Why and What to Randomize
O




Potential outcomes and treatments/manipulations

Unit-level causal effects and causal inference as a
“missing data problem”

Using multiple units and the assumptions needed for
estimation of causal effects

All boiling down to the assignment mechanism...



“My headache went away because I took aspirin.”
“She did not get the job because she is black.”

What do these statements mean? Is the use of
“because” causal?

The manipulation is clearer for aspirin and no aspirin? What is
the manipulation for being black?

Causality is about “actions” (applied to a unit) and
the associated “potential outcomes.”



Potential Outcomes

O

Manipulation Defines the Potential Outcomes

“No Causation without Manipulation” (Rubin, 1973)

We need to think about the potential outcomes and what
makes them observable.

Example: "“Smoking causes lung cancer.” Smoking is the
treatment/manipulation. Someone could decide to smoke and-
would or would not get lung cancer. The same person could
decide not to smoke, and they would or would not get lung
cancer. T he causal effect is the comparison of the two out-
comes.




Potential Outcomes

O

Example: “She did not get the job because she is a woman.”
She is a woman. She did not get the job. “Being’ a woman
is not a treatment/manipulation. We can think about the
causal effects of genetic manipulations, sex change operation,
or cross-dressing, but that is probably not what is meant by the
statement, and, effects of these treatments would be different.

Clarify what the manipulation is, to make precise what
the causal nature is of the statements.




» People do use our definition in real life, including
movies...

» “Things would have been much better had I never
been born.” (George Bailey, It’s a Wonderful Life)

The causal effect of him being born is the entire stream of
events in the actual world compared with the counterfactual
world without him (that he gets to see thanks to an angel)...

» The “but-for” concept in legal settings.
E.g. while calculating damages...



Potential Outcomes

)

I have a headache. 1 can take an aspirin. Afterwards my
headache may be gone or not.

Unit: “I", Treatment: W € {Asp.,No Asp.}

Two potential outcomes: state of headache if I take aspirin,
state of headache if I dont take aspirin, Y (Asp.), Y (No Asp.).

Causal effect is comparison of those two states for the same
unit (me), e.g., Y(Asp.) — Y(No Asp.).

Fundamental problem of causal inference (Holland, 1986, p.
947): “it is impossible to observe (both potential out-

comes) on the same unit, and therefore we cannot ob-
serve the causal effect.”




Potential Outcomes

@

Table 1.1: EXAMPLE OF POTENTIAL OUTCOMES AND CAUSAL EFFECT WITH ONE UNIT

Unit

Y (Aspirin)

Potential Outcomes

Y(No Aspirin)

Causal Effect

You | No Headache

Headache

improvement due to aspirin

Table 1.2: EXAMPLE OF POTENTIAL OUTCOMES, CAUSAL EFFECT, ACTUAL TREATMENT
AND OBSERVED OUTCOME WITH ONE UNIT

Unit Potential Outcomes

Y (Aspirin)

Unknown

Y (No Aspirin)

Causal Effect

Known
Actual Observed
Treatment Outcome

You | No Headache

Headache Improv. due to Asp. Aspirin No Headache




Given any treatment assigned to an individual unit,
the outcome(s) associated with any alternative
treatment(s) is missing!
We observe at most half of the potential outcomes and none
of the unit-level causal effects.
Statements about individual outcomes then pose
philosophical problems:

“If he had taken that new drug, he would not have died so
soon.”

This may be an expert opinion (and perhaps a real good one), but
it is not a causal statement.



» Given that only one potential outcome can be
observed for any one person, there is a need to
observe multiple units to be able to conduct causal
inference.

Notice that we can define causal impacts with respect to

actions and potential outcomes for a single unit, but we need
multiple units for estimation.

* For this purpose “you today” and “you tomorrow” are
two different units.

You may develop sensitivity (or lack thereof) to aspirin over

time; AM may be different than PM; intensity of headache may
vary, etc.

More common is “you today” vs. “me today”



The use of multiple units, however, does not come
close to solving the problem. Let’s start with the
multiplicity of potential outcomes:

Suppose now we have two units: “me” and “you.” We
can each take aspirin or not. Now there are four
potential outcomes for each of us: the state of my
headache in a 2x2 matrix of “me/you” X “aspirin/no
aspirin.”
Notice that you can ignore this “dependence” but you MUST
notice that it is an assumption that might be wrong!



