underbrace{\int_{\text{move SE}} V_{a+1}(b',p',k',j',w')] = \\ \delta_{F} \max \left\{ V_{a+1}(b',p',\tilde{k}+SP(w),U,0), \int V_{a+1}(b',p',\tilde{k}+SP(w)-X,S,\tilde{w})dW^{S}(\tilde{w}), V_{a+1}^{\text{Ret}}(\tilde{k},y^{P},q) \right\} + (1-\delta_{F}) \left[(1-\lambda_{F}^{F})(1-\lambda_{F}^{I})\widetilde{V}_{a+1}^{F} + \\ \lambda_{F}^{\tilde{F}} \int \max \left\{ \widetilde{V}_{a+1}^{F}, V_{a+1}(b',p',\tilde{k},F,\tilde{w}) \right\} dW^{F}(\tilde{w}) + \\ \lambda_{F}^{\tilde{i}} \int \max \left\{ \widetilde{V}_{a+1}^{F}, V_{a+1}(b',p',\tilde{k},I,\tilde{w}) \right\} dW^{l}(\tilde{w}) \right] \end{split}$$

Labor market informality, risk, and public insurance

The pension system **Back**

$$p' = p(1 + r^P) + \begin{cases} 0.10w & \text{if formal} \\ 0 & \text{otherwise} \end{cases}$$

• Pension benefits:
$$y^R(t_R, p)$$

- Early retirement is possible if $y^{R}(t_{R}, p) \geq \max\{A, \alpha \overline{w}\}$
- ► Bequeath remaining wealth

$$B(k) = \psi \left[rac{(ar{K} + k)^{
u(1-\gamma)}}{1-\gamma}
ight]$$

Labor market informality, risk, and public insurance

- 1. Age: discrete from 16 to 100 y.o. (quarterly)
- 2. Type I: Reform 2004 and 2008 (4)
- 3. Type II: Ability type (2)
- 4. Wealth: continuous 13 points
- 5. Pension Wealth: continuous / 10 points
- 6. Sector: 4
- 7. Wage: continuous 10 points
- 8. Hours: discrete part-time x full-time (2 points)
- 9. UI status: discrete (3 points)
- \Rightarrow State space: \sim 24mi points

Estimation Details

- i. Model is quarterly from age 16-100
- ii. Pension reforms come as surprises
- iii. Solved numerically
- iv. Weighting matrix: inverse of the diagonal of the var-cov matrix
- v. Global (Controlled Random Search) + local (Brent's algorithm) derivative free
- vi. Continuous variables are discretized in grid points: capital (13), pension wealth (10) and wage/earnings (10)
- vii. Numerical integration using Gauss-Legendre (for Normal and Beta distributions)
- viii. Interpolation: linear interpolation for 1D,2D,3D
- ix. Numerical derivatives using two symmetrical deviations with a step size of 2.5%

Labor market informality, risk, and public insurance

- GMM estimation with moments computed by simulated data
 - 1. Given a vector of parameters: ξ
 - 2. Obtain the solution of the model: policy functions $P^*(\xi)$
 - 3. Simulate individuals that behave according to $P^*(\xi)$
 - 4. Compute moments from the simulated individuals: $M(P^*(\xi))$
 - 5. Choose ξ^* that minimizes:

weighting matrix
$$\begin{pmatrix} M(P^*(\xi)) - M_d \\ \uparrow \\ moments in the data \end{pmatrix}' \stackrel{\downarrow}{\Sigma}_{M_d} \begin{pmatrix} M(P^*(\xi)) - M_d \end{pmatrix}$$

2nd stage parameters (Back)

Estimated Parameters (28)

Discount factor (β)	1	(A)
Bequest (ψ , \overline{K})	2	(A)

Moments (222)

(A) 39 Median Wealth \times age groups
Estimated Parameters (28)

Discount factor (β)	1	(A)
Bequest (ψ , \overline{K})	2	(A)
Consumption weight ($ u$)	1	(B),(C)

- (A) 39 Median Wealth \times age groups
- (B) 38 Prop Retired \times age \times cohort
- (C) 11 Prop Part-time \times age groups

Estimated Parameters (28)

Discount factor (β)	1	(A)
Bequest (ψ , \overline{K})	2	(A)
Consumption weight ($ u$)	1	(B),(C)
Amenities (ϕ_j)	2	(D)