Stable Unit Treatment Value Assumption (SUTVA)
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SUTVA (stable unit treatment value assumption, rules out
interference)

Assume no effect of what other person does:

Yvou(Asp., Wyou) = Yyou(No Asp., Wyou)
Yme(Wme, Asp.) = Yme(Wme, NOo Asp.)

So we can write:
Yme(W), Yyou(W), for W & {Asp.,No Asp.}

without ambiguity.




Stable Unit Treatment Value Assumption (SUTVA)
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Example of Potential Outcomes and Causal Effects under SUTVA

Unknown Known
Unit Potential Outcomes Causal Actual Observed
Y(Asp.) Y(No Asp.) | Effect | Treatment Outcome
WE' Yt_DbS
You | No Hdache Hdache Impr. Asp. No Hdache
Me | No Hdache No Hdache | None No Asp. No Hdache




Stable Unit Treatment Value Assumption (SUTVA)
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Most of the time we will assume that the potential outcomes
are indexed only by the treatment received by that unit, not by
treatments received by other units. Strong assumption.

e guard rows in agricultural experiments

e Infectious diseases: vaccination for one person affects out-
comes for other individuals.

e General equilibrium effects: providing job training for some
may affect labor market prospects for others.

e [eaching some students in a class may affect others.




Filling in the “missing values”
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1. Honey Experiment

This study (Paul et al, 2007) was designed to evaluate the ef-
fect on nocturnal cough frequency, for a population of children
with upper respiratory tract infections, of giving buckwheat
honey or honey-flavored destromethorpan, or nothing, at night
before bed time. Here we only look at honey versus nothing.

The population consists of 72 Kkids, 35 who get honey, 37
who get nothing. We focus on the outcome “cough frequency
afterwards” (cfa), and have one pretreatment variable, “cough
frequency prior" (cfp).




Filling in the “missing values”
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Y;(0),Y;(1) are potential outcomes, without and given treat-
ment.

2. Notation

W, € {0,1} is treatment indicator for child ¢, 1 if assigned to
honey, O if assigned to nothing.

Yi‘:‘b'-" = Y;(W;) is outcome for child i, cough frequency after-
wards (cfa)

X; is covariate/characteristic/pretreatment variable for child 4,
cough frequency prior (cfp)

Number of treated and control units:

N N
Ne=SW;, Ne= 3 (1-W))




Filling in the “missing values”
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Data from a randomized experiment to evaluate the effect of
honey on cough frequency

Cough Frequency for the First Six Units from Honey Study

Unit Potential Outcomes Observed Variables
Y;(0) Y (1) W, X y°obs
Cough Frequency (cfa) (cfp) (cfa)

D WNHR
= O b NN
YO W
OO0 KKK
(6 I S L @) N Y
F OP,P,OOUO W




Filling in the “missing values”
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3. Fisher’'s Approach
Assess a null hypothesis:
Hy: Y;(0)=Y;(1) forall i=1,...,N

against the alternative that for some units there is some effect
of the treatment.

Key Feature

The null hypothesis is sharp: under the null hypothesis we
know everything, we can fill in all the missing potential out-
comes in the table.




Filling in the “missing values”
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Cough Frequency for the First Six Units
from Honey Study under Null of no Effect

Unit Potential Outcomes Observed Variables
Y;(0) Y;(1) wW;  X;  YPebs
Cough Frequency (cfa) (cfp) (cfa)

1 (3) 3 1 4 3
2 (5) 5 1 6 5
3 (0) 0 1 4 0
4 4 (4) 0 4 4
5 0 (0) 0 1 0
6 1 (1) 0 5 1




Filling in the “missing values”
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Now consider a statistic, a function of the observed variables,
W, Y°bs X

E.g., difference in averages outcomes by treatment status:
Tave = T (Y°PS, W, X) = YPbs _ yobs

where

=

??bs — F | Z Y_obs



Filling in the “missing values”
)

Given our sample of six units, the value of the statistic is

8 b5
Tove = — — — =1
ave 3 3
Fisher wants to assess how unusual this value of Tayve = 1

Is, under the null hypothesis that there is no effect of the
treatment whatsoever.

The key insight is that we can derive the exact distribution of
T(Y°PS, W, X) under the randomization distribution (the distri-
bution induced by random assignment to the treatment).




Filling in the “missing values”
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Randomization Distribution for Two Statistics

Statistic: Absolute Value of
Difference in Average
Wi Wo W3 W,u Wg Wg | levels (Y;) ranks (R;)
O @] (0] 1 1 1 -1.00 -0.67
O 0] 1 O 1 1 -3.67 -3.00
O O 1 1 O 1 -1.00 -0.67
O 0] 1 1 1 O -1.67 -1.67
O 1 (0] 0 1 1 -0.33 0.00
O 1 (0] 1 9] 1 2.33 2.33
O 1 (0] 1 1 O 1.67 1.33
O 1 1 O O 1 -0.33 0.00
O 1 1 O 1 O -1.00 -1.00
O 1 1 1 9] O 1.67 1.33




Filling in the “missing values”
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If we assign 3 children to the honey, and 3 to nothing, there
are

6-5-4
6 - _— - =20
3 3.2

different assignment vectors (different values for W), and thus
at most 20 values for T' (only ten are given in the table).

Of these 20 values for 7', 16 were at least as large in absolute
value as T(Y°PS, W, X) = 1, so that the p-value is 16/20=0.80.

1
P=50 ‘ZV: 1|7 (yobs(wW), W, X)|=|T (YoPs(Wobs) Wobs X)|

At conventional levels (e.g., 0.05) we would not reject the null
hypothesis that there is no effect of the treatment.




Assignment Mechanism
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Table 1.4: MEDICAL EXAMPLE WITH Two TREATMENTS: SURGERY (S) AND DRUG
TREATMENT (D)

Unit Potential Outcomes Causal Effect
Y0) Y1) Y(1)-Y0

Patient #1 | 1 7 6
Patient #2 | 6 5 -1
Patient #3 | 1 5 4
Patient #4 | 8 7 -1

Average 4 6 2




Assignment Mechanism
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Table 1.5: IDEAL MEDICAL PRACTICE: PATIENTS ASSIGNED TO THE INDIVIDUALLY
OPTIMAL TREATMENT

Unit Treatment Observed Outcome
; Wi Yiobs
Patient #1 1 7
Patient #2 0 6
Patient #3 | 5
Patient #4 0 8




How is it determined that which units get treatment or,
equivalently, which potential outcomes are realized (and
which ones are missing)?

Assignment mechanism is so crucial that causal inference
depends on the assumptions concerning this mechanism.

So, we arrive at why we randomize. It turns out that a
“classical randomized experiment” provides the only
assignment mechanism that satisfies the desired criteria
for the estimation of causal effects “by design”.



Assignment Mechanism
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A key issue for identifying and estimating causal effects is the
assignment mechanism. Why do some units receive one treat-
ment and others a different treatment? Is this random?™ Is this
related to the outcomes given treatment or not? Who makes
the decision?

The starting point in biostatistics is the randomized experi-
ment, where assignment is completely random.

Social scientists often worry about selection bias. Units (in-
dividuals) who receive the treatment do so because they are
different from individuals who do not receive the treatment.
A classic example is schooling. Individuals who choose to go
to college are different from individuals who choose not to go
to college. They may have had higher earnings irrespective of
their education levels. Randomization rules out selection bias.




» We want three main restrictions on the assignment
mechanism in order to estimate causal effects:

1. Individualistic assignment
My probability to be assigned to treatment or control
depends only on my pre-treatment covariates and my
potential outcomes

2. Probabilistic assignment:
Every unit has a positive probability to be assigned to
treatment or control

3. Unconfounded assignment
My assignment does not depend on my potential outcomes



A “classical randomized experiment” has (is) an
assignment mechanism that satisfies all three
restrictions listed above and the researcher knows

and controls the functional form of the assignment
mechanism.

Causal effects are straightforward to estimate and more often
than not it is possible to do finite sample inference.



» An assignment mechanism corresponds to an
“observational” study if the assignment mechanism
1s unknown.

» A “regular assignment mechanism” is an
observational study that satisfies all three
restrictions, but by “assumption” rather than
“design.”

Need an initial “design” stage where covariate (pre-treatment)
balance is assessed and sought.

In well-designed observational studies, you have many
covariates that are associated with both assignment to
treatment and potential outcomes.

Adjusting for these is sufficient to draw causal inferences...



Types of Studies
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» An irregular assignment mechanism violates at least one
of the three restrictions mentioned above. There are a
number of interesting and tractable cases:

Non-compliance in randomized experiments necessitates the use of
instrumental variables techniques, and, hence, invoking
additional assumptions (such as exclusion restrictions)

Another interesting case is in circumstances where the probabilistic
assignment is violated 2 regression discontinuity designs (as
good as random assignment around the threshold)

Finally, we can think of using pre and post data for both the
treatment and control group using panel (longitudinal) data: may be
able to assume unconfoundedness given pre data 2> difference in
differences method.