- (A) 39 Median Wealth \times age groups
- (B) 38 Prop Retired \times age \times cohort
- (C) 11 Prop Part-time \times age groups
- (D) 81 Emp-Sector \times age groups

Estimated Parameters (28)

Discount factor (β)	1	(A)
Bequest (ψ , \overline{K})	2	(A)
Consumption weight ($ u$)	1	(B),(C)
Amenities (ϕ_j)	2	(D)
Destruction rates (δ^{j})	3	(E)
Arrival rates $(\lambda^{j,j})$	8	(E)

- (A) 39 Median Wealth \times age groups
- (B) 38 Prop Retired \times age \times cohort
- (C) 11 Prop Part-time \times age groups
- (D) 81 Emp-Sector \times age groups
- (E) 14 Transitions

Estimated Parameters (28)

Discount factor (β)	1	(A)
Bequest (ψ , \overline{K})	2	(A)
Consumption weight ($ u$)	1	(B),(C
Amenities (ϕ_j)	2	(D)
Destruction rates (δ^{j})	3	(E)
Arrival rates $(\lambda^{j,j})$	8	(E)
Formal Wage (ξ_1^F, ξ_2^F)	2	(F)
Informal Wage (ξ_1^I,ξ_2^I)	2	(G)

Moments (222)

- (A) 39 Median Wealth \times age groups
- (B) 38 Prop Retired \times age \times cohort
- (C) 11 Prop Part-time \times age groups
- (D) 81 Emp-Sector \times age groups
- (E) 14 Transitions
- (F) 13 Formal Wage Percentiles
- (G) 13 Informal Wage Percentiles

Labor market informality, risk, and public insurance

Estimated Parameters (28)

Discount factor (β)	1	(A)
Bequest (ψ , \overline{K})	2	(A)
Consumption weight ($ u$)	1	(B),(C
Amenities (ϕ_j)	2	(D)
Destruction rates (δ^{j})	3	(E)
Arrival rates $(\lambda^{j,j})$	8	(E)
Formal Wage (ξ_1^F, ξ_2^F)	2	(F)
Informal Wage (ξ_1^I,ξ_2^I)	2	(G)
Self-Emp Earnings (σ)	2	(H)

- (A) 39 Median Wealth \times age groups
- (B) 38 Prop Retired \times age \times cohort
- (C) 11 Prop Part-time \times age groups
- (D) 81 Emp-Sector \times age groups
- (E) 14 Transitions
- (F) 13 Formal Wage Percentiles
- (G) 13 Informal Wage Percentiles
- (H) 7 Self-Emp Earnings

Estimated Parameters (28)

Discount factor (β)	1	(A)
Bequest (ψ , \overline{K})	2	(A)
Consumption weight ($ u$)	1	(B),(C
Amenities (ϕ_j)	2	(D)
Destruction rates (δ^{j})	3	(E)
Arrival rates $(\lambda^{j,j})$	8	(E)
Formal Wage (ξ_1^F, ξ_2^F)	2	(F)
Informal Wage $(\xi_1^{\prime},\xi_2^{\prime})$	2	(G)
Self-Emp Earnings (σ)	2	(H)
Self-Emp Fixed Cost (x)	1	(D)

- (A) 39 Median Wealth \times age groups
- (B) 38 Prop Retired \times age \times cohort
- (C) 11 Prop Part-time \times age groups
- (D) 81 Emp-Sector \times age groups
- (E) 14 Transitions
- (F) 13 Formal Wage Percentiles
- (G) 13 Informal Wage Percentiles
- (H) 7 Self-Emp Earnings

Estimated Parameters (28)

Discount factor (β)	1	(A)
Bequest (ψ , \overline{K})	2	(A)
Consumption weight ($ u$)	1	(B),(C
Amenities (ϕ_j)	2	(D)
Destruction rates (δ^{j})	3	(E)
Arrival rates $(\lambda^{j,j})$	8	(E)
Formal Wage (ξ_1^F, ξ_2^F)	2	(F)
Informal Wage $(\xi_1^{\prime},\xi_2^{\prime})$	2	(G)
Self-Emp Earnings (σ)	2	(H)
Self-Emp Fixed Cost (x)	1	(D)
Self-Emp Physical K $(lpha)$	1	(I)