Common Critiques of Randomized Experiments
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Randomized Experiments vs Observational Studies

Different views:

“Experiments offer more reliable evidence on causa-
tion than observational studies,” (Freedman, 2006, ab-
stract)

“I argue that evidence from randomized controlled trials
has no special priority. Randomization is not a gold
standard.” (Deaton, 2009)




Common Critiques of Randomized Experiments
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Internal Validity and External Validity

Internal Validity refers to the ability of the study to reflect
causal effects for the study population.

External Validity refers to the representativeness of the study
population for the population of interest.

Randomized experiment are high on internal validity, often not
so high on external validity.

Observational studies are often low on internal validity, but
often high on external validity.




Common Critiques of Randomized Experiments
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Campbell and Stanley (1963) claims

“that studies should be judged primarily by their internal
validity and only secondarily by their external validity.”

Manski (2012) writes that

“from the perspective of policy choice, it makes no
sense to value one type of validity above the other.”




Common Critiques of Randomized Experiments

O

Head Start Example

Perry Preschool Project (1960's), randomized experiment: high
school graduation rate for the students enrolled in the preschool
was 0.67, and for the control group 0.49, leading to an increase
in high school graduation rates of 0.18. (high internal validity,
low external validity) .

Garces, Currie, and Thomas (2005) show that children enrolled
in xxx in Head Start have a graduation rate of 0.65, whereas
kids not enrolled in Head Start have a graduation rate of 0.78.
Ignoring selection effects this suggests an estimate of the effect
of Head Start of -0.13. (low internal validity, high external
validity)

Which study is more informative?




Ethical issues — the importance of equipoise...

Hawthorne and John Henry effects — these
can be strong presences in certain contexts:
Hand-washing
School management/teacher incentive interventions...

Other?



Part 11
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TYPES OF RANDOMIZED EXPERIMENTS




In order to evaluate the impact of a program or policy, our

randomly selected treatment group must have more exposure

to the program than the comparison group. We can choose:
Access: Which people will be offered access to a program
(lottery, lottery around a cut-off)

Timing of access: When to provide access to the
program (phase-in design)

Encouragement: Who will be given encouragement to
participate in the program (encouragement design)



New program design: identified a problem; test alternative
solutions.

New program: don’t know impacts; random allocation fair
New services: randomize who has access

New people/locations: extend cut-off or location
Oversubscription: demand greater than supply
Undersubscription: offer encouragement

Rotation: can only cover a certain proportion at a given time
Admission cut-offs: often arbitrary

Admission in phases: resources will grow over time



Opportunity to randomize Example

Program design NGO wants to tackle obesity but not sure
what the program should look like

New service Insurance company want to introduce new
insurance product for farmers

New people Oregon has money to add more people
to its medicaid program

New location Microcredit company wants to expand to
a new location

Oversubscription More families sign up for education
vouchers than government can fund



Opportunity to randomize

Undersubscription

Rotation

Admission cut off

Admission in phases

Example
Lottery for conscription during Vietnam War
Communities take turns to host an event

Scholarship has merit cut off and ability to
randomize admission just below and above

A program builds 200 new schools but can only
build 50 each year over a 4 year period



Before types of experiments, a word about ethics

1. Just because we can randomly assign people to
interventions, it does not mean we should.
Consider:

Equipoise

p—t

>.  Beneficence
3. Privacy concerns

>. Resources:

.. Development Impact blog: “Ethical issues with randomized
experiments and other research,”

>. Asiedu et al. (PNAS 2021): “A call for structured ethics
appendices in social science papers.”

July 8, 2015



https://blogs.worldbank.org/impactevaluations/curated-list-our-postings-technical-topics-your-one-stop-shop-methodology-0
https://www.pnas.org/doi/10.1073/pnas.2024570118

1. Lottery (classic A/B test; static experiment)
Unconditional (Malawi CCT/UCT experiment)

Around a cutoff or within a band (Nigeria Business Plan
Competition)

. Phase-in design (Worms, ECMA 2004)

Group C
YVear | Treatment Comparison Comparison
’ group group group
. , Treatment Treatment | Comparison
ear 2
‘ group group group

i
Year 3



https://drive.google.com/file/d/0B274-JLBCKcdQjJXczhMNllYNWs/view?resourcekey=0-uAjk4SxbDhUMhapoKg7z6w
https://drive.google.com/file/d/0B9C9RwWKZrUNdzhGSm81UDFCMG8/view?resourcekey=0-u5CTrClOEvPf17OCzTkVmA
https://cega.berkeley.edu/assets/cega_research_projects/1/Identifying-Impacts-on-Education-and-Health-in-the-Presence-of-Treatment-Externalities.pdf

Main study types

5. Encouragement design (Impacts of Econ Blogs)

o Useful when the ITT effects is not the main estimand of
interest, but the LATE is.

o Creates differential exposure when access to intervention is
open to everyone (can’t have a pure control group)

~ Randomized encouragement needs to satisfy IV needs

« Can only estimate the LATE

July 8, 2015



https://drive.google.com/file/d/0B274-JLBCKcdbXBsWENPRVJnZ2s/view?resourcekey=0-rt1iJ0CLKP2Tp4sz-Ch9lw

Other (interesting) study types

4. Step-wedge design (Gambia Hep B vaccine)

o Similar to phase-in, more common in biomedical trials

o Have to worry about time trends and anticipation effects

Bl Cluster exposed ta intervention
O Cluster unexpased to intervention {(cantral)
[ Cluslerin Lransition period

1

No of randomised sites

45

90
Q 5 10 15 20 25 30 35 40 45 50 55 60 65 /0 75 80 B85

Time (weeks)

July 8, 2015



https://www.bmj.com/content/350/bmj.h391

Other (interesting) study types

5. Fried-Egg design

o A version of the cluster-randomized (controlled) trials, where
the whole “fried egg” assigned to treatment (or control) but
only the yolk (in the center) is used for assessing impacts (free
of spillovers from neighboring clusters).

True VE sentinel
group

Gradient sentinel group
randomly selected
throughout the cluster

July 8, 2015



Clustered vs. Individual Randomization (SUTVA)

»  Remember the aspirin example from earlier:

o Does my headache depend on you taking an aspirin? Probably not,
but maybe...

o SUTVA rules out interference!

» Many cases where SUTVA is violated:
o Pandemic
o Guard rows in agricultural experiments

o  GE effects (job training or policing having a real effect or a
displacement one?)

o  Peer effects in classrooms or schools

July 8, 2015




Such effects can completely invalidate findings
from RCTs that have not taken the possibility of
interference into account during study design...

In such cases, we take measures to minimize
interference (or spillovers)

Main method is to design a clustered-RCT.

Remember that there is no interference between clusters is
still an assumption (although you can test this, ex post, with
sufficient random variation in “distance” between clusters.



From an implementation perspective, c-RCTs can be
easier to pull off than individual randomization of
treatment assignments:

e.g., jealousy within social networks, John Henry effects, etc.

However, statistical power is significantly lower in c-
RCTs (if intra-cluster correlation is high)



Factorial Designs
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» Sometimes we want to know how two interventions
interact with each other.

These are different than “packaged interventions,” created to
cause maximum impact on the outcome.

Also, different than trials with multiple intervention arms.

e Are mentoring interventions for adolescent girls
more effective if combined with small cash transters?

 Are ultra-poor programs more effective with an
additional component (CBT, ongoing support, etc.)?



https://www.sciencedirect.com/science/article/pii/S2352827319300345?via%3Dihub

Factorial Designs

O




Y=a+b1*T1 +b2*T2 + b3*T1*T2 + ¢ (long model)

Y=k+ k1*T1 + k2*T2 + e1 (short model)

You must design the evaluation, so that you can test b3=b1 with power.
Often, the short model does not describe a world we are interested in ...

If you run the short model, the false rejection rates are high - even for
modest interaction effects (| b3|>0)

Bonus general point: depending on the power of your study, p-value=0.17
can be evidence against the null (low power) OR p-value=0.04 can be
evidence for the null.



Factorial Designs

O

» Remember: you can always leave the interaction cell empty
(caveat: Nc > N1=N2)

* You can also choose to NOT have a control group (more
unconventional)

» References:

o (What) Should you do (with) experiments with factorial designs?
o Muralidharan, Romero, and Wiitrich (2022)

o Be careful with inference from 2x2 experiments and other cross-
cutting designs

o Why p-values should be interpreted as p-values and not as measures
of evidence



https://blogs.worldbank.org/impactevaluations/what-should-you-do-experiments-factorial-designs
https://mauricio-romero.com/pdfs/papers/Factorial Designs (Current WP).pdf
https://blogs.worldbank.org/impactevaluations/be-careful-inference-2x2-experiments-and-other-cross-cutting-designs
https://daniellakens.blogspot.com/2021/11/why-p-values-should-be-interpreted-as-p.html
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ADAPTIVE EXPERIMENTS




So far, we have discussed static RCT designs. In
contrast, an adaptive design may, based on interim
analysis of the trial’s result, change the allocation of
subjects to treatment arms.