- (A) 39 Median Wealth \times age groups
- (B) 38 Prop Retired \times age \times cohort
- (C) 11 Prop Part-time \times age groups
- (D) 81 Emp-Sector \times age groups
- (E) 14 Transitions
- (F) 13 Formal Wage Percentiles
- (G) 13 Informal Wage Percentiles
- (H) 7 Self-Emp Earnings
- (I) 1 Physical Capital

Estimated Parameters (28)

Discount factor (β)	1	(A)
Bequest (ψ , \overline{K})	2	(A)
Consumption weight ($ u$)	1	(B),(C
Amenities (ϕ_j)	2	(D)
Destruction rates (δ^{j})	3	(E)
Arrival rates $(\lambda^{j,j})$	8	(E)
Formal Wage (ξ_1^F, ξ_2^F)	2	(F)
Informal Wage (ξ_1^I, ξ_2^I)	2	(G)
Self-Emp Earnings (σ)	2	(H)
Self-Emp Fixed Cost (x)	1	(D)
Self-Emp Physical K $(lpha)$	1	(I)
Abilities	3	(J)

- (A) 39 Median Wealth \times age groups
- (B) 38 Prop Retired \times age \times cohort
- (C) 11 Prop Part-time \times age groups
- (D) 81 Emp-Sector \times age groups
- (E) 14 Transitions
- (F) 13 Formal Wage Percentiles
- (G) 13 Informal Wage Percentiles
- (H) 7 Self-Emp Earnings
- (I) 1 Physical Capital
- (J) 4 Wage correlations

Estimated Parameters (28)

Discount factor (β)	1	(A)
Bequest (ψ , \overline{K})	2	(A)
Consumption weight ($ u$)	1	(B),(C)
Amenities (ϕ_j)	2	(D)
Destruction rates (δ^{j})	3	(E)
Arrival rates (λ^{jj})	8	(E)
Formal Wage (ξ_1^F, ξ_2^F)	2	(F)
Informal Wage $(\xi_1^{\prime},\xi_2^{\prime})$	2	(G)
Self-Emp Earnings (σ)	2	(H)
Self-Emp Fixed Cost (x)	1	(D)
Self-Emp Physical K ($lpha$)	1	(I)
Abilities	3	(J)
Prop type I	1	(K)

Moments (222)

- (A) 39 Median Wealth \times age groups
- (B) 38 Prop Retired \times age \times cohort
- (C) 11 Prop Part-time \times age groups
- (D) 81 Emp-Sector \times age groups
- (E) 14 Transitions
- (F) 13 Formal Wage Percentiles
- (G) 13 Informal Wage Percentiles
- (H) 7 Self-Emp Earnings
- (I) 1 Physical Capital
- (J) 4 Wage correlations
- (K) 1 Proportion Never Self-Employed

Labor market informality, risk, and public insurance

Preference	β	ν	ψ	ĸ	ϕ_l	ϕ_{S}
estimate (s.e.)	0.935 (0.001)	0.407 (0.003)	9,883.3 (3,108.3)	113,631.8 (22,957.6)	1.090 (0.011)	0.986 (0.007)
Destruction Rates	δ_F	δ_l	δ_S			
estimate (s.e.)	0.030 (0.001)	0.003 (0.000)	0.010 (0.001)			
Formal Arrival Rates	$\lambda_{U,F}$	$\lambda_{F,F}$	$\lambda_{I,F}$	$\lambda_{S,F}$		
estimate (s.e.)	0.181 (0.008)	0.161 (0.012)	0.054 (0.001)	0.249 (0.027)		
Informal Arrival Rates	$\lambda_{U,I}$	$\lambda_{F,I}$	$\lambda_{I,I}$	$\lambda_{S,I}$		
estimate (s.e.)	0.991 (0.048)	0.850 (0.082)	0.374 (0.021)	0.713 (0.152)		
Wage (Shape)	ζ_1^F	ζ_2^F	51	ζ_2^I		
estimate (s.e.)	2.252 (0.084)	39.827 (1.340)	1.906 (0.113)	38.433 (1.230)		
Self-Employment	σ	X	α			
estimate (s.e.)	0.062 (0.003)	2,594.4 (63.1)	0.023 (0.007)			
Ability Types	g ₂	e ₁	e ₂	$p(\theta_2)$		
estimate (s.e.)	1.711 (0.016)	0.725 (0.013)	0.495 (0.631)	0.570 (0.007)		

Labor market informality, risk, and public insurance

Accepted wages Back

SE Earnings Back

Labor market informality, risk, and public insurance

Lucas Finamor (Yale University)