They require, however, the measurement of the
outcome (or a very good proxy of it) within a short
period, so that assignment probabilities can be
adapted.

More suited to contexts, in which there is a rolling
(continuous) enrollment of subjects into the trial...



Adaptive Experiments

O




Randomized conftrol trials

1.0- Assignment probability # units / treatment 1o Estimated objective
' 200- <]
0.8-
1501
0.6-
100
0.4-
0.0- 0- .
T1 T2 T3 T4 T1 T2 T3 T4 Tl T2 T3 T4
Fixed probability of Roughly equal number of
assignment to each unifs assigned fo each Treo’rm.en’r value
treatment*. treatment. estimate

*Note: for illustration only.




Randomized conftrol trials

Estimated objective

. - # units / treatment 1.2
Assignment probabilit
1.0 9 P y 200 -
P87 150-
0.6 -
100 -
0.4 -
}‘2_-_-_-_- 50_
0.0 - 0-

T1 T2 T3 T4

\ J
|

Good treatments not
Many individuals assigned to necessarily estimated more

suboptimal treatments (regret). accurately than bad ones.




Adapftive experiments

(example: multi-armed bandits)

L 0- Assignment probability 500 - # units / treatment 13- Estimated objective
0.8 4001 1.01

0.8+
0.6 - 300+

0.6
0.4 - 200+

0.4+
Dlz--_-_‘ 100_ 0.2-
0. o I I T B,

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

Step 1: At the beginning of the experiment,
assign treatments uniformly at random




Adapftive experiments

(example: multi-armed bandits)

1.0- Assignment probability 500+ # units / treatment 1.2- Estimated objective
0.8 400
061 Increase 3007
0.4
0.2- Decrease
0.0-
T1 T2 T3 T4

Step 2: Once some data has been
collected, increase the probability of
assignment to more promising arms.




Adapftive experiments

(example: multi-armed bandits)

Assignment probability 500+ # units / treatment 13- Estimated objective

1.0
0.8 4 400 1
300~
200 A

100 -

T4 T4

Step k: Repeat this procedure in batches, increasing
probabilities of assignment as we become more
certain about which tfreatments are good.




Adapftive experiments

(example: multi-armed bandits)

Assignment probability # units / treatment Estimated objective
0.8 2004 | 1.0l |
| 0.8
300+ I I I
I I 0.6 l
200+
l I 0.4 I
101, o2l i
0- 0.0-
T4 T1 T2 T3 T4 T1 T2 T3 T4
\ = |
As experiment progresses, ...iIn the end, more Tigh’rer confidence
suboptimal treatments are observations assigned to int | ,
assigned less frequently... optimal freatments InTervals around opfimal
(lower regret). treatment value estimates.




Computing assignment probabilities

Useful heuristic: Thompson Sampling 3. Observe outcomes and update
the posterior distribution of arm values.
1. Start with a prior distribution on arm values.

4, Next batch, assign treatments
2. Collect first batch of data by assigning according to their posterior probability of
treatments uniformly at random. being optimal.
Prior probability dis.tributinns of arm value Posterior probabilit_y dist_ributions of arm value
0.200 { — am1l 0.40 4 ! ! — arm 1
0175 —ama2 0.35 i o am2

—— arm 3 i i — arm 3
0150 4

0125

The Thompson
Sampling heuristic
dictates that these
should be the

0.100 4
0.075 4
0.050 4 0.10

0.025

0000 -75 50 -25 0o 25 5.0 15 10.0 000 _]I_5 OSSIgnmenT
S probabilities.
. . (- oo memm \l
P(arm 1 is optimal) = ¥ I P(arm 1is optimal | Data) = 0.05 /
P(arm 2 is optimal) = % | P(arm 2is optimal | Data) = 0.70

P(arm 3 is optimal) = ¥4 P(arm 3'is optimal | Data) = 0.25 ,'

N oo o e e e e e o o e o e o o o =




Adapftive experiments

(contextual bandits)

When personal characteristics (contexts) are observed, the
assignment probabilities can be conditional on them.

Posterior probability distributions of arm value|for age < 21 Posterior probability dlstrlbutlons of arm value for age = 21
0.40 i 0.200
{ arm

—== arm 2

035 4 0.175

0.30 4 0.150 4

0.25 4 0.125

0.20 4

1
1
1
1
1
1
i
i
1
I
1
]
]
: 0.100 4
|

015 0.075

0.10 4 0.050

0.05 4 0.025

0.00 - 0.000 -

As we gather more data, we are better able to personalize treatments.

Because bandit algorithms maximize the welfare of individuals in the
experiment, they can be desirable from an ethical standpoint.




Caveats

0.4

In an adaptive experiment, collected data
are not independent.

0.3
1

Usual methods for inference will often give
the wrong answer. More sophisticated
methods are needed.

Density
0.2

0.1

This is an area of active research*

0.0

Luedtke and van der Laan (2016)

Deshpande, Mackey, Syrgkanis, Taddy (2017) value estimate

Hadad, Hirshberg, Zhan, Wager, Athey (2019)

Howard, Ramdas, McAuliffe, Sekhon (2019ab) Example: distribution of the sample mean after an
Zhang, Janson, Murphy (2020) adaptive experiment. Estimates are biased and do

not have a normal distribution.



https://arxiv.org/search/math?searchtype=author&query=Howard%2C+S+R
https://arxiv.org/search/math?searchtype=author&query=Ramdas%2C+A
https://arxiv.org/search/math?searchtype=author&query=McAuliffe%2C+J
https://arxiv.org/search/math?searchtype=author&query=Sekhon%2C+J

Caveats

19 Estimated objective

Need to make sure that the experimental
design aligns with research objectives.

1.0 = — T

/ A\ 4 \

1 1 1 1

0.81! 1 1 1

1 1 1 1

. . 0.6 | | 1

For example, if one goalis to be able to I I I I
test the performance of the best treatment 0.4 | | |
arm against a control, need to ensure that 0.2 I I I
enough observations are collected from 0.0 ! ! : !
control. T 0TI T2 T3 1 T4

N = - ) J

Example: if one is expecting to test, e.g., whether
T1 (the “best” arm) and T4 (the control arm) have
the same mean, need to ensure enough
observations in both T1 and T4.




Part 1V

O

RECOMMENDED PRACTICES FOR
ANALYSIS IN EXPERIMENTS




Perhaps, two of the most basic (and omnipresent)
steps in the analysis of randomized experiments are
demonstrating baseline balance and robustness for
attrition (or participants lost to follow-up).

Before we get to showing baseline balance, however,
let’s discuss what we can do at the design stage to
address it.



» Matched pair randomization, matched quadruplets,
and/or blocked (stratified) randomization?

e Perfect reference from David McKenzie on
Development Impact last week...

» Main takeaways:


https://blogs.worldbank.org/impactevaluations/why-i-am-now-more-cautious-about-using-or-recommending-matched-pair-randomization

Use one or two key variables with which you want to
stratify your sample. You could have theoretical or
practical guidance on treatment effect heterogeneity
by, say, gender or location or other. E.g., Imbens
recommends using cluster size to define strata.

Within these form quadruplets, using either:

The outcome indicator (or and index of closely correlated
outcome indicators), OR

A set of baseline covariates that predict the outcome well.



If you do this, then you will have balance on the
stratification variables, as well as the outcome
variable (or an index of outcome variables).

If you have used Mahalonobis distance, you will also have
balance on that score (and most likely all the variables that go
into it).

In this case, my recommendation is that it is OK to
report baseline balance in Appendix Table Ax.



» Should you re-randomize for baseline balance?

Calculate

— 1 — 1 X1—Xo
Xo== 2. Xi Xu=— > Xii tx= : :
N i:W;=0 N i.W;=1 \/ 3_2\"0/ N + 3_2\'_1/ N

What to do if |[tyx| is large, if discovered before assignment is
implemented?

» Two options:

Randomize M times, implement assignment vector that
minimizes the maximum ty;,i € 1,2, ..., K

Re-randomize until all t-stats below a certain threshold.
» Pre-specify for randomization inference, and
» Don’t search over randomizations for best value.



» Again, if you do this, i.e., re-randomize, then you will
have balance on the pre-specified variables.

In this case, my recommendation is that it is OK to report
baseline balance in Appendix Table A1.

» If you have not done either of these strategies and
either:
implemented unconditional randomization, OR

Did not implement the randomization yourself, then

» Report baseline balance in Table 1.