SE Capital Requirements (Back)

Wealth Back

Part-time Back

Transitions Back

Labor market informality, risk, and public insurance

Retirement age Back

Labor market informality, risk, and public insurance

Lucas Finamor (Yale University)

Wage correlation age

Amenities

Consumption equivalent (intra-period) to yield the same utility as working formally full-time

Sector	Formal	Unemployed	Informal	Self-employed
Consumption Equivalent	1.000 (baseline)	0.501	1.111	0.983

Untargetted moments: pension wealth ••••

Untargetted moments: pension contributions

Untargeted moments: transitions by wealth (Involuntary only)

Wealth Tercile -1 st -2 and -3 std Sector_{*i*,*t*+12} = $\sum_{g=1}^{G} \beta^{G} W_{i,t}^{g} + \eta_{\text{sector}(i,t)} + \nu_{\text{age}(i,t)} + \varepsilon_{it}$

Labor market informality, risk, and public insurance

Lucas Finamor (Yale University)

Involuntary transitions (Back)

(From) - Formal - Informal - Self-Employed

Self-employment decisions – Age 20 🔤

Self-employment decisions - Age 50 🔤

Labor market informality, risk, and public insurance

Lucas Finamor (Yale University)

Value Function -0.50 -0.55 Value Function -0.60 -0.65 -0.70 100 200 300 500 Ó 400 Wealth (1,000 pesos) Unemployed — Formal — Informal — Selfemployed

Counterfactuals I - 2008 Pension Reform

A. Increased the generosity of the system

New higher pension floor Budget Constraint

■ Withdrawn with 30% implicit tax rate

B. Tightened the early retirement requirements

Counterfactuals I – 2008 Pension Reform: No disincentive effects

Counterfactuals I – 2008 Pension Reform: No disincentive effects

2008 Reform: New budget constraint **EULBC Back**

Labor market informality, risk, and public insurance

2008 Reform - New Budget Constraint 🔤

No amenities

- Baseline $\cdots r = r^{P}$

 $r = r^{P}$

- Baseline $\cdots r = r^{P}$

Counterfactuals II: 2022 Pension Reform

Counterfactuals II: 2022 Pension Reform

Baseline — 2022 Pension Reform

Counterfactuals II: 2022 Pension Reform

	Δ Cons Eqv	Consumption		n
		Mean	90th/10th	Var-log
Baseline	-	171.0	2.295	0.102
2022 Pension Reform	-0.037	165.3	2.226	0.094
2022 Pension Reform (Individual)	-0.026	165.4	2.170	0.090
2022 Pension Reform + 100% UI	-0.010	167.9	2.149	0.085

Welfare measures

• Get the expected welfare according to the policy κ_1

$$V(\kappa_1) = \mathbb{E}_0\left[\sum_{t=0}^T \beta^t V_t\left(c_t^*(\kappa_1), \ell_t^*(\kappa_1), a_t^*(\kappa_1)\right)\right]$$

• We can obtain the same welfare measure, depending on the parameter Δ for the baseline policy κ_0

$$\tilde{V}(\kappa_0, \Delta) = \mathbb{E}_0\left[\sum_{t=0}^T \beta^t V_t \left((1+\Delta) c_t^*(\kappa_0), \ell_t^*(\kappa_0), a_t^*(\kappa_0) \right) \right]$$

I define ∆* such as

$$\tilde{V}(\kappa_0,\Delta^*) = V(\kappa_1)$$

Additional

Modest wage growth for High School or less

Log-Monthly Wages, for those working full time, de-trended using a linear trend.

Labor market informality, risk, and public insurance

Lucas Finamor (Yale University)

Modest wage growth for High School or less

Log-Monthly Wages, for those working full time, de-trended using a linear trend.

Labor market informality, risk, and public insurance

Lucas Finamor (Yale University)

Minimum Wage

Labor market informality, risk, and public insurance

Spouses' working sector

Own sector	Spouse's sector:						
↓	Out Labor Force	Unemployed	Formal	Informal	Self-Employed		
Informal	-0.0026 (0.0227)	0.0419*** (0.0132)	-0.0429*** (0.0152)	0.0013 (0.0082)	0.0003 (0.0096)		
Self-Employed	-0.0857*** (0.0218)	0.0114 (0.0095)	-0.0300** (0.0142)	-0.0051 (0.0071)	0.1068*** (0.0146)		
Observations	2,771	2,771	2,771	2,771	2,771		
Age FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

Family composition

	Sector:					
	Out Labor Force	Unemployed	Formal	Informal	Self-Employed	Retired
Married	-0.0473*** (0.0060)	-0.0289*** (0.0046)	0.0973*** (0.0092)	-0.0254*** (0.0056)	-0.0101 (0.0080)	0.0019 (0.0031)
Children 0-6	-0.0343*** (0.0053)	-0.0146** (0.0063)	0.0382*** (0.0124)	-0.0077 (0.0072)	0.0172* (0.0096)	-0.0083*** (0.0025)
Children 7–18	-0.0287*** (0.0053)	-0.0176*** (0.0051)	0.0377*** (0.0100)	-0.0025 (0.0058)	0.0104 (0.0081)	-0.0081*** (0.0026)
Observations	28,010	28,010	28,010	28,010	28,010	28,010
Age FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Pension returns risk

- ► Pension returns' risk:
 - Estimate an AR(1) model with the monthly pension returns
 - Simulate accrued pension wealth for a fixed wage profile
 - Ratio of 10%-90% is 2.56

► Longevity risk:

Mortality tables imply that the 10%-90% survival gap for those alive at age 50 is 26 years

Pension returns risk

в С Е А D 7.5% [15.4%] [17.8%] [40.3%] [15.7%] [10.8%] 5.0% 2.5% Avg return Avg return Avg return Ava return Avg return Returns 0.65% 0.55% 0.46% 0.41% 0.0% -2.5% -5.0% -7.5% 1985 -1990 -1995 -2000 -2010 -2015 -2020 -1985 -1990 -1995 -2000 2005 -2010 -2015 -2020 -1985 -1990 -1995 -2005 -2010 -2015 -2020 -1985 -1990 -1995 -2000 -2010 -2015 -2020 -1985 -1990 -1995 -2000 -2010 -2015 -2020 -2005 2000 2005 2005

Monthly Return by Pension Funds Risk

Note: HPA. A is the riskiest fund and E the safest one. The blue lines and blue numbers represent the average monthly return for each fund. The greeen numbers in brackets are the proportion of pension wealth allocated in each fund.

Risk aversion and sector of employment

	Formal	Informal	Self-employed
(Intercept)	0.417	0.123	0.189
	(0.006)	(0.004)	(0.005)
Risk 1	0.035	0.013	0.013
	(0.017)	(0.012)	(0.014)
Risk 2	0.0007	-0.005	0.010
	(0.015)	(0.010)	(0.012)
Risk 3	-0.041	0.008	0.054
	(0.010)	(0.007)	(0.009)
Observations	15,885	15,885	15,885

Labor market informality, risk, and public insurance

Lucas Finamor (Yale University)

	Public	"Informality, Risk, and Insurance" JMP	"UI generosity & pandemic"(w/ Scott) Economics Letters	"Women, Informality, and Fertility" (w/ Bernatzky, Illieva)
Labor				

	Public	"Informality, Risk, and Insurance" JMP	<i>"UI generosity & pandemic"</i> (w/ Scott) Economics Letters	"Women, Informality, and Fertility" (w/ Bernatzky, Illieva)
Labor				
	Education			

Labar	Public	"Informality, Risk, and Insurance" JMP	"UI generosity & pandemic"(w/ Scott) Economics Letters	"Women, Informality, and Fertility" (w/ Bernatzky, Illieva)
Labor	Education	"College grad & labor market" RR EER	"College entry & pandemic" (w/ Estevan) subm.	

Labor	Public	"Informality, Risk, and Insurance" JMP	<i>"UI generosity & pandemic"</i> (w/ Scott) Economics Letters	"Women, Informality, and Fertility" (w/ Bernatzky, Illieva)
	Education	"College grad & labor market" RR EER	"College entry & pandemic" (w/ Estevan) subm.	<i>"EdTech in School"</i> (w/ Ferman,Lima) RR EER

Labor	Public	"Informality, Risk, and Insurance" JMP	"UI generosity & pandemic"(w/ Scott) Economics Letters	"Women, Informality, and Fertility" (w/ Bernatzky, Illieva)
	Education	"College grad & labor market" RR EER	"College entry & pandemic" (w/ Estevan) subm.	<i>"EdTech in School"</i> (w/ Ferman,Lima) RR EER

Applied "Coding Bias" (w/ Ferman)