A few things to remember:

If your study is well-powered, more likely to reject
differences 1n covariate values between arms and vice
versa: so, design well-powered studies, report MDE:s,
and have an idea of meaningful (vs. stat. sig.)
differences.

Conduct tests of joint orthogonality of all variables (F-
tests for T & C; chi-squared tests using multinomial
logit with multiple treatment arms)

You want high p-values in these tests, especially when
your experiment is only modestly powered.



Attrition (or loss to follow-up)

O

» Attrition is the bane of RCTs!

o In some ways, it is the biggest threat to clean identification in
RCTs, as you cannot prevent it.

o The best way to deal with attrition is to minimize it!
The smaller the number of observations lost to
follow-up, the easier are the fixes...

» Two 1ssues with attrition:
o Differential attrition in levels, and
o Differential attrition in baseline characteristics.

o If you can show evidence against both these, then you may be
allowed to proceed with no corrections or sensitivity analysis.




Attrition (or loss to follow-up)

O

» How to present the evidence on attrition:

o Use the same variables as presented in the baseline balance
table (preferably pre-specified based on the outcomes,
covariates that are prognostic of them, and sources of
heterogeneity)...

o Run a regression that is fully interacted (saturated) with
treatment(s) and its(their) interaction with (centered/de-
meaned) covariates.

o Report F-tests of joint orthogonality — separately for the
covariates and their interactions
« Covariates influencing attrition is not a problem — it is expected.
« Interactions significantly influencing attrition is a problem.
o So is any level differences in attrition...




Attrition (or loss to follow-up)

O

» See examples of attrition analysis here and here...

» What to do when there is differential attrition:
Inverse propensity weights (generally do not change findings)

Manski and Lee bounds (former generally yields bound that
are too wide to be informative, while the latter comes with
some assumptions. See this blog post for a detailed discussion)

Kling-Liebman bounds (my preferred route)

In the study of a UCT program for Syrian refugees, hyperlinked
above, we made this part of the main analysis (attrition very high!)



https://drive.google.com/file/d/1W-Zd-J_efe9B1zvNtFkYkmw9lnF0qok3/view
https://drive.google.com/file/d/1En_GzxnjTQucyZkrskxCQgcP_A1eL3Ry/view
https://blogs.worldbank.org/impactevaluations/dealing-attrition-field-experiments

» There have been several concerns with covariate
adjustments in randomized experiments:

Famous statistician David Freedman worried that precision
could be hurt by adjustments.

Adjustment can also open the door to fishing, i.e., ad hoc
specification searching (or p-hacking).
Remember that difference-in-differences, which used to be the
norm, as well as ANCOVA (broadly defined) are both available to

researchers, in addition to the choice of (not prespecified)
covariates (see this blog post for a more detailed discussion)



https://blogs.worldbank.org/impactevaluations/another-reason-prefer-ancova-dealing-changes-measurement-between-baseline-and-follow

» The first problem can come from two sources:
Unbalanced assignment to treatment vs. control
Strong treatment-effect heterogeneity in the adjusted covariate

» Winston Lin, in two classic Development Impact
posts (Parts I & I1), has shown that, adjustment
cannot hurt precision if you regress:

YonT, X-xbar,and T * (X - xbar), where xbar is the mean
covariate value for the entire sample.

Then the coefficient on T estimates the average treatment
effect (ATE) for the entire sample.


https://blogs.worldbank.org/impactevaluations/regression-adjustment-in-randomized-experiments-is-the-cure-really-worse-than-the-disease
https://blogs.worldbank.org/impactevaluations/guest-post-by-winston-lin-regression-adjustment-in-randomized-experiments-is-the-cure-really-worse-0

» "The main purpose of allowing [adjusting] for
covariates in a randomized trial is defensive: to
make it clear that analysis has met its scientific
obligations.” John Tukey

The researchers, whenever possible, should pre-specify the
covariates to be used for adjustment (caveat on LASSO...)

Doesn’t matter if the adjusted or the unadjusted specification
is the ‘main analysis,” as long as both are reported.

Select a concise K-vector of adjustments, from the set of

covariates that are strongly prognostic of the outcome at

follow-up (lagged value of the outcome variable is natural).
K<<N



» Analyze the RCT you designed!
Block/stratum fixed effects
Randomization inference (upcoming lecture)

Careful analysis and transparent discussion of balance,
attrition, implementation problems, fully-interacted covariate
adjustments (and unadjusted estimates), etc.

Many other aspects we did not cover (randomization
mechanics, field work details, experimental design
issues, missing data, etc.)



